
 1 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

1.1 Introduction

In this chapter, we introduce console applications—these input and
output text in a console window, which in Windows Operating System(s)
is known as the Command Prompt. We use live-code examples to
demonstrate input/output, text formatting and arithmetic, equality and
relational operators.

1.2 A Simple C# Application: Displaying a Line of Text

Let’s consider an application that displays a line of text. (Later in this
section we discuss how to compile and run an application.) The application
and its output are shown in Fig. 1.1. The application illustrates several
important C# language features. For your convenience, each program we
present includes line numbers, which are not part of actual C# code. In
Section 1.3 we show how to display line numbers for your C# code in the IDE.
We’ll soon see that line 10 does the real work of the application—namely,
displaying the phrase Welcome to C# Programming! on the screen. We now
do a code walkthrough.

Line 1 begins with //, indicating that the remainder of the line is a
comment. We begin every application with a comment indicating the figure
number and the name of the file in which the application is stored.

 2 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

1 // Fig. 1.1: Welcome1.cs
2 // Text-displaying application.
3 using System;
4
5 public class Welcome1
6 {
7 // Main method begins execution of C# application
8 public static void Main(string[] args)
9 {
10 Console.WriteLine("Welcome to C# Programming!");
11 } // end Main
12 } // end class Welcome1

Welcome to C# Programming!

Fig. 1.1 | Text-displaying application.

A comment that begins with // is called a single-line comment, because it
terminates at the end of the line on which it appears. A // comment also can
begin in the middle of a line and continue until the end of that line (as in lines
7, 11 and 12).Delimited comments such as

/* This is a delimited comment.
It can be split over many lines */

can be spread over several lines. This type of comment begins with the
delimiter /* and ends with the delimiter */. All text between the delimiters is
ignored by the compiler. C# incorporated delimited comments and single-line
comments from the C and C++ programming languages, respectively. In this
book, we use only single-line comments in our programs.

Line 2 is a single-line comment that describes the purpose of the
application. Line 3 is a using directive that tells the compiler where to look
for a class that is used in this application. A great strength of Visual C# is its
rich set of predefined classes that you can reuse rather than “reinventing the
wheel.” These classes are organized under namespaces—named collections
of related classes. Collectively, .NET’s namespaces are referred to as the
.NET Framework Class Library. Each using directive identifies a namespace
containing pre- defined classes that a C# application should be able to use.
The using directive in line 3 indicates that this example uses classes from the
System namespace, which contains the predefined Console class (discussed
shortly) used in line 10, and many other useful classes.

 3 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

Line 5 begins a class declaration for the class Welcome1. Every
application you create consists of at least one class declaration that is defined
by you. These are known as user-defined classes. The class keyword
introduces a class declaration and is immediately followed by the class name
(Welcome1). Keywords (also called reserved words) are reserved for use by
C# and are always spelled with all lowercase letters. The complete list of C#
keywords is shown in Fig. 1.2.

C# Keywords and contextual keywords

abstract

as

Base

bool

break
byte case catch char checked
class const continue decimal default
delegate do double else enum
event explicit extern false finally
fixed float For foreach goto
if implicit In int interface
internal is Lock long namespace
new null object operator out
override params private protected public
readonly ref return sbyte sealed
short sizeof stackalloc static string
struct switch This throw true
try typeof Uint ulong unchecked
unsafe ushort using virtual void
volatile while

add alias ascending by descending
equals from Get global group
into join Let on orderby
partial remove select set value
var where yield

Fig. 1.2 | C# keywords and contextual keywords.

By convention, all class names begin with a capital letter and capitalize
the first letter of each word they include (e.g., SampleClassName). This is
frequently referred to as Pascal casing. A class name is an identifier—a series
of characters consisting of letters, digits and underscores (_) that does not
begin with a digit and does not contain spaces. Some valid identifiers are

 4 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

Welcome1, identifier, _value and m_inputField1. The name 7button is not a
valid identifier because it begins with a digit, and the name input field is not a
valid identifier because it contains a space. Normally, an identifier that does
not begin with a capital letter is not the name of a class. C# is case sensitive—
that is, uppercase and low- ercase letters are distinct, so a1 and A1 are
different (but both valid) identifiers. Identifiers may also be preceded by the
@ character. This indicates that a word should be interpreted as an identifier,
even if it’s a keyword (e.g., @int). This allows C# code to use code written in
other .NET languages where an identifier might have the same name as a C#
keyword.

The contextual keywords in Fig. 1.2 can be used as identifiers outside the
contexts in which they’re keywords, but for clarity this is not recommended.
In Chapters 3–9, every class we define begins with the keyword public. When
you save your public class declaration in a file, the file name is usually the
class name followed by the .cs file-name extension. For our application, the
file name is Welcome1.cs.

A left brace (in line 6 in Fig. 1.1), {, begins the body of every class
declaration. A corresponding right brace (in line 12), }, must end each class
declaration. Lines 7–11 are indented. This indentation is one of the spacing
conventions mentioned earlier. We define each spacing convention as a Good
Programming Practice.

 For each application, one of the methods in a class must be called Main
(which is typically defined as shown in line 8); otherwise, the application will
not execute. Methods are able to perform tasks and return information when
they complete their tasks. Keyword void (line 8) indicates that this method
will not return any information after it completes its task. Later, we’ll see that
many methods do return information.

Line 10 displays the string of characters contained between the double
quotation marks. Whitespace characters in strings are not ignored by the
compiler. Class Console provides standard input/output capabilities that
enable applications to read and display text in the console window from
which the application executes. The Console.WriteLine method displays a
line of text in the console window.

 5 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

The string in the parentheses in line 10 is the argument to the method.
Method Console.WriteLine displays its argument in the console window.
When Console.WriteLine completes its task, it positions the screen cursor at
the beginning of the next line in the console window.

The entire line 10, including Console.WriteLine, the parentheses, the
argument "Welcome to C# Programming!" in the parentheses and the
semicolon (;), is called a statement. Most statements end with a semicolon.
When the statement in line 10 executes, it displays the string Welcome to C#
Programming! in the console window. A method is typically composed of one
or more statements that perform the method’s task.

1.3 Creating a Simple Application in Visual C# Express
Now that we have presented our first console application (Fig. 1.1), we

provide a step-by- step explanation of how to compile and execute it using
Visual C#.

Creating the Console Application
After opening Visual C# 2010 , select File > New Project… to display the

New Project dialog (Fig. 1.3), then select the Console Application template.
In the dialog’s Name field, type Welcome1. Click OK to create the project.
The IDE now contains the open console application, as shown in Fig. 1.4. The
editor window already contains some code provided by the IDE. Some of this
code is similar to that of Fig. 1.1. Some is not, and uses features that we have
not yet discussed. The IDE inserts this extra code to help organize the
application and to provide access to some common classes in the .NET
Framework Class Library—at this point in the book, this code is neither
required nor relevant to the discussion of this application; delete all of it.

The code coloring scheme used by the IDE is called syntax-color
highlighting and helps you visually differentiate application elements. For
example, keywords appear in blue, and comments appear in green. When
present, comments are green. One example of a literal is the string passed to
Console.WriteLine in line 10 of Fig. 1.1. You can customize the colors shown
in the code editor by selecting Tools > Options…. This displays the Options
dialog. Then expand the Environment node and select Fonts and Colors. Here
you can change the colors for various code elements.

 6 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

Project
name

Fig. 1.3 | Creating a Console Application with the New Project dialog.

Editor window

Fig. 1.4 | IDE with an open console application.

Modifying the Editor Settings to Display Line Numbers

Visual C# provides many ways to personalize your coding experience. In
this step, you’ll change the settings so that your code matches that of this
book. To have the IDE display line numbers, select Tools > Options…. In the
dialog that appears (Fig. 1.5), click the Show all settings checkbox on the
lower left of the dialog, then expand the Text Editor node in the left pane and
select All Languages. On the right, check the Line numbers check-box. Keep
the Options dialog open.

 7 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

Fig. 1.5 | Modifying the IDE settings.

Changing the Name of the Application File

For applications we create in this book, we change the default name of
the application file (i.e., Program.cs) to a more descriptive name. To rename
the file, click Program.cs in the Solution Explorer window. This displays the
application file’s properties in the Properties window (Fig. 1.6). Change the
File Name property to Welcome1.cs.

Solution Explorer

Properties window

Click Program.cs to
display its properties

File Name property

Fig. 1.6 | Renaming the program file in the Properties window.

Type Welcome1.cs here
to rename the file

 8 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

Writing Code and Using IntelliSense
In the editor window (Fig. 1.4), type the code from Fig. 1.1. As you begin

typing (in line 10) the class name class name Console, an IntelliSense window
containing a scrollbar is displayed as shown in Fig. 1.7. This IDE feature lists
a class’s members, which include method names. When you type the dot (.)
after Console, the IntelliSense window reappears and shows only the members
of class Console that can be used on the right side of the dot (Fig. 1.7, part 1).
When you type the open parenthesis character, (, after Console.WriteLine, the
Parameter Info window is displayed (Fig. 1.8). This window contains
information about the method’s parameters.

Partially typed name

IntelliSense window

Closest match is highlighted Tool tip describes highlighted item

Partially typed member

Highlighted member

Fig. 1.7 | IntelliSense feature of Visual C#.

Tool tip describes highlighted member

 9 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

That is, a class can define several methods that have the same name, as
long as they have different numbers and/or types of parameters—a concept
known as overloaded methods. These methods normally all perform similar
tasks. The Parameter Info window indicates how many versions of the
selected method are available and provides up and down arrows for scrolling
through the different versions. For example, there are 19 versions of the
WriteLine method—we use one of these 19 versions in our application. The
Parameter Info window is one of many features provided by the IDE to
facilitate application development. From the code in Fig. 1.1, we already
know that we intend to display one string with WriteLine, so, because you
know exactly which version of WriteLine you want to use, you can simply
close the Parameter Info window by pressing the Esc key.

Down arrow Parameter Info window

Up arrow

Fig. 1.8 | Parameter Info window.

Compiling and Running the Application

You’re now ready to compile and execute your application. Depending on
its type, the compiler may compile the code into files with a .exe (executable)
extension, a .dll (dynamically linked library) extension or one of several other
extensions. Such files are called assemblies and are the packaging units for
compiled C# code. These assemblies contain the Microsoft Intermediate
Language (MSIL) code for the application.

To compile the application, select Debug > Build Solution. If the
application contains no syntax errors, this will compile your application and
build it into an executable file (named Welcome1.exe, in one of the project’s
subdirectories). To execute it, type Ctrl + F5, which invokes the Main
method (Fig. 1.1). (If you attempt to run the application before building it, the

 10 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

IDE will build the application first, then run it only if there are no
compilation errors.) The statement in line 10 of Main displays Welcome to C#
Programming!. Figure 1.9 shows the results of executing this application,
displayed in a console (Command Prompt) window. Leave the application’s
project open in Visual C#; we’ll go back to it later in this section.

Console window

Fig. 1.9 | Executing the application shown in Fig. 1.1.

Syntax Errors, Error Messages and the Error List Window
Go back to the application in Visual C#. As you type code, the IDE

responds either by applying syntax-color highlighting or by generating a
syntax error, which indicates a violation of Visual C#’s rules for creating
correct applications (i.e., one or more statements are not written correctly).
Syntax errors occur for various reasons, such as missing parentheses and
misspelled keywords.

When a syntax error occurs, the IDE underlines the error in red and
provides a description of it in the Error List window (Fig. 1.10). If the Error
List window is not visible in the IDE, select View > Error List to display it. In
Figure 1.10, we intentionally omitted the comma between "Welcome to" and
"C# Programming!" in line 10. The first error is simply indicating that line 10
is not a valid statement. The second error indicates that a right parenthesis is
expected at character position 51 in the statement, because the compiler is
confused by the unmatched left parenthesis from earlier in line 10. The third
error has the text “Invalid expression term ')'”, because the compiler thinks
the closing right parenthesis should have appeared earlier in the line. The
fourth error has the text“; expected”, because the prior errors make the
compiler think that the statement should have been terminated with a
semicolon earlier in the line. Although we deleted only one comma in line 10,
this caused the compiler to misinterpret several items in this line and to
generate four error messages.

 11 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

You can double click an error message in the Error List to jump to the
place in the code that caused the error.

Error List window Intentionally omitted comma character (syntax error)

Error description(s) Underline indicates a syntax error

Fig. 1.10 | Syntax errors indicated by the IDE.

1.4 Modifying Your Simple C# Application

This section continues our introduction to C# programming with two
examples that modify the example of Fig. 1.1 to display text on one line by
using several statements and to display text on several lines by using only one
statement.

Displaying a Single Line of Text with Multiple Statements
"Welcome to C# Programming!" can be displayed several ways. Class

Welcome2, shown in Fig. 1.11, uses two statements to produce the same
output as that shown in Fig. 1.1. From this point forward, we highlight the
new and key features in each code listing, as shown in lines 10–11 of Fig.
1.11.

 12 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

 1 // Fig. 1.11: Welcome2.cs

2 // Displaying one line of text with multiple statements.
3 using System;
4
5 public class Welcome2
6 {
7 // Main method begins execution of C# application
8 public static void Main(string[] args)
9 {

10 Console.Write("Welcome to ");
11 Console.WriteLine("C# Programming!");
12 } // end Main
13 } // end class Welcome2

Welcome to C# Programming!

Fig. 1.11 | Displaying one line of text with multiple statements.

The application is almost identical to Fig. 1.1. We discuss only the
changes here. Lines 10–11 display one line of text in the console window. The
first statement uses Console’s method Write to display a string. Unlike
WriteLine, after displaying its argument, Write does not position the screen
cursor at the beginning of the next line in the console window—the next
character the application displays will appear immediately after the last
character that Write displays. Thus, line 11 positions the first character in its
argument (the letter “C”) immediately after the last character that line 10
displays. Each Write statement resumes displaying characters from where the
last Write statement displayed its last character.

Displaying Multiple Lines of Text with a Single Statement

A single statement can display multiple lines by using newline characters,
which indicate to Console methods Write and WriteLine when they should
position the screen cursor to the beginning of the next line in the console
window. Fig. 1.12 outputs four lines of text, using newline characters to
indicate when to begin each new line.

 13 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

1 // Fig. 1.12: Welcome1.cs
2 // Displaying multiple lines with a single statement.
3 using System;
4
5 public class Welcome3
6 {

 7 // Main method begins execution of C# application
8 public static void Main(string[] args)
9 {

10 Console.WriteLine("Welcome\nto\nC#\nProgramming!");
11 } // end Main
12 } // end class Welcome3

 Welcome to
C#
Programming!

 Fig. 1.12 | Displaying multiple lines with a single statement. (Part 2 of 2.)

Most of the application is identical to the applications of Fig. 1.1 and Fig.
1.11, so we discuss only the changes here. Line 10 displays four separate
lines of text in the console window. Normally, the characters in a string are
displayed exactly as they appear in the double quotes. Note, however, that the
two characters \ and n (repeated three times in the statement) do not appear
on the screen. The backslash (\) is called an escape character. It indicates to
C# that a “special character” is in the string. When a backslash appears in a
string of characters, C# combines the next character with the backslash to
form an escape sequence.

Fig. 1.13 | Some common escape sequences.

 14 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

1.5 Formatting Text with Console.Write and Console.WriteLine

Console methods Write and WriteLine also have the capability to display
formatted data. Figure 1.14 outputs the strings "Welcome to" and "C#
Programming!" with WriteLine.

1 // Fig. 1.14: Welcome4.cs
2 // Displaying multiple lines of text with string formatting.
3 using System;
4
5 public class Welcome4
6 {
7 // Main method begins execution of C# application
8 public static void Main(string[] args)
9 {

10 Console.WriteLine("{0}\n{1}", "Welcome to", "C# Programming!");
11 } // end Main
12 } // end class Welcome4

Welcome to
C# Programming!

Fig. 1.14 | Displaying multiple lines of text with string formatting.

Line 10 calls method Console.WriteLine to display the application’s
output. The method call specifies three arguments. When a method requires
multiple arguments, the arguments appear in a comma-separated listt

Most statements end with a semicolon (;). Therefore, line 10 represents
only one statement. Large statements can be split over many lines, but there
are some restrictions. Method WriteLine’s first argument is a format string
that may consist of fixed text and format items. Fixed text is output by
WriteLine, as in Fig. 1.1. Each format item is a placeholder for a value.
Format items also may include optional formatting information.

Format items are enclosed in curly braces and contain a sequence of
characters that tell the method which argument to use and how to format it.
For example, the format item {0} is a placeholder for the first additional
argument (because C# starts counting from 0), {1} is a placeholder for the
second, and so on. The format string in line 10 specifies that WriteLine should
output two arguments and that the first one should be followed by a newline
character. So this example substitutes "Welcome to" for the {0} and "C#
Programming!" for the {1}. The output shows that two lines of text are

 15 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

displayed. Because braces in a formatted string normally indicate a
placeholder for text substitution, you must type two left braces ({{) or two
right braces (}}) to insert a single left or right brace into a formatted string,
respectively. We introduce additional formatting features as they’re needed in
our examples.

1.6 Another C# Application: Adding Integers

Our next application reads (or inputs) two integers (whole numbers, like –
22, 7, 0 and 1024) typed by a user at the keyboard, computes the sum of the
values and displays the result. This application keeps track of the numbers
supplied by the user in variables. The application of Fig. 1.15 demonstrates
these concepts. In the sample output, we highlight data the user enters at the
keyboard in bold.

1 // Fig. 1.15: Addition.cs
2 // Displaying the sum of two numbers input from the keyboard.
3 using System;
4
5 public class Addition
6 {
7 // Main method begins execution of C# application
8 public static void Main(string[] args)
9 {

10 int number1; // declare first number to add
11 int number2; // declare second number to add
12 int sum; // declare sum of number1 and number2
13
14 Console.Write("Enter first integer: "); // prompt user
15 // read first number from user
16 number1 = Convert.ToInt32(Console.ReadLine());
17
18 Console.Write("Enter second integer: "); // prompt user
19 // read second number from user
20 number2 = Convert.ToInt32(Console.ReadLine());
21
22 sum = number1 + number2; // add numbers
23
24 Console.WriteLine("Sum is {0}", sum); // display sum
25 } // end Main
26 } // end class Addition

Enter first integer: 45
Enter second integer: 72
Sum is 117

Fig. 1.15 | Displaying the sum of two numbers input from the keyboard.

 16 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

The application begins execution with Main (lines 8–25). The left brace
(line 9) marks the beginning of Main’s body, and the corresponding right
brace (line 25) marks the end of Main’s body. Method Main is indented one
level within the body of class Addition and the code in the body of Main is
indented another level for readability. Line 10 is a variable declaration
statement (also called a declaration) that specifies the name and type of a
variable (number1) used in this application. Variables are typically declared
with a name and a type before they’re used. The name of a variable can be
any valid identifier. (See Section 1.2 for identifier naming requirements.)
Declaration state- ments end with a semicolon (;).

The declaration in line 10 specifies that the variable named number1 is of
type int— it will hold integer values . The range of values for an int is –
2,147,483,648 (int.MinValue) to +2,147,483,647 (int.MaxValue). Fig. 1.16
summarizes the characteristics of the simple types (bool, byte, sbyte, char,
short, ushort, int, uint, long, ulong, float, double and decimal).

 Fig. 1.16 | The Predefined Simple Types

Name Meaning Range

 17 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

The variable declaration statements at lines 11–12 similarly declare
variables number2 and sum to be of type int. Variable declaration statements
can be split over several lines, with the variable names separated by commas
(i.e., a comma-separated list of variable names). Several variables of the
same type may be declared in one declaration or in multiple declarations. For
example, lines 10–12 can also be written as follows:

int number1, // declare first number to add
number2, // declare second number to add
sum; // declare sum of number1 and number2

Line 14 uses Console.Write to display the message "Enter first integer: ".
This message is a prompt—it directs the user to take a specific action. Line 16
first calls the Console’s ReadLine method. This method waits for the user to
type a string of characters at the keyboard and press the Enter key. As we
mentioned, some methods perform a task, then return the result of that task. In
this case, ReadLine returns the text the user entered. Then, the string is used
as an argument to class Convert’s ToInt32 method, which converts this
sequence of characters into data of type int. In this case, method ToInt32
returns the int representation of the user’s input.

Technically, the user can type anything as the input value. ReadLine will
accept it and pass it off to the ToInt32 method. This method assumes that the
string contains a valid integer value. In this application, if the user types a
noninteger value, a runtime logic error called an exception will occur and the
application will terminate. This is also known as making your application
fault tolerant. In line 16, the result of the call to method ToInt32 (an int value)
is placed in variable number1 by using the assignment operator, =. The
statement is read as “number1 gets the value returned by Convert.ToInt32.”
Operator = is a binary operator, because it works on two pieces of
information. These are known as its operands—in this case, the operands are
number1 and the result of the method call Convert.ToInt32. Line 18 prompts
the user to enter the second integer. Line 20 reads a second integer and
assigns it to the variable number2.Line 22 calculates the sum of number1 and
number2 and assigns the result to variable sum Portions of statements that
contain calculations are called expressions.

 18 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

For example, the value of the expression number1 + number2 is the sum
of the numbers. Similarly, the value of the expression Console.ReadLine() is
the string of characters typed by the user. After the calculation has been
performed, line 24 uses method Console.WriteLine to display the sum. The
format item {0} is a placeholder for the first argument after the format string.
Other than the {0} format item, the remaining characters in the format string
are all fixed text. So method WriteLine displays "Sum is ", followed by the
value of sum (in the position of the {0} format item) and a newline.

Calculations can also be performed inside output statements. We could
have combined the statements in lines 22 and 24 into the statement

Console.WriteLine("Sum is {0}", (number1 + number2));

1.7 Arithmetic
The arithmetic operators are summarized in Fig. 1.17. Note the various

special symbols not used in algebra. The asterisk (*) indicates multiplication,
and the percent sign (%) is the remainder operator (called modulus in some
languages), which we’ll discuss shortly. The arithmetic operators in Fig. 1.17
are binary operators—for example, the expression f+7 contains the binary
operator + and the two operands f and 7.

C# operation
Arithmetic
operator

Algebraic
expression

C#
expression

+ f + 7

– p - c

* b * m

/ x / y

% r % s

Fig. 1.17 | Arithmetic operators.

Integer division yields an integer quotient—for example, the expression
7/4 evaluates to 1, and the expression 17/5 evaluates to 3. Any fractional part
in integer division is simply discarded (i.e., truncated)—no rounding occurs.
C# provides the remainder operator, %, which yields the remainder after
division. The expression x% y yields the remainder after x is divided by y.

 19 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

Thus, 7%4 yields 3, and 17 % 5 yields 2. Arithmetic expressions must be
written in straightline form to facilitate entering applications into the
computer. Thus, expressions such as “a divided by b” must be written as a/ b,
so that all constants, variables and operators appear in a straight line. The
following algebraic notation is generally not acceptable to compilers:

Parentheses are used to group terms in C# expressions in the same
manner as in algebraic expressions. For example, to multiply a times the
quantity b+ c, we write

a * (b + c)

If an expression contains nested parentheses, such as
 ((a + b) * c)

the expression in the innermost set of parentheses (a+b in this case) is
evaluated first. C# applies the operators in arithmetic expressions in a
precise sequence determined by the following rules of operator precedence,
which are generally the same as those followed in algebra (Fig. 1.18).

When we say that operators are applied from left to right, we’re referring
to their associativity. You’ll see that some operators associate from right to
left. Figure 1.18 summarizes these rules of operator precedence. We expand
this table as additional operators are introduced. Appendix A provides the
complete precedence chart.

 Fig. 1.18 | Precedence of arithmetic operators.

 20 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

1.8 Decision Making: Equality and Relational Operators

This section introduces a simple version of C#’s if statement that allows
an application to make a decision based on the value of a condition. For
example, the condition “grade is greater than or equal to 60” determines
whether a student passed a test. If the condition in an if statement is true, the
body of the if statement executes. If the condition is false, the body does not
execute. We’ll see an example shortly.

Conditions in if statements can be formed by using the equality operators
(== and !=) and relational operators (>, <, >= and <=) summarized in Fig.
1.19. The two equality operators (== and !=) each have the same level of
precedence, the relational operators (>,<, >= and <=) each have the same
level of precedence, and the equality operators have lower precedence than
the relational operators. They all associate from left to right.

Fig. 1.19 | Equality and relational operators.

