Trapezoidal Rule of Integration

What is integration?

Integration is the process of measuring the area under a function plotted on a graph. Why
would we want to integrate a function? Among the most common examples are finding the
velocity of a body from an acceleration function, and displacement of a body from a velocity
function. Throughout many engineering fields, there are (what sometimes seems like)
countless applications for integral calculus. You can read about some of these applications in
Chapters 07.00A-07.00G.

Sometimes, the evaluation of expressions involving these integrals can become daunting, if
not indeterminate. For this reason, a wide variety of numerical methods has been developed
to simplify the integral.

Here, we will discuss the trapezoidal rule of approximating integrals of the form
b

I =If(x)dx

where
f (x) is called the integrand,

a = lower limit of integration
b = upper limit of integration

What is the trapezoidal rule?

The trapezoidal rule is based on the Newton-Cotes formula that if one approximates the
integrand by an n™ order polynomial, then the integral of the function is approximated by

the integral of that n™ order polynomial. Integrating polynomials is simple and is based on
the calculus formula.
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Figure 1 Integration of a function

b n+l n+l
Ix”dx:(b;aj, n=-1 (1)
. n+1
So if we want to approximate the integral
b
| = j f (x)dx )
to find the value of the above integral, one assumes
f(x)~ f (X) 3
where
f.(x)=a, +ax+..+a, ,x""+a,Xx". (4)

where f (x) is a n" order polynomial. The trapezoidal rule assumes n=1, that is,

approximating the integral by a linear polynomial (straight line),
b

[ f()dx~ i f, (x)dx

a

Derivation of the Trapezoidal Rule

Method 1: Derived from Calculus

i f(x)dx =~ j' f, (x)dx

b
= I(aO +a,x)dx

:ao(b—a)+al(b2;a2j ®)

But what is a, and a,? Now if one chooses, (a, f(a)) and (b, f (b)) as the two points to
approximate f(x) by a straight line from a to b,



f(a)=f,(a)=a,+aa
f(b)=f,(b)=a,+ab

Solving the above two equations for a, and a,,

_f)-f(a)
' p-a

_ f(a)b-f(b)a
o b-a

Hence from Equation (5),
f(a)b— f(b)a
b—

=(b—a){

jl f(xX)dx =

a

L1~

f(a)b*-a’

b-a

f(a)+ f(b)}

Method 2: Also Derived from Calculus

2

(6)
(7)

(8a)

(8b)

f,(x) can also be approximated by using Newton’s divided difference polynomial as

f.(x)= f(a)+M(x—a
b-a

Hence

jl f(x)dx =~ .T f, (x)dx

a

i[f(a) f(b) f(a)(x a)}dx

{f(a)x f(b)- f(a)(z axﬂ

=f(ab-f(a)a+

=f(@b-f(a)a+

=f(ab-f(a)a+

f(b)—f(a)

b-a

f(b) - f(a)

b-a

f(b) - f(a)

b-a

~ f(a)b- f(a)a+%(f(b)— f(a))b-a)

1 1 1 1
= f(a)b—f(@a+ fOb- f(b)a— f@b+ f(a)a

1 1 1 1
=5 f@b-Zf@a+ fbb——f(b)a

(10)

©)



> (11)

This gives the same result as Equation (10) because they are just different forms of writing
the same polynomial.

:(b_a){f(a)+f(b)}

Method 3: Derived from Geometry

The trapezoidal rule can also be derived from geometry. Look at Figure 2. The area under
the curve f,(x) is the area of a trapezoid. The integral
b

f f (x)dx ~ Area of trapezoid

a

= % (Sum of length of parallel sides)(Perpendicular distance between parallel sides)
1
=5 (FO)+ F@)b-2)

:(b_a)[f(a)+ f(b)}

. (12
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Figure 2 Geometric representation of trapezoidal rule.

Method 4: Derived from Method of Coefficients
The trapezoidal rule can also be derived by the method of coefficients. The formula

b

[f00ax= 222 1@+ 22 1 (b) (13)

J 2 2
2

=zcif(xi)

i=1

where

. _b-a

o2

—a
“="3
X =



y fix)

Area o, fra)

Figure 3 Area by method of coefficients.

The interpretation is that f(x) is evaluated at points a and b, and each function evaluation
is given a weight of b—Ta_ Geometrically, Equation (12) is looked at as the area of a

trapezoid, while Equation (13) is viewed as the sum of the area of two rectangles, as shown
in Figure 3. How can one derive the trapezoidal rule by the method of coefficients?

Assume

i f(x)dx =c, f (a)+c, f (b) (14)

b b
Let the right hand side be an exact expression for integrals of jldx and J'xdx, that is, the

formula will then also be exact for linear combinations of f(x) =1 and f(x) = x, that is, for
f(x)=a,(D)+a(x).

b
jldx:b—a:c1+c2 (15)
b 2.2
[ xdx= b™-a" _ca+c,b (16)
Solving the above two equations gives
c b-a

)

b-a

c,=—— 17

= (17)
Hence

i f (X)dx ~ b;za f(a) +b;2a f (b) (18)



Method 5: Another approach on the Method of Coefficients
The trapezoidal rule can also be derived by the method of coefficients by another approach

p b-a b—a

! f(dx==—=f(@)+=—= ()

Assume

[ f09dx=c, f(a)+c,f(b) (19)

Let the right hand side be exact for integrals of the form
b

I(a0 +a,x)dx

0

S
b X2 b
j(a0 +a,x)dx = (aox +a, ?J

a

:ao(b—a)+al(b2;a2j (20)

But we want
b

[(a, +ax)dx=c, f(a)+c, f (b) (21)
to give the same result as Equation (20) for f(x) =a, +a,x.

b

J‘(a0 +a,x)dx=c,(a, +a,a)+c,(a, +a,b)

=a,(c, +¢,)+a,(c,a+c,b) (22)
Hence from Equations (20) and (22),

b? —a?
ao(b—a)+a1[ > J:ao(cl+c2)+al(cla+c2b)

Since a, and a, are arbitrary for a general straight line
c,+C,=b-a
b* —-a’

c,a+cb= (23)
Again, solving the above two equations (23) gives
b-a
C, = —
-a
Cc, = — (24)
Therefore

i f(x)dx=~c,f(a)+c,f(b)

a



b-a b-a

Example 1

The vertical distance covered by a rocket from t =8 to t =30 seconds is given by
30
x=| (ZOOOIn{ 140000 }—9.8t]dt

5 140000-2100x

a) Use the single segment trapezoidal rule to find the distance covered for t =8 to
t =30seconds.

b) Find the true error, E, for part (a).

c) Find the absolute relative true error for part (a).
Solution

a) | =~ (b- a)[w} , Where

a=8
b=30

f(t)= 2000In[

140000 7 oo
140000~ 2100

f(8) = 2000In| — 20000 | 4 g
140000— 2100(8)

=177.27 m/s
f (30) = 2000In 140000 —-9.8(30)
140000-2100(30)
=90167 m/s
| ~ (30—8){177'27 + 901.67}
2
=11868 m

b) The exact value of the above integral is
30
x=| [ZOOOIn{ 140000 } = 9.8t]dt
o 140000- 2100
=11061m
so the true error is
E, = True Value — Approximate Value

=11061-11868
=-807m

c) The absolute relative true error, |e, |, would then be




True Error
True Value
11061-11868
| 11061 |
=7.2958%

x100

|Et| =

x100

Multiple-Segment Trapezoidal Rule

In Example 1, the true error using a single segment trapezoidal rule was large. We can
divide the interval [8,30] into [8,19] and [19,30] intervals and apply the trapezoidal rule over

each segment.

f(t)= ZOOOIn(

140000 ) o q
140000~ 2100t

Tf(Odt:Tf(Udt+Tf(Udt

~ (19~ 8){@} + (30 49)[%}

f(8) =177.27 m/s
140000
140000 2100(19)

f(30) =901.67 m/s

fa9):2ooom[ :}—9809)=484751nm

Hence

30
jf(Ddtz(19—8%F7127;48475}+(30—1%{48475290167}
8

=11266 m
The true error, E, is

E, =11061-11266

=—-205m
The true error now is reduced from 807m to 205m. Extending this procedure to dividing
[a,b] into n equal segments and applying the trapezoidal rule over each segment, the sum of

the results obtained for each segment is the approximate value of the integral.
Divide (b—a) into n equal segments as shown in Figure 4. Then the width of each segment

is
h_pb-a (26)
n
The integral 1 can be broken into h integrals as
b

= f(x)dx

a



_ aj'r-hf (X)dx N a+J_2hf (X)dx+ o, a+(rj_—11)=h(x)dx + jl f (X)dX (27)

a+h a+(n-2)h a+(n-1)h

¥ fix)

B-a B-a b-a
1 at atis atiTF b X

Figure 4 Multiple (n=4) segment trapezoidal rule

Applying trapezoidal rule Equation (27) on each segment gives

if(x)dx=[(a+h)_a[f(a>+;<a+h)}

+[(a+2h)—(a+h)][f(a+h)+ f(a+2h)}

2
f(a+(n—2)h)+ f(a+(n—1)h)}
2

F e +[(a+(n—l)h)—(a+(n—2)h){

+[b_(a+(n_1)h)][ fa+(n —21)h)+ f(b)}

=h[f(a)+f(a+h)}+h[f(a+h)+f(a+2h)} .

2 2
+h[f(a+(n—2)h); f(a+(n—1)h)}+h{f(a+(n—21)h)+ f(b)}
:h{f(a)+2f(a+h)+2f(a+2h)+... +2f @+ (n-Dh)+ f(b)}

2

i=1

=2[f(a)+2{ni f(a+ih)}+ f(b)}

:%[f(a)jtz{nif(aﬂh)}r f(b)} (28)

i=1



Example 2
The vertical distance covered by a rocket from t =8 to t =30 seconds is given by
30
=j(2000|n{ 140000 }—9.8tjdt
. 140000- 2100
a) Use the two-segment trapezoidal rule to find the distance covered from t =8 to
t =30 seconds.
b) Find the true error, E, for part (a).
c) Find the absolute relative true error for part (a).
Solution

a) The solution using 2-segment Trapezoidal rule is

| ~ b2a{f(a)+2{2f(a+|h)}+f(b)}

=1

n=2
a=8
b=30
h_pb-a
n
30-8
2
=11
- 320( )8{1‘(8) 2{221:f(8+1n)}+ f(30)}
22[f(8)+2f(19)+ f (30)]

242 [177.27 + 2(484.75) + 901.67]

=11266 m

b) The exact value of the above integral is

30
- j (ZOOOIn{ 140000 }—9.8tjdt
! 140000— 2100t

=11061m
so the true error is
E, = True Value — Approximate Value

=11061-11266
=-205m

c) The absolute relative true error,|e, |, would then be



True Error
True Value
_ |11061—11266| <100
| 11061 |
=1.8537%0

x100

|Et| =

Table 1 Values obtained using multiple-segment trapezoidal rule for

30
- j (ZOOOIn{ 140000 }—Q.Stjdt
! 140000— 2100t

Approximate
n Vgﬁje E, % | |e.|%
1 |11868 -807 | 7.296 | ---
2 | 11266 -205 | 1.853 | 5.343
3 | 11153 -91.4 | 0.8265 | 1.019
4 | 11113 -51.5 | 0.4655 | 0.3594
5 111094 -33.0 | 0.2981 | 0.1669
6 | 11084 -22.9 | 0.2070 | 0.09082
7 | 11078 -16.8 | 0.1521 | 0.05482
8 | 11074 -12.9 | 0.1165 | 0.03560
Example 3
Use the multiple-segment trapezoidal rule to find the area under the curve
300x
f(X)=—+
1+e
from x=0 to x=10.
Solution
Using two segments, we get
h_10 0 _5
2
f(o)ZSOO(O):o
1+¢°
f(5)_300(5) 10.039
1+e°
f(10)_300(10) 0.136
1+¢e"

| ~ b2a{f(a)+2{2f(a+|h)}+f(b)}

=1

_10-0
20) {f (0) + 2{2 f(0+ 5)} + f (10)}

=1



:%[f(0)+2f(5)+ f(L0)]

= ?[o +2(10.039) +0.136] =50.537

So what is the true value of this integral?
T 300x
o 1+e”
Making the absolute relative true error
el 246.59-50.535 , 1

| 24659 |

=79.506%

Why is the true value so far away from the approximate values? Just take a look at Figure 5.
As you can see, the area under the “trapezoids” (yeah, they really look like triangles now)
covers a small portion of the area under the curve. As we add more segments, the
approximated value quickly approaches the true value.

dx =246.59

23530100 T T T T

f(x)

Figure 5 2-segment trapezoidal rule approximation.



Table 2 Values obtained using multiple-segment trapezoidal rule for J'

N Cgﬁjr:mmate E, |€t|

1 |0.681 245.91 | 99.724%
2 | 50.535 196.05 | 79.505%
4 |170.61 75.978 | 30.812%
8 |227.04 19.546 | 7.927%
16 | 241.70 4.887 | 1.982%
32 | 245.37 1.222 | 0.495%
64 | 246.28 0.305 | 0.124%

Example 4
Use multiple-segment trapezoidal rule to find

I—.[—dx

Solutlon

We cannot use the trapezoidal rule for this integral, as the value of the integrand at x =0 is
infinite. However, it is known that a discontinuity in a curve will not change the area under
it. We can assume any value for the function at x =0. The algorithm to define the function
so that we can use the multiple-segment trapezoidal rule is given below.

Function f(x)

If x=0Then f =0

If x=0 Then f =x"(-0.5)
End Function

Basically, we are just assigning the function a value of zero at x=0. Everywhere else, the
function is continuous. This means the true value of our integral will be just that—true.
Let’s see what happens using the multiple-segment trapezoidal rule.

Using two segments, we get

h=2"9_1
2

f(O)—O

fl)=——-=1

T

300x
1+¢e*

dx.



f(2) = ——=0.70711

> -

1

22

1

a{f(a)+2{2f(a+|h)}+ f(b)}
_2- 0{f(0)+2{if(0+1)}+f(2)}

:Z[f(0)+2f(1)+f(2)]

= %[o +2(1)+0.70711]

=1.3536

So what is the true value of this integral?

j—dx 2.8284

Thus making the absolute relative true error

2.8284-1.3536
&=

U] 28284 |

=52.145%

x100

Table 3 Values obtained using multiple-segment trapezoidal rule for '[

n Cgﬁjrgxmate E, |€t|

2 1.354 1.474 | 52.14%
4 1.792 1.036 | 36.64%
8 2.097 0.731 | 25.85%
16 2.312 0.516 | 18.26%
32 2.463 0.365 | 12.91%
64 2.570 0.258 | 9.128%
128 | 2.646 0.182 | 6.454%
256 | 2.699 0.129 | 4.564%
512 | 2.737 0.091 | 3.227%
1024 | 2.764 0.064 | 2.282%
2048 | 2.783 0.045 | 1.613%
4096 | 2.796 0.032 | 1.141%

Error in Multiple-segment Trapezoidal Rule

The true error for a single segment Trapezoidal rule is given by

_ (b-a)y ..
E, = 1"(¢), a<¢<b

Where ¢ is some point in [a,b].

de.



What is the error then in the multiple-segment trapezoidal rule? It will be simply the sum of
the errors from each segment, where the error in each segment is that of the single segment
trapezoidal rule. The error in each segment is

Elz—Mf"(gl), a<¢, <a+h
12
hd
- ()
EZZ_[(a+2h)1_2(a+h)] f"(é’z)v a+h<§2<a+2h
he ..
:_Ef (&7)
E, =—[(a+ih)_(f2+(i_1)h)]3 £7(Z), a+(i-Dh< <a+ih
he ..
- 1)
En_l:—[{a+(”‘l)h}12{a+(”‘2)h}]3 £"(£..), a+(n-2)h<¢,, <a+(n-1h
hd
__Ef (¢na)
E [b_{‘”l(; Dhj] £7(Z), a+(n-Dh<<, <b
hd .
:_Ef ()

Hence the total error in the multiple-segment trapezoidal rule is

E, :Zn:Ei
=—E;f"(éﬂ)

BECED .
== 2 1)

(b_a)S ; fu(;i)
T 1on? n




> ()

The term = is an approximate average value of the second
n

derivative f"(x),a<x<b.

Hence

n

; 2, F(&)
P Gl le
12n n

In Table 4, the approximate value of the integral
30

| [ZOOOIn{ 140000 }— 9.8tJdt

. 140000- 2100

is given as a function of the number of segments. You can visualize that as the number of
segments are doubled, the true error gets approximately quartered.

Table 4 Values obtained using multiple-segment trapezoidal rule for

30
X = j 2000In{ 140000 }—9& dt .
! 140000— 2100t

N o e el | e

2 | 11266 -205 | 1.853 5.343

4 |11113 -52 1 0.4701 | 0.3594
8 |11074 -13 | 0.1175 | 0.03560
16 | 11065 -4 0.03616 | 0.00401

For example, for the 2-segment trapezoidal rule, the true error is -205, and a quarter of that
error is -51.25. That is close to the true error of -48 for the 4-segment trapezoidal rule.

Can you answer the question why is the true error not exactly -51.25? How does this
information help us in numerical integration? You will find out that this forms the basis of
Romberg integration based on the trapezoidal rule, where we use the argument that true error
gets approximately quartered when the number of segments is doubled. Romberg integration
based on the trapezoidal rule is computationally more efficient than using the trapezoidal rule
by itself in developing an automatic integration scheme.
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