
 43�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

�
�
�

3.1 Introduction
In this chapter we study methods. We emphasize how to declare

and use methods to facilitate the design, implementation, operation and

maintenance of large applications. You’ll learn how to declare a

method with more than one parameter. You’ll also learn how value-

type and reference-type arguments are passed to methods, how local
variables of methods are maintained in memory and how a method

knows where to return after it completes execution.

You’ll use or create developing applications will have more than

one method of the same name. This technique, called method

overloading, is used to implement methods that perform similar tasks
but with different types and/or different numbers of arguments.

3.2 static Methods, static Variables and Class Math

Although most methods execute on specific objects in response to

method calls, this is not always the case. Sometimes a method performs

a task that does not depend on the contents of any object. Such a

method applies to the class in which it’s declared as a whole and is

known as a static method. It’s not uncommon for a class to contain a

group of static methods to perform common tasks. For example, recall

that we used static method Pow of class Math to raise a value to a

power to declare a method as static, place the keyword static before the

return type in the method’s declaration. You call any static method by

specifying the name of the class in which the method is declared,

 44�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

followed by the member access (.) operator and the method name, as in

. ()

We use various methods of the Math class here to present the

concept of static methods. Class Math (from the System namespace)

provides a collection of methods that enable you to perform common

mathematical calculations. For example, you can calculate the square

root of 900.0 with the static method call

Math.Sqrt()

The preceding expression evaluates to 30.0. Method Sqrt takes an

argument of type double and returns a result of type double. To output
the value of the preceding method call in the console window, you

might write the statement

Console.WriteLine(Math.Sqrt());

In this statement, the value that Sqrt returns becomes the

argument to method WriteLine. We did not create a Math object before

calling method Sqrt. Also all of Math’s methods are static—therefore,

each is called by preceding the name of the method with the class name
Math and the member access (.) operator. Similarly, Console method

WriteLine is a static method of class Console, so we invoke the method

by preceding its name with the class name Console and the member

access (.) operator. Method arguments may be constants, variables or

expressions. If c = 13.0, d = 3.0 and f = 4.0, then the statement

Console.WriteLine(Math.Sqrt(c + d * f));

calculates and displays the square root of 13.0 + 3.0 * 4.0 =

25.0—namely, 5.0. Figure 3.1 summarizes several Math class methods.

In the figure, x and y are of type double.

 45�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

��

�

Fig.�3.1� |�Math class�methods.�

Math Class Constants PI and E

Class Math also declares two static constants that represent

commonly used mathematical values: Math.PI and Math.E. The

constant Math.PI (3.14159265358979323846) is the ratio of a

circle’s circumference to its diameter.

The constant Math.E (2.7182818284590452354) is the base

value for natural logarithms (calculated with static Math method Log).
These constants are declared in class Math with the modifiers public

and const. Making them public allows other programmers to use these

variables in their own classes. A constant is declared with the keyword

const—its value cannot be changed after the constant is declared. Both

PI and E are declared const because their values never change.

 46�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

// returns the maximum of its three double parameters

l t d b Maximum(d e x, d l y, d b z)
{

o e maximumValue = x; // assume x is the largest to start

// determine whether y is greater than maximumValue

f (y > maximumValue)

maximumValue = y;

// determine whether z is greater than maximumValue

f (z > maximumValue)
maximumValue = z;

e n maximumValue;
} // end method Maximum

3.3 Declaring Methods with Multiple Parameters
Figure 3.2 uses a user-defined method called Maximum to determine

and return the largest of three double values that are input by the user.
Lines 11–15 prompt the user to enter three double values and read them
from the user. Line 18 calls method Maximum to determine the largest of
the three double values passed as arguments to the method. When method
Maximum returns the result to line 18, the application assigns Maximum’s
return value to local variable result. Then line 21 outputs result. At the end
of this section, we’ll discuss the use of operator + in line 21.

1���� // Fig. 3.2: MaximumFinder.cs
2���� // User-defined method Maximum.
3���� System;
4�
5���� MaximumFinder
6���� {
7������// obtain three floating-point values and determine maximum value
8���������� Main([] args)
9���������� {
10� // prompt for and input three floating-point values

11� Console.WriteLine(
12� +);
13� number1 = Convert.ToDouble(Console.ReadLine());
14� number2 = Convert.ToDouble(Console.ReadLine());
15� number3 = Convert.ToDouble(Console.ReadLine());
16�
17� // determine the maximum value

18� result = Maximum(number1, number2, number3);
19�
20� // display maximum value

21 Console.WriteLine(
22� } // end Main

23�
24�
25�
26�
27�
28�

+ result);

29�
30�
31�
32�
33�
34�
35�
36�
37�
38�
39� } // end class MaximumFinder

Fig.�3.2� |�User-defined�method�Maximum.��

 47�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

Method Maximum

Consider the declaration of method Maximum (lines 25–38). Line

25 indicates that the method returns a double value, that the method’s

name is Maximum and that the method requires three double

parameters (x, y and z) to accomplish its task. When a method has more

than one parameter, the parameters are specified as a comma-

separated list. When Maximum is called in line 18, the parameter x is

initialized with the value of the argument number1, the parameter y is

initialized with the value of the argument number2 and the parameter z

is initialized with the value of the argument number3. There must be

one argument in the method call for each required parameter

(sometimes called a formal parameter) in the method declaration. Also,

each argument must be consistent with the type of the corresponding

parameter. For example, a parameter of type double can receive values

like 7.35 (a double), 22 (an int) or –0.03456 (a double), but not strings

like "hello". Section 3.5 discusses the argument types that can be

provided in a method call for each parameter of a simple type.

To determine the maximum value, we begin with the assumption

that parameter x contains the largest value, so line 27 declares local

variable maximumValue and initializes it with the value of parameter x.

Of course, it’s possible that parameter y or z contains the largest value,

so we must compare each of these values with maximumValue. The if

statement at lines 30–31 determines whether y is greater than
maximumValue. If so, line 31 assigns y to maximumValue. The if

statement at lines 34–35 determines whether z is greater than

maximumValue. If so, line 35 assigns z to maximumValue. At this

point, the largest of the three values resides in maximumValue, so line

37 returns that value to line 18.

When program control returns to the point in the application

where Maximum was called, Maximum’s parameters x, y and z are no

longer accessible. Methods can return at most one value.

 48�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

Implementing Method Maximum by Reusing Method Math.Max

Recall from Fig. 3.1 that class Math has a Max method that can

determine the larger of two values. The entire body of our maximum

method could also be implemented with nested calls to Math.Max, as

follows:

Math.Max(x, Math.Max(y, z));

The leftmost call to Math.Max specifies arguments x and

Math.Max(y, z). Before any method can be called, all its arguments

must be evaluated to determine their values. If an argument is a method

call, the method call must be performed to determine its return value. So,
in the preceding statement, Math.Max(y, z) is evaluated first to

determine the maximum of y and z. Then the result is passed as the

second argument to the other call to Math.Max, which returns the larger

of its two arguments. Using Math.Max in this manner is a good example

of software reuse—we find the largest of three values by reusing

Math.Max, which finds the larger of two values.

Assembling Strings with String Concatenation

C# allows string objects to be created by assembling smaller
strings into larger str ings using operator + (or the compound assignment

operator + =). This is known as string concatenation. When both

operands of operator + are string objects, operator + creates a new

string object in which a copy of the characters of the right operand is

placed at the end of a copy of the characters in the left operand. For

example, the expression "hello " + "there" creates the string "hello
there" without disturbing the original strings.

In line 21 of Fig. 3.2, the expression "Maximum is: " + result uses

operator + with operands of types string and double. Every value of a

simple type in C# has a string representation. When one of the +

operator’s operands is a string, the other is implicitly converted to a

string, then the two are concatenated. In line 21, the double value is
implicitly converted to its string representation and placed at the end of

the string "Maximum is: ". If there are any trailing zeros in a double

 49�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

value, these will be discarded when the number is converted to a string.

Thus, the number 9.3500 would be represented as 9.35 in the resulting

string.

For values of simple types used in string concatenation, the values

are converted to strings. If a bool is concatenated with a string, the bool

is converted to the string "True" or "False" (note that each is

capitalized). All objects have a ToString method that returns a string

representation of the object. When an object is concatenated with a

string, the object’s ToString method is implicitly called to obtain the

string representation of the object. If the object is null, an empty string is

written.Line 21 of Fig. 3.2 could also be written using string formatting
as

Console.WriteLine(, result);

As with string concatenation, using a format item to substitute an

object into a string implicitly calls the object’s ToString method to obtain

the object’s string representation.

3.4 Notes on Declaring and Using Methods
You’ve seen three ways to call a method:

1. Using a method name by itself to call a method of the same class—

such as Maximum(number1, number2, number3) .

2. Using a variable that contains a reference to an object, followed by
the member access (.) operator and the method name to call a non-

static method of the referenced object

3. Using the class name and the member access (.) operator to call a

static method of a class—such as

Convert.ToDouble(Console.ReadLine()) in lines 13–15 of Fig. 3.2

or Math.Sqrt(900.0).

A static method can call only other static methods of the same class

directly (i.e., using the method name by itself) and can manipulate only

static variables in the same class directly. To access the class’s non-

static members, a static method must use a reference to an object of the

 50�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

class. Recall that static methods relate to a class as a whole, whereas

non-static methods are associated with a specific instance (object) of the

class and may manipulate the instance variables of that object. Many

objects of a class, each with its own copies of the instance variables, may

exist at the same time. Suppose a static method were to invoke a non-
static method directly. How would the method know which object’s

instance variables to manipulate? What would happen if no objects of the

class existed at the time the non-static method was invoked? Thus, C#

does not allow a static method to access non-static members of the same

class directly. There are three ways to return control to the statement

that calls a method. If the method does not return a result, control

returns when the program flow reaches the method-ending right brace or
when the statement

;

is executed. If the method returns a result, the statement

;

evaluates the expression, then returns the result (and control) to the caller.

3.5 Argument Promotion and Casting
Another important feature of method calls is argument promotion—

implicitly converting an argument’s value to the type that the method

expects to receive in its corresponding parameter. For example, an

application can call Math method Sqrt with an integer argument even

though the method expects to receive a double argument.

The statement

Console.WriteLine(Math.Sqrt());

correctly evaluates Math.Sqrt(4) and displays the value 2.0. Sqrt’s

parameter list causes C# to convert the int value 4 to the double value

4.0 before passing the value to Sqrt. Such conversions may lead to

compilation errors if C#’s promotion rules are not satisfied. The

promotion rules specify which conversions are allowed—that is, which

conversions can be performed without losing data. In the Sqrt example

 51�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

above, an int is converted to a double without changing its value.

However, converting a double to an int truncates the fractional part of

the double value—thus, part of the value is lost. Also, double variables

can hold values much larger (and much smaller) than int variables, so

assigning a double to an int can cause a loss of information when the
double value doesn’t fit in the int. Converting large integer types to small

integer types (e.g., long to int) can also result in changed values.

The promotion rules apply to expressions containing values of two

or more simple types and to simple-type values passed as arguments to

methods. Each value is promoted to the appropriate type in the

expression. Figure 3.3 lists the simple types alphabetically and the types

to which each can be promoted. Note that values of all simple types can
also be implicitly converted to type object.

By default, C# does not allow you to implicitly convert values

between simple types if the target type cannot represent the value of the

original type (e.g., the int value 2000000 cannot be represented as a

short, and any floating-point number with digits after its decimal point

cannot be represented in an integer type such as long, int or short).

Therefore, to prevent a compilation error in cases where information
may be lost due to an implicit

�����Fig.�3.3� |�Implicit� conversions�between�simple�types.�

 52�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

conversion between simple types, the compiler requires you to use a

cast operator to explicitly force the conversion. This enables you to “take

control” from the compiler. You essentially say, “I know this conversion

might cause loss of information, but for my purposes here, that’s fine.”

Suppose you create a method Square that calculates the square of an

integer and thus requires an int argument. To call Square with a double

argument named doubleValue, you would write Square((int)

doubleValue). This method call explicitly casts (converts) the value of

doubleValue to an integer for use in method Square. Thus, if

doubleValue’s value is 4.5, the method receives the value 4 and returns

16, not 20.25 (which does, unfortunately, result in the loss of

information).

3.6 The .NET Framework Class Library

Many predefined classes are grouped into categories of related

classes called namespaces. Together, these namespaces are referred to

as the .NET Framework Class Library. Throughout the text, using

directives allow us to use library classes from the .NET Framework

Class Library without specifying their fully qualified names.

For example, an application includes the declaration
System;

in order to use the class names from the System namespace without

fully qualifying their names. This allows you to use the unqualified class
name Console, rather than the fully qualified class name System.Console,

in your code. A great strength of C# is the large number of classes in the

namespaces of the .NET Framework Class Library. Some key .NET

Framework Class Library namespaces are described in Fig. 3.4, which

represents only a small portion of the reusable classes in the .NET

Framework Class Library.

 53�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

Fig.�3.4� |�.NET� Framework�Class�Library�namespaces�(a�subset).�

