Simpson 3/8 Rule for Integration

Introduction

The main objective of this chapter is to develop appropriate formulas for approximating the integral of the form

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x \tag{1}
\end{equation*}
$$

Most (if not all) of the developed formulas for integration are based on a simple concept of approximating a given function $f(x)$ by a simpler function (usually a polynomial function) $f_{i}(x)$, where i represents the order of the polynomial function. In Chapter 07.03, Simpsons $1 / 3$ rule for integration was derived by approximating the integrand $f(x)$ with a $2^{\text {nd }}$ order (quadratic) polynomial function. $f_{2}(x)$

$$
\begin{equation*}
f_{2}(x)=a_{0}+a_{1} x+a_{2} x^{2} \tag{2}
\end{equation*}
$$

Figure $1 \tilde{f}(x)$ Cubic function.
In a similar fashion, Simpson $3 / 8$ rule for integration can be derived by approximating the given function $f(x)$ with the $3{ }^{\text {rd }}$ order (cubic) polynomial $f_{3}(x)$

$$
\left.\begin{array}{rl}
f_{3}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \\
& =\left\{1, x, x^{2}, x^{3}\right\} \times\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \tag{3}
\end{array}\right\}
$$

which can also be symbolically represented in Figure 1.
Method 1
The unknown coefficients a_{0}, a_{1}, a_{2} and a_{3} in Equation (3) can be obtained by substituting 4 known coordinate data points $\left\{x_{0}, f\left(x_{0}\right)\right\},\left\{x_{1}, f\left(x_{1}\right)\right\},\left\{x_{2}, f\left(x_{2}\right)\right\}$ and $\left\{x_{3}, f\left(x_{3}\right)\right\}$ into Equation (3) as follows.

$$
\left.\begin{array}{l}
f\left(x_{0}\right)=a_{0}+a_{1} x_{0}+a_{2} x_{0}^{2}+a_{3} x_{0}^{2} \\
f\left(x_{1}\right)=a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+a_{3} x_{1}^{2} \\
f\left(x_{2}\right)=a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2}+a_{3} x_{2}^{2} \tag{4}\\
f\left(x_{3}\right)=a_{0}+a_{1} x_{3}+a_{2} x_{3}^{2}+a_{3} x_{3}^{2}
\end{array}\right\}
$$

Equation (4) can be expressed in matrix notation as

$$
\left[\begin{array}{llll}
1 & x_{0} & x_{0}^{2} & x_{0}^{3} \tag{5}\\
1 & x_{1} & x_{1}^{2} & x_{1}^{3} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} \\
1 & x_{3} & x_{3}^{2} & x_{3}^{3}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
f\left(x_{0}\right) \\
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
f\left(x_{3}\right)
\end{array}\right]
$$

The above Equation (5) can symbolically be represented as

$$
\begin{equation*}
[A]_{4 \times 1} \vec{a}_{4 \times 1}=\vec{f}_{4 \times 1} \tag{6}
\end{equation*}
$$

Thus,

$$
\vec{a}=\left[\begin{array}{l}
a_{1} \tag{7}\\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]=[A]^{-1} \times \vec{f}
$$

Substituting Equation (7) into Equation (3), one gets

$$
\begin{equation*}
f_{3}(x)=\left\{1, x, x^{2}, x^{3}\right\} \times[A]^{-1} \times \vec{f} \tag{8}
\end{equation*}
$$

As indicated in Figure 1, one has

$$
\left.\begin{array}{rl}
x_{0} & =a \\
x_{1} & =a+h \\
& =a+\frac{b-a}{3} \\
& =\frac{2 a+b}{3} \\
x_{2} & =a+2 h \\
& =a+\frac{2 b-2 a}{3} \tag{9}\\
& =\frac{a+2 b}{3} \\
x_{3} & =a+3 h \\
& =a+\frac{3 b-3 a}{3} \\
=b
\end{array}\right\}
$$

With the help from MATLAB [Ref. 2], the unknown vector \vec{a} (shown in Equation 7) can be solved for symbolically.

Method 2

Using Lagrange interpolation, the cubic polynomial function $f_{3}(x)$ that passes through 4 data points (see Figure 1) can be explicitly given as

$$
\begin{align*}
f_{3}(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} \times f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} \times f\left(x_{1}\right) \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} \times f\left(x_{3}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} \times f\left(x_{3}\right) \tag{10}
\end{align*}
$$

Simpsons 3/8 Rule for Integration

Substituting the form of $f_{3}(x)$ from Method (1) or Method (2),

$$
\begin{align*}
I & =\int_{a}^{b} f(x) d x \\
& \approx \int_{a}^{b} f_{3}(x) d x \\
& =(b-a) \times \frac{\left\{f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right\}}{8} \tag{11}
\end{align*}
$$

Since

$$
h=\frac{b-a}{3}
$$

$$
b-a=3 h
$$

and Equation (11) becomes

$$
\begin{equation*}
I \approx \frac{3 h}{8} \times\left\{f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right\} \tag{12}
\end{equation*}
$$

Note the $3 / 8$ in the formula, and hence the name of method as the Simpson's $3 / 8$ rule.
The true error in Simpson 3/8 rule can be derived as [Ref. 1]

$$
\begin{equation*}
E_{t}=-\frac{(b-a)^{5}}{6480} \times f^{\prime \prime \prime \prime}(\zeta), \text { where } a \leq \zeta \leq b \tag{13}
\end{equation*}
$$

Example 1

The vertical distance in meters covered by a rocket from $t=8$ to $t=30$ seconds is given by

$$
s=\int_{8}^{30}\left(2000 \ln \left[\frac{140000}{140000-2100 t}\right]-9.8 t\right) d t
$$

Use Simpson $3 / 8$ rule to find the approximate value of the integral.

Solution

$$
\begin{aligned}
h & =\frac{b-a}{n} \\
& =\frac{b-a}{3} \\
& =\frac{30-8}{3} \\
& =7.3333
\end{aligned}
$$

$$
f(t)=2000 \ln \left[\frac{140000}{140000-2100 t}\right]-9.8 t
$$

$$
I \approx \frac{3 h}{8} \times\left\{f\left(t_{0}\right)+3 f\left(t_{1}\right)+3 f\left(t_{2}\right)+f\left(t_{3}\right)\right\}
$$

$$
t_{0}=8
$$

$$
f\left(t_{0}\right)=2000 \ln \left(\frac{140000}{140000-2100 \times 8}\right)-9.8 \times 8
$$

$$
=177.2667
$$

$$
\left\{\begin{aligned}
t_{1}= & t_{0}+h \\
& =8+7.3333 \\
& =15.3333 \\
f\left(t_{1}\right) & =2000 \ln \left(\frac{140000}{140000-2100 \times 15.3333}\right)-9.8 \times 15.3333 \\
& =372.4629
\end{aligned}\right.
$$

$$
\begin{aligned}
& \left\{\begin{aligned}
t_{2}= & t_{0}+2 h \\
= & 8+2(7.3333) \\
= & 22.6666 \\
f\left(t_{2}\right) & =2000 \ln \left(\frac{140000}{140000-2100 \times 22.6666}\right)-9.8 \times 22.6666 \\
& =608.8976
\end{aligned}\right. \\
& \left\{\begin{aligned}
t_{3}= & t_{0}+3 h \\
& =8+3(7.3333) \\
& =30 \\
f\left(t_{3}\right) & =2000 \ln \left(\frac{140000}{140000-2100 \times 30}\right)-9.8 \times 30 \\
& =901.6740
\end{aligned}\right.
\end{aligned}
$$

Applying Equation (12), one has

$$
\begin{aligned}
I & =\frac{3}{8} \times 7.3333 \times\{177.2667+3 \times 372.4629+3 \times 608.8976+901.6740\} \\
& =11063.3104 m
\end{aligned}
$$

The exact answer can be computed as

$$
I_{\text {exact }}=11061.34 \mathrm{~m}
$$

Multiple Segments for Simpson 3/8 Rule

Using $n=$ number of equal segments, the width h can be defined as

$$
\begin{equation*}
h=\frac{b-a}{n} \tag{14}
\end{equation*}
$$

The number of segments need to be an integer multiple of 3 as a single application of Simpson $3 / 8$ rule requires 3 segments.
The integral shown in Equation (1) can be expressed as

$$
\begin{align*}
I & =\int_{a}^{b} f(x) d x \\
& \approx \int_{a}^{b} f_{3}(x) d x \\
& \approx \int_{x_{0}=a}^{x_{3}} f_{3}(x) d x+\int_{x_{3}}^{x_{6}} f_{3}(x) d x+\ldots \ldots . .+\int_{x_{n-3}}^{x_{n}=b} f_{3}(x) d x \tag{15}
\end{align*}
$$

Using Simpson 3/8 rule (See Equation 12) into Equation (15), one gets

$$
\begin{align*}
I & =\frac{3 h}{8}\left\{\begin{array}{l}
\left.f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{3}\right)+3 f\left(x_{4}\right)+3 f\left(x_{5}\right)+f\left(x_{6}\right)\right\} \\
+\ldots . .+f\left(x_{n-3}\right)+3 f\left(x_{n-2}\right)+3 f\left(x_{n-1}\right)+f\left(x_{n}\right)
\end{array}\right. \tag{16}\\
& =\frac{3 h}{8}\left\{f\left(x_{0}\right)+3 \sum_{i=1,4,7, \ldots}^{n-2} f\left(x_{i}\right)+3 \sum_{i=2,5,8,, . .}^{n-1} f\left(x_{i}\right)+2 \sum_{i=3,6,9,, . .}^{n-3} f\left(x_{i}\right)+f\left(x_{n}\right)\right\} \tag{17}
\end{align*}
$$

Example 2

The vertical distance in meters covered by a rocket from $t=8$ to $t=30$ seconds is given by

$$
s=\int_{8}^{30}\left(2000 \ln \left[\frac{140000}{140000-2100 t}\right]-9.8 t\right) d t
$$

Use Simpson 3/8 multiple segments rule with six segments to estimate the vertical distance.

Solution

In this example, one has (see Equation 14):

$$
\begin{aligned}
& f(t)=2000 \ln \left[\frac{140000}{140000-2100 t}\right]-9.8 t \\
& h=\frac{30-8}{6}=3.6666 \\
& \left\{t_{0}, f\left(t_{0}\right)\right\}=\{8,177.2667\} \\
& \left\{t_{1}, f\left(t_{1}\right)\right\}=\{11.6666,270.4104\} \text { where } t_{1}=t_{0}+h=8+3.6666=11.6666 \\
& \left\{t_{2}, f\left(t_{2}\right)\right\}=\{15.3333,372.4629\} \text { where } t_{2}=t_{0}+2 h=15.3333 \\
& \left\{t_{3}, f\left(t_{3}\right)\right\}=\{19,484.7455\} \text { where } t_{3}=t_{0}+3 h=19 \\
& \left\{t_{4}, f\left(t_{4}\right)\right\}=\{22.6666,608.8976\} \text { where } t_{4}=t_{0}+4 h=22.6666 \\
& \left\{t_{5}, f\left(t_{5}\right)\right\}=\{26.3333,746.9870\} \text { where } t_{5}=t_{0}+5 h=26.3333 \\
& \left\{t_{6}, f\left(t_{6}\right)\right\}=\{30,901.6740\} \text { where } t_{6}=t_{0}+6 h=30
\end{aligned}
$$

Applying Equation (17), one obtains:

$$
\begin{aligned}
I & =\frac{3}{8}(3.6666)\left\{177.2667+3 \sum_{i=1,4, \ldots}^{n-2=4} f\left(t_{i}\right)+3 \sum_{i=2,5, \ldots}^{n-1=5} f\left(t_{i}\right)+2 \sum_{i=3,6, \ldots}^{n-3=3} f\left(t_{i}\right)+901.6740\right\} \\
& =(1.3750)\left\{\begin{array}{l}
177.2667+3(270.4104+608.8976) \\
+3(372.4629+746.9870)+2(484.7455)+901.6740
\end{array}\right\} \\
& =11,601.4696 m
\end{aligned}
$$

Example 3

Compute

$$
I=\int_{8}^{30}\left\{2000 \ln \left(\frac{140000}{140000-2100 t}\right)-9.8 t\right\} d t,
$$

using Simpson $1 / 3$ rule (with $n_{1}=4$), and Simpson $3 / 8$ rule (with $n_{2}=3$).

Solution

The segment width is

$$
\begin{aligned}
& h=\frac{b-a}{n} \\
&=\frac{b-a}{n_{1}+n_{2}} \\
&=\frac{30-8}{(4+3)} \\
&=3.1429 \\
& f(t)=2000 \ln \left[\frac{140000}{140000-2100 t}\right]-9.8 t \\
& t_{0}=a=8 \\
& t_{1}=x_{0}+1 h=8+3.1429=11.1429 \\
& t_{2}=t_{0}+2 h=8+2(3.1429)=14.2857 \\
& t_{3}=t_{0}+3 h=8+3(3.1429)=17.4286 \\
& t_{4}=t_{0}+4 h=8+4(3.1429)=20.5714 \\
& t_{5}=t_{0}+5 h=8+5(3.1429)=23.7143 \\
& t_{6}=t_{0}+6 h=8+6(3.1429)=26.8571 \\
& t_{7}=t_{0}+7 h=8+7(3.1429)=30
\end{aligned}
$$

Now

$$
\begin{aligned}
f\left(t_{0}=8\right) & =2000 \ln \left(\frac{140,000}{140,000-2100 \times 8}\right)-9.8 \times 8 \\
& =177.2667
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
& f\left(t_{1}\right)=256.5863 \\
& f\left(t_{2}\right)=342.3241 \\
& f\left(t_{3}\right)=435.2749 \\
& f\left(t_{4}\right)=536.3909 \\
& f\left(t_{5}\right)=646.8260 \\
& f\left(t_{6}\right)=767.9978 \\
& f\left(t_{7}\right)=901.6740
\end{aligned}
$$

For multiple segments ($n_{1}=$ first 4 segments), using Simpson $1 / 3$ rule, one obtains (See Equation 19):

$$
\begin{aligned}
I_{1} & =\left(\frac{h}{3}\right)\left\{f\left(t_{0}\right)+4 \sum_{i=1,3, \ldots}^{n_{1}-1=3} f\left(t_{i}\right)+2 \sum_{i=2, \ldots}^{n_{1}-2=2} f\left(t_{i}\right)+f\left(t_{n_{1}}\right)\right\} \\
& =\left(\frac{h}{3}\right)\left\{f\left(t_{0}\right)+4\left(f\left(t_{1}\right)+f\left(t_{3}\right)\right)+2 f\left(t_{2}\right)+f\left(t_{4}\right)\right\} \\
& =\left(\frac{3.1429}{3}\right)\{177.2667+4(256.5863+435.2749)+2(342.3241)+536.3909\} \\
& =4364.1197
\end{aligned}
$$

For multiple segments ($n_{2}=$ last 3 segments), using Simpson $3 / 8$ rule, one obtains (See Equation 17):

$$
\begin{aligned}
I_{2} & =\left(\frac{3 h}{8}\right)\left\{f\left(t_{0}\right)+3 \sum_{i=1,3, \ldots}^{n_{2}-2=1} f\left(t_{i}\right)+3 \sum_{i=2, \ldots}^{n_{2}-1=2} f\left(t_{i}\right)+2 \sum_{i=3,6, \ldots}^{n_{2}-3=0} f\left(t_{i}\right)+f\left(t_{n_{1}}\right)\right\} \\
& =\left(\frac{3 h}{8}\right)\left\{f\left(t_{0}\right)+3 f\left(t_{1}\right)+3 f\left(t_{2}\right)+2(\text { no contribution })+f\left(t_{3}\right)\right\} \\
& =\left(\frac{3 h}{8}\right)\left\{f\left(t_{4}\right)+3 f\left(t_{5}\right)+3 f\left(t_{6}\right)+f\left(t_{7}\right)\right\} \\
& =\left(\frac{3}{8} \times 3.1429\right)\{536.3909+3(646.8260)+3(767.9978)+901.6740\} \\
& =6697.3663
\end{aligned}
$$

The mixed (combined) Simpson $1 / 3$ and $3 / 8$ rules give

$$
\begin{aligned}
I & =I_{1}+I_{2} \\
& =4364.1197+6697.3663 \\
& =11061 \mathrm{~m}
\end{aligned}
$$

Comparing the truncated error of Simpson $1 / 3$ rule

$$
\begin{equation*}
E_{t}=-\frac{(b-a)^{5}}{2880} \times f^{\prime \prime \prime \prime}(\zeta) \tag{18}
\end{equation*}
$$

With Simpson $3 / 8$ rule (See Equation 12), it seems to offer slightly more accurate answer than the former. However, the cost associated with Simpson $3 / 8$ rule (using 3rd order polynomial function) is significantly higher than the one associated with Simpson $1 / 3$ rule (using 2nd order polynomial function).

The number of multiple segments that can be used in the conjunction with Simpson $1 / 3$ rule is $2,4,6,8, \ldots$ (any even numbers) for

$$
I=\int_{a}^{b} f(x) d x
$$

$$
\begin{align*}
& \approx\left(\frac{h}{3}\right)\left\{f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\ldots . .+f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right\} \\
& =\left(\frac{h}{3}\right)\left\{f\left(x_{0}\right)+4 \sum_{i=1,3, \ldots}^{n-1} f\left(x_{i}\right)+2 \sum_{i=2,4,6 . .}^{n-2} f\left(x_{i}\right)+f\left(x_{n}\right)\right\} \tag{19}
\end{align*}
$$

However, Simpson $3 / 8$ rule can be used with the number of segments equal to $3,6,9,12, .$. (can be certain integers that are multiples of 3).
If the user wishes to use, say 7 segments, then the mixed Simpson $1 / 3$ rule (for the first 4 segments), and Simpson $3 / 8$ rule (for the last 3 segments) would be appropriate.

Computer Algorithm for Mixed Simpson 1/3 and 3/8 Rule for Integration

Based on the earlier discussion on (single and multiple segments) Simpson $1 / 3$ and $3 / 8$ rules, the following "pseudo" step-by-step mixed Simpson rules for estimating

$$
I=\int_{a}^{b} f(x) d x
$$

can be given as

Step 1

User inputs information, such as
$f(x)=$ integrand
$n_{1}=$ number of segments in conjunction with Simpson $1 / 3$ rule (a multiple of 2 (any even numbers)
$n_{2}=$ number of segments in conjunction with Simpson 3/8 rule (a multiple of 3)

Step 2

Compute

$$
\begin{aligned}
& n=n_{1}+n_{2} \\
& h=\frac{b-a}{n} \\
& x_{0}=a \\
& x_{1}=a+1 h \\
& x_{2}=a+2 h
\end{aligned}
$$

$$
x_{i}=a+i h
$$

$$
x_{n}=a+n h=b
$$

Step 3
Compute result from multiple-segment Simpson 1/3 rule (See Equation 19)

$$
I_{1}=\left(\frac{h}{3}\right)\left\{f\left(x_{0}\right)+4 \sum_{i=1,3, \ldots}^{n_{1}-1} f\left(x_{i}\right)+2 \sum_{i=2,4,6 \ldots}^{n_{1}-2} f\left(x_{i}\right)+f\left(x_{n_{1}}\right)\right\}
$$

Step 4
Compute result from multiple segment Simpson 3/8 rule (See Equation 17)

$$
I_{2}=\left(\frac{3 h}{8}\right)\left\{f\left(x_{0}\right)+3 \sum_{i=1,4,7, \ldots}^{n_{2}-2} f\left(x_{i}\right)+3 \sum_{i=2,5,8, \ldots}^{n_{2}-1} f\left(x_{i}\right)+2 \sum_{i=3,6,9, \ldots}^{n_{2}-3} f\left(x_{i}\right)+f\left(x_{n_{2}}\right)\right\}
$$

Step 5

$$
\begin{equation*}
I \approx I_{1}+I_{2} \tag{20}
\end{equation*}
$$

and print out the final approximated answer for I.

Reference

SIMPSON'S 3/8 RULE FOR INTEGRATION

Topic Simpson 3/8 Rule for Integration
Summary Textbook Chapter of Simpson's $3 / 8$ Rule for Integration
Major General Engineering
Authors Duc Nguyen
Date \quad March 28, 2022

