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Trapezoidal Rule of Integration 
 

 

 

 

 

What is integration? 

Integration is the process of measuring the area under a function plotted on a graph.  Why 

would we want to integrate a function?  Among the most common examples are finding the 

velocity of a body from an acceleration function, and displacement of a body from a velocity 

function.  Throughout many engineering fields, there are (what sometimes seems like) 

countless applications for integral calculus.  You can read about some of these applications in 

Chapters 07.00A-07.00G.   

Sometimes, the evaluation of expressions involving these integrals can become daunting, if 

not indeterminate.  For this reason, a wide variety of numerical methods has been developed 

to simplify the integral.   

Here, we will discuss the trapezoidal rule of approximating integrals of the form 

 
b

a

dxxfI  

where  

  )(xf  is called the integrand, 

  a  lower limit of integration 

  b  upper limit of integration 

 

What is the trapezoidal rule? 

The trapezoidal rule is based on the Newton-Cotes formula that if one approximates the 

integrand by an 
thn  order polynomial, then the integral of the function is approximated by 

the integral of that thn  order polynomial.  Integrating polynomials is simple and is based on 

the calculus formula. 
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Figure 1 Integration of a function 
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So if we want to approximate the integral 


b

a

dxxfI )(                                                                                                                 (2) 

to find the value of the above integral, one assumes 

)()( xfxf n                                                                                                               (3) 

where 
n

n

n

nn xaxaxaaxf  



1

110 ...)( .                                                              (4) 

where )(xf n  is a 
thn  order polynomial.  The trapezoidal rule assumes 1n , that is, 

approximating the integral by a linear polynomial (straight line), 
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Derivation of the Trapezoidal Rule 

Method 1: Derived from Calculus 

 
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a

b

a

dxxfdxxf )()( 1  

      
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aaba                                                                  (5) 

But what is 0a  and 
1a ?  Now if one chooses, ))(,( afa  and ))(,( bfb  as the two points to 

approximate )(xf  by a straight line from a  to b , 
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aaaafaf 101 )()(                                                                                        (6) 

baabfbf 101 )()(                                                                                        (7) 

 

Solving the above two equations for 
1a  and 0a , 
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Hence from Equation (5), 
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Method 2: Also Derived from Calculus 

)(1 xf  can also be approximated by using Newton’s divided difference polynomial as 
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This gives the same result as Equation (10) because they are just different forms of writing 

the same polynomial. 

 

Method 3: Derived from Geometry 

The trapezoidal rule can also be derived from geometry. Look at Figure 2.  The area under 

the curve )(1 xf  is the area of a trapezoid.  The integral 

trapezoidofArea)( 
b

a

dxxf  

 
2

1
 (Sum of length of parallel sides)(Perpendicular distance between parallel sides) 

   )()()(
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ab                                                                                     (12) 

 

 

Figure 2 Geometric representation of trapezoidal rule. 

 

Method 4: Derived from Method of Coefficients 

The trapezoidal rule can also be derived by the method of coefficients.  The formula 

)(
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Figure 3 Area by method of coefficients. 

 

The interpretation is that )(xf  is evaluated at points a  and b , and each function evaluation 

is given a weight of 
2

ab 
.  Geometrically, Equation (12) is looked at as the area of a 

trapezoid, while Equation (13) is viewed as the sum of the area of two rectangles, as shown 

in Figure 3.  How can one derive the trapezoidal rule by the method of coefficients?   

 

Assume 

)()()( 21 bfcafcdxxf

b

a

                                                                                     (14) 

Let the right hand side be an exact expression for integrals of 
b

a

dx1  and 
b

a

xdx , that is, the 

formula will then also be exact for linear combinations of 1)( xf  and xxf )( , that is, for 

)()1()( 10 xaaxf  . 

211 ccabdx

b

a

                                                                                      (15) 
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xdx

b
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Solving the above two equations gives 
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Method 5: Another approach on the Method of Coefficients 

The trapezoidal rule can also be derived by the method of coefficients by another approach 
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2
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


  
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)()()( 21 bfcafcdxxf

b

a

                                                                                     (19) 

Let the right hand side be exact for integrals of the form 

  

b

a

dxxaa 10  
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But we want 

  )()( 2110 bfcafcdxxaa

b

a

                                                                         (21) 

to give the same result as Equation (20) for xaaxf 10)(  . 

     baacaaacdxxaa

b

a

10210110   

                bcacacca 211210                                                              (22) 

Hence from Equations (20) and (22), 
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1a  are arbitrary for a general straight line 
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Again, solving the above two equations (23) gives 
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Example 1 

The vertical distance covered by a rocket from 8t  to 30t  seconds is given by 

 




















30

8

8.9
2100140000

140000
ln2000 dtt

t
x  

a) Use the single segment trapezoidal rule to find the distance covered for 8t  to 

30t seconds. 

b) Find the true error, tE  for part (a). 

c) Find the absolute relative true error for part (a). 

Solution 

a) 






 


2

)()(
)(

bfaf
abI , where 

8a   

30b   

t
t

tf 8.9
2100140000

140000
ln2000)( 










  

)8(8.9
)8(2100140000

140000
ln2000)8( 










f  

                     27.177  m/s 

)30(8.9
)30(2100140000

140000
ln2000)30( 










f  

                      67.901  m/s 








 


2

67.90127.177
)830(I  

               11868  m 

 

b) The exact value of the above integral is 

  



















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8

8.9
2100140000

140000
ln2000 dtt

t
x  

    11061  m 

so the true error is 

tE  True Value – Approximate Value 

      1186811061  

      807  m 

c) The absolute relative true error, t , would then be 
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100
Value True

Error True
t   

       100
11061

1186811061



  

       %2958.7  

 

Multiple-Segment Trapezoidal Rule 

In Example 1, the true error using a single segment trapezoidal rule was large.  We can 

divide the interval ]30,8[  into ]19,8[  and ]30,19[  intervals and apply the trapezoidal rule over 

each segment. 

t
t

tf 8.9
2100140000

140000
ln2000)( 










  

 
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8
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8
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              






 








 


2

)30()19(
)1930(

2

)19()8(
)819(

ffff
 

                 27.177)8( f  m/s 

   75.484)19(8.9
)19(2100140000

140000
ln2000)19( 










f m/s 

    67.901)30( f  m/s 

Hence 








 








 
 2

67.90175.484
)1930(

2

75.48427.177
)819()(

30

8

dttf  

    11266  m 

The true error, tE  is 

1126611061tE  

       205 m 

The true error now is reduced from 807m to 205m.  Extending this procedure to dividing 

],[ ba  into n  equal segments and applying the trapezoidal rule over each segment, the sum of 

the results obtained for each segment is the approximate value of the integral. 

Divide )( ab   into n  equal segments as shown in Figure 4.  Then the width of each segment 

is 

n

ab
h


                                                                                                             (26) 

The integral I  can be broken into h  integrals as 


b

a

dxxfI )(   
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Figure 4  Multiple ( 4n ) segment trapezoidal rule 

 

Applying trapezoidal rule Equation (27) on each segment gives 
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Example 2 

The vertical distance covered by a rocket from 8t  to 30t  seconds is given by 

 




















30

8

8.9
2100140000

140000
ln2000 dtt

t
x  

a) Use the two-segment trapezoidal rule to find the distance covered from 8t  to 

30t  seconds. 

b) Find the true error, tE  for part (a). 

c) Find the absolute relative true error for part (a). 

Solution 

a) The solution using 2-segment Trapezoidal rule is 






















 



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2
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1

bfihafaf
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2n  

8a   

30b  

n
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h


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2

830 
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               11   

       
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








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






 




)30()118(2)8(
)2(2

830 12

1

fiffI
i

 

                 )30()19(2)8(
4

22
fff   

                 67.901)75.484(227.177
4

22
  

                11266  m 

 

b) The exact value of the above integral is 

 




















30

8

8.9
2100140000

140000
ln2000 dtt

t
x  

       11061  m 

so the true error is 

 Value TruetE Approximate Value 

       1126611061  

      m205  

 

c) The absolute relative true error, t , would then be 
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100
Value True

Error True
t   

       100
11061

1126611061



  

       %8537.1  

 

         Table 1 Values obtained using multiple-segment trapezoidal rule for 

 




















30

8

8.9
2100140000

140000
ln2000 dtt

t
x  

  

n  
Approximate 

Value tE  %t  %a  

1 11868 -807 7.296 --- 

2 11266 -205 1.853 5.343 

3 11153 -91.4 0.8265 1.019 

4 11113 -51.5 0.4655 0.3594 

5 11094 -33.0 0.2981 0.1669 

6 11084 -22.9 0.2070 0.09082 

7 11078 -16.8 0.1521 0.05482 

8 11074 -12.9 0.1165 0.03560 

 

Example 3 

Use the multiple-segment trapezoidal rule to find the area under the curve 

xe

x
xf




1

300
)(  

from 0x  to 10x . 

Solution 

Using two segments, we get 

5
2

010



h  

0
1

)0(300
)0(

0





e
f  

039.10
1

)5(300
)5(

5





e
f  

136.0
1

)10(300
)10(

10





e
f  






















 



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2

1

1
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








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






 



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)2(2
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1
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     )10()5(2)0(
4

10
fff   

      136.0)039.10(20
4

10
    537.50  

So what is the true value of this integral? 

59.246
1

300
10

0




dx
e

x
x

 

Making the absolute relative true error 

100
59.246

535.5059.246



t  

       %506.79  

Why is the true value so far away from the approximate values?  Just take a look at Figure 5.  

As you can see, the area under the “trapezoids” (yeah, they really look like triangles now) 

covers a small portion of the area under the curve.  As we add more segments, the 

approximated value quickly approaches the true value. 

 

Figure 5  2-segment trapezoidal rule approximation. 
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Table 2 Values obtained using multiple-segment trapezoidal rule for  

10

0
1

300
dx

e

x
x

. 

n  
Approximate  

Value tE  t  

1 0.681 245.91 99.724% 

2 50.535 196.05 79.505% 

4 170.61 75.978 30.812% 

8 227.04 19.546 7.927% 

16 241.70 4.887 1.982% 

32 245.37 1.222 0.495% 

64 246.28 0.305 0.124% 

 

Example 4 

Use multiple-segment trapezoidal rule to find 


2

0

1
dx

x
I  

Solution 

We cannot use the trapezoidal rule for this integral, as the value of the integrand at 0x  is 

infinite.  However, it is known that a discontinuity in a curve will not change the area under 

it.  We can assume any value for the function at 0x .  The algorithm to define the function 

so that we can use the multiple-segment trapezoidal rule is given below. 

  

 Function )(xf  

 If 0x  Then 0f  

 If 0x  Then )5.0(^  xf  

 End Function 

 

Basically, we are just assigning the function a value of zero at 0x .  Everywhere else, the 

function is continuous.  This means the true value of our integral will be just that—true.  

Let’s see what happens using the multiple-segment trapezoidal rule. 

Using two segments, we get 

1
2

02



h  

0)0( f  

1
1

1
)1( f  
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
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






 




)2()10(2)0(
)2(2
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1
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      )2()1(2)0(
4

2
fff   

      70711.0)1(20
4

2
  

     3536.1  

So what is the true value of this integral? 

8284.2
1

2

0

 dx
x

 

Thus making the absolute relative true error 

100
8284.2

3536.18284.2



t  

       %145.52  

 Table 3 Values obtained using multiple-segment trapezoidal rule for 
2

0

1
dx

x
. 

n  
Approximate  

Value tE  t  

2 1.354 1.474 52.14% 

4 1.792 1.036 36.64% 

8 2.097 0.731 25.85% 

16 2.312 0.516 18.26% 

32 2.463 0.365 12.91% 

64 2.570 0.258 9.128% 

128 2.646 0.182 6.454% 

256 2.699 0.129 4.564% 

512 2.737 0.091 3.227% 

1024 2.764 0.064 2.282% 

2048 2.783 0.045 1.613% 

4096 2.796 0.032 1.141% 

 

Error in Multiple-segment Trapezoidal Rule 

The true error for a single segment Trapezoidal rule is given by 

baf
ab

Et 


  ),("
12

)( 3

 

Where   is some point in  ba, . 
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What is the error then in the multiple-segment trapezoidal rule?  It will be simply the sum of 

the errors from each segment, where the error in each segment is that of the single segment 

trapezoidal rule.  The error in each segment is 
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Hence the total error in the multiple-segment trapezoidal rule is 
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The term 
n

f
n

i

i
1

)(" 

 is an approximate average value of the second 

derivative bxaxf ),(" .   

Hence 

n

f
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)("

12
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In Table 4, the approximate value of the integral 

 



















30

8

8.9
2100140000

140000
ln2000 dtt

t
 

is given as a function of the number of segments.  You can visualize that as the number of 

segments are doubled, the true error gets approximately quartered. 

 

Table 4 Values obtained using multiple-segment trapezoidal rule for 

 




















30

8

8.9
2100140000

140000
ln2000 dtt

t
x . 

 

n  
Approximate 

Value tE  %t  %a  

2 11266 -205 1.853 5.343 

4 11113 -52 0.4701 0.3594 

8 11074 -13 0.1175 0.03560 

16 11065 -4 0.03616 0.00401 

 

For example, for the 2-segment trapezoidal rule, the true error is -205, and a quarter of that 

error is -51.25.  That is close to the true error of -48 for the 4-segment trapezoidal rule.    

 

Can you answer the question why is the true error not exactly -51.25? How does this 

information help us in numerical integration?  You will find out that this forms the basis of 

Romberg integration based on the trapezoidal rule, where we use the argument that true error 

gets approximately quartered when the number of segments is doubled.  Romberg integration 

based on the trapezoidal rule is computationally more efficient than using the trapezoidal rule 

by itself in developing an automatic integration scheme. 
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