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Simpson’s 1/3 Rule of Integration 
 

 

 

 

 

 

What is integration? 

Integration is the process of measuring the area under a function plotted on a graph.  Why 

would we want to integrate a function?  Among the most common examples are finding the 

velocity of a body from an acceleration function, and displacement of a body from a velocity 

function.  Throughout many engineering fields, there are (what sometimes seems like) 

countless applications for integral calculus.  Sometimes, the evaluation of expressions 

involving these integrals can become daunting, if not indeterminate.  For this reason, a wide 

variety of numerical methods has been developed to simplify the integral.  Here, we will 

discuss Simpson’s 1/3 rule of integral approximation, which improves upon the accuracy of 

the trapezoidal rule. 

Here, we will discuss the Simpson’s 1/3 rule of approximating integrals of the form 
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where  

 )(xf  is called the integrand, 

 a  lower limit of integration 

 b  upper limit of integration 

 

Simpson’s 1/3 Rule 

The trapezoidal rule was based on approximating the integrand by a first order polynomial, 

and then integrating the polynomial over interval of integration.  Simpson’s 1/3 rule is an 

extension of Trapezoidal rule where the integrand is approximated by a second order 

polynomial. 
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                                  Figure 1  Integration of a function 

 

 

Method 1: 
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Solving the above three equations for unknowns, ,0a  1a  and 
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Substituting values of ,0a  

1a  and 
2a  give 
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Since for Simpson 1/3 rule, the interval  ba,  is broken into 2 segments, the segment width 
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Hence the Simpson’s 1/3 rule is given by 
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Since the above form has 1/3 in its formula, it is called Simpson’s 1/3 rule. 

 

Method 2: 

Simpson’s 1/3 rule can also be derived by approximating )(xf  by a second order polynomial 

using Newton’s divided difference polynomial as 
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Integrating Newton’s divided difference polynomial gives us 
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Substituting values of ,0b  ,1b  and 
2b  into this equation yields the same result as before 
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Method 3: 

One could even use the Lagrange polynomial to derive Simpson’s formula.  Notice any 

method of three-point quadratic interpolation can be used to accomplish this task.  In this 

case, the interpolating function becomes 
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Integrating this function gets 
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Believe it or not, simplifying and factoring this large expression yields you the same result as 

before 
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Method 4: 

Simpson’s 1/3 rule can also be derived by the method of coefficients.  Assume 
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Let the right-hand side be an exact expression for the integrals ,1
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implies that the right hand side will be exact expressions for integrals of any linear 

combination of the three integrals for a general second order polynomial.  Now 
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Solving the above three equations for ,0c  1c  and 2c  give 
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The integral from the first method 
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 can be viewed as the sum of the areas of three rectangles. 

 

Example 1 

The distance covered by a rocket in meters from 8t s to 30t s is given by 
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a) Use Simpson’s 1/3 rule to find the approximate value of x . 

b) Find the true error, tE . 

c) Find the absolute relative true error, t . 

Solution 

a)         
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    =11065.72 m 

b) The exact value of the above integral is 
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So the true error is 
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c) The absolute relative true error is 
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Multiple-segment Simpson’s 1/3 Rule 

Just like in multiple-segment trapezoidal rule, one can subdivide the interval  ba,  into n  

segments and apply Simpson’s 1/3 rule repeatedly over every two segments.  Note that n  

needs to be even.  Divide interval  ba,  into n  equal segments, so that the segment width is 

given by 
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Apply Simpson’s 1/3rd Rule over each interval, 
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Example 2 

Use 4-segment Simpson’s 1/3 rule to approximate the distance covered by a rocket in meters 

from 8t s to 30t s as given by 

 




















30

8

8.9
2100140000

140000
ln2000 dtt

t
x

 



 

 

9 

  

a) Use four segment Simpson’s 1/3rd Rule to estimate x. 

b) Find the true error, tE  for part (a). 

c) Find the absolute relative true error, t for part (a). 

Solution: 

a)  Using n  segment Simpson’s 1/3 rule, 
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b) The exact value of the above integral is 
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Table 1   Values of Simpson’s 1/3 rule for Example 2 with multiple-segments 

n  Approximate Value tE
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-0.06 

0.0396% 

0.0027% 
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11061.35 

11061.34 

-0.02 

-0.01 

0.0002% 

0.0001% 

 

Error in Multiple-segment Simpson’s 1/3 rule 

The true error in a single application of Simpson’s 1/3rd Rule is given1 by 
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In multiple-segment Simpson’s 1/3 rule, the error is the sum of the errors in each application 

of Simpson’s 1/3 rule.  The error in the n segments Simpson’s 1/3rd Rule is given by 
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Hence, the total error in the multiple-segment Simpson’s 1/3 rule is 
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)4(f in the true error expression stands for the fourth derivative of the function )(xf . 
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