
 
32�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

                                                                      Information Technology – University Of AL Anbar   

�1� // Fig. 2.7: WhileCounter.cs 

�2� // Counter-controlled repetition with the while repetition statement. 

�3� System; 
�4�
�5� WhileCounter 
�6� { 

�7������������� Main( [] args ) 
�8������    { 

�9���������������� counter = ; // declare and initialize control variable 

�10�
�11� (counter <=  ) 
�12� { 

 

13� Console.Write( , counter ); 

14�� ++counter; // increment control variable 

15� �} // end while 
16�
17� Console.WriteLine(); // output a newline 

18� } // end Main 

19� } // end class WhileCounter 
 
 

1  2  3  4  5  6  7  8  9  10 
 
 

Fig.�2.7� |�Counter-controlled�repetition�with� the�while repetition�statement.�
�

Line 13 in the while statement displays control variable counter’s 

value during each iteration of the loop. Line 14 increments the control 

variable by 1 for each iteration of the loop. The loop-continuation 

condition in the while (line 11) tests whether the value of the control 

variable is less than or equal to 10 (the final value for which the 
condition is true). The application performs the body of this while even 

when the control variable is 10. The loop terminates when the control 

variable exceeds 10 (i.e., counter becomes 11). 

The application in Fig. 2.7 can be made more concise by initializing 

counter to 0 in line 9 and incrementing counter in the while condition 

with the prefix increment operator as follows: 

( ++counter <= ) // loop-continuation condition 
Console.Write( , counter ); 

This code saves a statement (and eliminates the need for braces 

around the loop’s body), because the while condition performs the 

increment before testing the condition. Code written in such a condensed 

fashion might be more difficult to read, debug, modify and maintain.



 
33�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

                                                                      Information Technology – University Of AL Anbar   

2.9 for Repetition Statement 

Section 5.11 presented the essentials of counter-controlled 

repetition. The while statement can be used to implement any counter-

controlled loop. C# also provides the for repetition statement, which 

specifies the elements of counter-controlled-repetition in a single line of 

code. In general, counter-controlled repetition should be implemented 
with a for statement. Figure 2.8 reimplements the application in Fig. 2.7 

using the for statement. 

1� // Fig. 2.8: ForCounter.cs 

2� // Counter-controlled repetition with the for repetition statement. 

3� System; 
4�
5� ForCounter 
6� { 

7� Main( [] args ) 
8� { 

9� // for statement header includes initialization, 

10� // loop-continuation condition and increment 

11� ( counter = ; counter <= ; counter++ ) 
12� ���������������Console.Write( , counter ); 
13�
14� Console.WriteLine(); // output a newline 

15� } // end Main 

16� } // end class ForCounter 
 
 

1  2  3  4  5  6  7  8  9  10 
 
 

��Fig.�2.8� |�Counter-controlled�repetition�with� the�for repetition�statement.�

When the lines 11–12 begin executing, control variable counter is 

declared and initialized to 1. Next, the loop-continuation condition, 
counter <=  10 (which is between the two required semicolons) is 

evaluated. The initial value of counter is 1, so the condition initially is 

true. Therefore, the body statement (line 12) displays control variable 

counter’s value, which is 1. After executing the loop’s body, the 

application increments counter in the expression counter++ , which 

appears to the right of the second semicolon. Then the loop-continuation 

test is performed again to determine whether the application should 
continue with the next iteration of the loop. At this point, the control-

variable value is 2, so the condition is still true—and the application 



 
34�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

                                                                      Information Technology – University Of AL Anbar   

performs the body statement again (i.e., the next iteration of the loop). 

This process continues until the numbers 1 through 10 have been 

displayed and the counter’s value becomes 11, causing the loop-

continuation test to fail and repetition to terminate (after 10 repetitions of 

the loop body at line 12). Then the application performs the first 
statement after the for—in this case, line 14.

Fig. 2.8 uses (in line 11) the loop-continuation condition counter 

<= 10. If you incorrectly specified counter < 10 as the condition, the loop 

would iterate only nine times—a common logic error called an off-by-one 

error. Figure 2.9 takes a closer look at the for statement in Fig. 2.8. The 

for’s first line (including the  keyword for and everything in  parentheses 

after for)—line  11  in Fig. 2.8—is sometimes called the for statement 

header, or simply the for header. The for header “does it all”—it 

specifies each of the items needed for counter-controlled repetition with a 

control variable. If there’s more than one statement in the body of the for, 

braces are required to define the body of the loop.

for 

keyword�

�
Control�

variable�

Required�

semicolon�

separator�

Required�

semicolon�

separator�
�
�
�

( counter = ; counter <= ; counter++ ) 
 
 

Initial� value�of�

control�variable� Loop-continuation�
condition�

�

Fig.�2.9� |�for statement� header�components.�
�
�

�

Increment�of�control�

variable�



 
35�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

                                                                      Information Technology – University Of AL Anbar   

2.10 Examples Using the for Statement 

The following examples show techniques for varying the control 

variable in a for statement. Note the change in the relational operator for 
loops that decrement the control variable. 

a) Vary the control variable from 1 to 100 in increments of 1. 
( i = ; i <= ; i++ ) 

 

b) Vary the control variable from 100 to 1 in decrements of 1. 
( i = ; i >= ; i-- ) 

 

c) Vary the control variable from 7 to 77 in increments of 7. 
( i = ; i <= ; i += ) 

 

d) Vary the control variable from 20 to 2 in decrements of 2. 
( i = ; i >= ; i -= ) 

 

e) Vary the control variable over the following sequence of values:  
         2, 5, 8, 11, 14, 17. 

( i = ; i <= ; i += ) 
 

f )Vary the control variable over the following sequence of values:  
     99, 88, 77, 66, 55,44, 33, 22, 11, 0. 

( i = ; i >= ; i -= ) 
 

 

Application: Summing the Even Integers from 2 to 20

1� // Fig. 2.10: Sum.cs 

2� // Summing integers with the for statement. 

3� System; 
4�
5� Sum 
6� { 
7� Main( [] args ) 
8� { 

9� total = ; // initialize total 
10�
11� // total even integers from 2 through 20 

12� ( number = ; number <= ; number += ) 
13� total += number; 

����14�
15� Console.WriteLine( , total ); // display results 
16� } // end Main 
17� } // end class Sum 

 

Sum is 110 
 

��Fig.�2.10� |�Summing�integers�with� the�for statement.��
�



 
36�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

                                                                      Information Technology – University Of AL Anbar   

�
{�

Console.Write( " ", counter );�
++counter;�

} w i  ( counter <= 1  ); // end do...while�

The initialization and increment expressions can be comma-

separated lists that enable you to use multiple initialization expressions 

or multiple increment expressions. For example, you could merge the 

body of the for statement in lines 12–13 of Fig. 2.10 into the increment 

portion of the for header by using a comma as follows: 

( number = ; number <= ; total += number, number += ) 
; // empty statement 

2.11 do…while Repetition Statement 

The do…while repetition statement is similar to the while statement. 

In the while, the application tests the loop-continuation condition at the 

beginning of the loop, before ex- ecuting the loop’s body. If the condition 

is false, the body never executes. The do…while statement tests the loop-

continuation  condition after executing the loop’s body; therefore, the 

body always executes at least once. When a do…while statement 

terminates, execution continues with the next statement in sequence. 

Figure 2.11 uses a do…while (lines 11–15) to output the numbers 1–10. 

1� // Fig. 2.11: DoWhileTest.cs 

2� // do...while repetition statement. 

3� System; 
4�
5� DoWhileTest 
6� { 

7� Main( [] args ) 
8� { 

9� � counter = ; // initialize counter 
10�
11�
12�
13�
14�
15�
16�
17� Console.WriteLine(); // outputs a newline 

18� } // end Main 

19� } // end class DoWhileTest 
 
 

1  2  3  4  5  6  7  8  9  10 
 
 

Fig.�2.11� |�do...while repetition�statement.�
�

�



 
37�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

                                                                      Information Technology – University Of AL Anbar   

Line 9 declares and initializes control variable counter. Upon 

entering the do…while statement, line 13 outputs counter’s value, and 

line 14 increments counter. Then the application evaluates the loop-

continuation test at the bottom of the loop (line 15). If the condition is 

true, the loop continues from the first body statement in the do…while 

(line 13). If the condition is false, the loop terminates, and the 

application continues with the next statement after the loop. Figure 2.12 

contains the diagram for the do…while statement. It’s not necessary to 

use braces in the do…while repetition statement if there’s only one 

statement in the body. For example,

( ) 

is normally the first line of a while statement. A do…while 

statement with no braces around a single-statement body appears as: 
 

 

( ); 

To avoid confusion, a do…while statement with one body statement 

can be written as follows:

 
{ 

} ( ); 
 

 

������Fig.�2.12� |�do…while repetition�statement.�
�



 
38�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

                                                                      Information Technology – University Of AL Anbar   

2.12 switch Multiple-Selection Statement 

We discussed the if single-selection statement and the if…else 

double-selection statement. C# provides the switch multiple-selection 
statement to perform different actions based on the possible values of an 

expression. Each action is associated with the value of a constant 

integral expression or a constant string expression that the variable or 

expression on which the switch is based may assume. A constant integral 

expression is any expression involving character and integer constants 

that evaluates to an integer value—i.e., values of type sbyte, byte, short, 

ushort, int, uint, long, ulong and char. A constant string expression is any 
expression composed of string literals that always results in the same 

string. 
1���� // Fig. 2.13: GradeBook.cs 
2�����// GradeBook class uses switch statement to count letter grades. 
3���� System; 

4 
5 Main( [] args )�
��6�����{ 
��7� grade; // grade entered by user 
��8� input; // text entered by the user 
��9�
10� Console.WriteLine( , 
11� , 
12� ); 
13�
14� input = Console.ReadLine(); // read user input 

15�
16� // loop until user enters the end-of-file indicator (<Ctrl> z) 

17� ( input != ) 
18� { 

19� grade = Convert.ToInt32( input ); // read grade off user input 

20� total += grade; // add grade to total 

21� ++gradeCounter; // increment number of grades 

22�
23� // call method to increment appropriate counter 

24� //�determine�which�grade�was�entered�
25� switch  ( grade / 10 )�
26� {�
27� ���������������case   9:     // grade was in the 90s 
28� � � case   10:    // grade was 100�
29� � � ������++aCount;  // increment aCount�
30� � � ������break; // necessary to exit switch�
31� � � �
32� � � case   8:    // grade was between 80 and 89�
33�� � � ������++bCount; // increment bCount 
34� � � ������break;    // exit switch�



 
39�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

                                                                      Information Technology – University Of AL Anbar   

35� � � case   7: // grade was between 70 and 79�
36� � � ������++cCount; // increment cCount 
37� � � ������break; // exit switch 
38� � � case   6: // grade was between 60 and 69�
39� � � ������++dCount; // increment dCount�
40� � � ������break; // exit switch�
41� � � default: // grade was less than 60� �
42� � �    ++fCount; // increment fCount 

43� � � ������break; // exit switch�
44�� � ���������}�// end switch�
45�      input = Console.ReadLine(); // read user input�����������������
46         } // end While 
47� �����Console.WriteLine( "{0}A: {1}\nB: {2}\nC: {3}\nD: {4}\nF: {5}",�
48���������������������������������������"Number of students who received each grade:\n", 
48� � � � ���aCount, bCount,cCount, dCount, fCount ); 
47   } // end Main 
���
��Fig.�2.13� |�switch statement�to�count�A,�B,�C,�D�and�F�grades.�� �

Lines 7–8 declare variables grade and input, which will first store 

the user’s input as a string (in the variable input), then convert it to an 

int to store in the variable grade. Lines 10–12 prompt the user to enter 
integer grades and to type Ctrl +  z, then press Enter to terminate the 

input. The notation Ctrl +  z means to simultaneously press both the Ctrl 

key and the z key when typing in a Command Prompt. Ctrl +  z is the 

Windows key sequence for typing the end-of-file indicator. This is one 

way to inform an application that there’s no more data to input. If Ctrl + 

z is entered while the application is awaiting input with a ReadLine 

method, null is returned.  

Line 14 uses the ReadLine method to get the first line that the user 

entered and store it in variable input. The while statement (lines 17–46) 

processes this user input. The condition at line 17 checks whether the 

value of input is a null reference. Line 19 converts the string in input to 

an int type. Line 20 adds grade to total. Line 21 increments 

gradeCounter.  a switch statement (lines 25–44) that determines which 

counter to increment. In this example, we assume that the user enters a 

valid grade in the range 0–100. A grade in the range 90–100 represents 

A, 80–89 represents B, 70–79 represents C, 60–69 represents D and 0–

59 represents F. The switch statement consists of a block that contains a 
sequence of case  labels and an optional default label.  

When the flow of control reaches the switch statement, the 



 
40�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

                                                                      Information Technology – University Of AL Anbar   

application evaluates the expression in the parentheses (grade / 10) 

following keyword switch—this is called the switch expression. The 

application attempts to match the value of the switch expression with one 

of the case labels. The switch expression in line 25 performs integer 

division, which truncates the fractional part of the result. Thus, when we 
divide any value in the range 0–100 by 10, the result is always a value 

from 0 to 10. We use several of these values in our case labels. For 

example, if the user enters the integer 85, the switch expression evaluates 

to int value 8. 

 

2.13 break and continue Statements 

In addition to selection and repetition statements, C# provides 

statements break and continue to alter the flow of control. The preceding 
section showed how break can be used to terminate a switch statement’s 

execution. This section discusses how to use break to terminate any 

repetition statement. 

break Statement 

The break statement, when executed in a while, for, do…while, 

switch, or foreach, causes immediate exit from that statement. Execution 

typically continues with the first statement after the control statement—

you’ll see that there are other possibilities as you learn about additional 

statement types in C#. Common uses of the break statement are to escape 

early from a repetition statement or to skip the remainder of a switch (as 

in Fig. 2.13). Figure 2.14 demonstrates a break statement exiting a for. 

When the if nested at line 13 in the for statement (lines 11–17) 

determines that count is 5, the break statement at line 14 executes. This 

terminates the for statement, and the application proceeds to line 19 

(immediately after the for statement), which displays a message 

indicating the value of the control variable when the loop terminated. 
The loop fully executes its body only four times instead of 10 because of 

the break. 



 
41�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

                                                                      Information Technology – University Of AL Anbar   

 

1���� // Fig. 2.14 : BreakTest.cs 
2���� // break statement exiting a for statement. 
3���� System; 
4�
5���� BreakTest 
6���� { 
7���������� Main( [] args ) 
8���������� { 
9���������������� count; // control variable also used after loop terminates 

10�
11� ( count = ; count <= ; count++ ) // loop 10 times 
12� { 

13� ( count == ) // if count is 5, 

14� ; // terminate loop 
15�
16� Console.Write( , count ); 
17� } // end for 

18�
19� Console.WriteLine( , count); 
20� } // end Main 

21� } // end class BreakTest 
 
 

1 2 3 4 
Broke out of loop at count = 5 

 
 

Fig.�2.14� |�break statement�exiting� a�for statement.��
�

continue Statement 

The continue statement, when executed in a while, for, do…while, or 
foreach, skips the remaining statements in the loop body and proceeds 

with the next iteration of the loop. In while and do…while statements, 

the application evaluates the loop-continuation test immediately after the 

continue statement executes. In a for statement, the increment expression 

normally executes next, then the application evaluates the loop-

continuation test.

1� // Fig. 2.15: ContinueTest.cs 

2� // continue statement terminating an iteration of a for statement. 

3� System; 
4�
5� ContinueTest 
6� { 
7� Main( [] args ) 
8� { 

9� ( count = ; count <= ; count++ ) // loop 10 times 
10� { 



 
42�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

                                                                      Information Technology – University Of AL Anbar   

11� ( count == ) // if count is 5, 

12� ; // skip remaining code in loop 
13�
14� Console.Write( , count ); 
15� } // end for 

16�
17� Console.WriteLine( ); 
18� } // end Main 

19� } // end class ContinueTest 
 
 

1 2 3 4 6 7 8 9 10 
Used continue to skip displaying 5 

 
 

Fig.�2.15� |�continue statement�terminating� an�iteration� of�a�for statement.�
�

Figure 2.15 uses the continue statement in a for to skip the statement 

at line 14 when the nested if (line 11) determines that the value of count 

is 5. When the continue statement executes, program control continues 

with the increment of the control variable in the for statement (line 9). 

In Section 3.13, we stated that a while can be used in most cases in 

place of for. One exception occurs when the increment expression in the 

while follows a continue statement. In this case, the increment doesn’t 

execute before the repetition-continuation condition evaluates, so the 

while does not execute in the same manner as the for. 
�


