
 54�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

The set of namespaces available in the .NET Framework Class

Library is quite large. Besides those summarized in Fig. 3.4, the .NET

Framework Class Library contains namespaces for complex graphics,

advanced graphical user interfaces, printing, advanced networking,

security, database processing, multimedia, accessibility (for people with
dis- abilities) and many other capabilities—over 100 namespaces in all.

3.7 Case Study: Random-Number Generation

In this and the next section, we develop a nicely structured game-

playing application with multiple methods. The application uses most of

the control statements presented thus far in the book and introduces
several new C# programming concepts.

There is something in the air of a casino that invigorates people—

from the high rollers at the plush mahogany-and-felt craps tables to the

quarter poppers at the one-armed bandits. It’s the element of chance, the

possibility that luck will convert a pocketful of money into a mountain of

wealth. The element of chance can be introduced in an application via an

object of class Random (of namespace System). Objects of class Random

can produce random byte, int and double values. In the next several

examples, we use objects of class Random to produce random numbers.

A new random-number generator object can be created as follows:

Random randomNumbers = Random();

The random-number generator object can then be used to generate

random byte, int and double values—we discuss only random int values

here.Consider the following statement:

randomValue = randomNumbers.Next();

Method Next of class Random generates a random int value from 0 to

+2,147,483,646, in- clusive. If the Next method truly produces values at
random, then every value in that range should have an equal chance (or

probability) of being chosen each time method Next is called. The values

 55�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

returned by Next are actually pseudorandom numbers—a sequence of

values produced by a complex mathematical calculation. The calculation

uses the current time of day (which, of course, changes constantly) to seed

the random-number generator such that each execution of an application

yields a different sequence of random values.

The range of values produced directly by method Next often differs

from the range of values required in a particular C# application. For

example, an application that simulates coin tossing might require only 0

for “heads” and 1 for “tails.” An application that simulates the rolling of

a six-sided die might require random integers in the range 1–6. A video

game that randomly predicts the next type of spaceship (out of four

possibilities) that will fly across the horizon might require random integers

in the range 1–4. For cases like these, class Random provides other

versions of method Next. One receives an int argument and returns a value

from 0 up to, but not including, the argument’s value. For example, you

might use the statement

randomValue = randomNumbers.Next();

which returns 0, 1, 2, 3, 4 or 5. The argument 6—called the scaling

factor—represents the number of unique values that Next should produce

(in this case, six—0, 1, 2, 3, 4 and 5). This manipulation is called scaling

the range of values produced by Random method Next.

Suppose we wanted to simulate a six-sided die that has the numbers

1–6 on its faces, not 0–5. Scaling the range of values alone is not enough.

So we shift the range of numbers produced. We could do this by adding a

shifting value—in this case 1—to the result of method Next, as in

face = + randomNumbers.Next();

The shifting value (1) specifies the first value in the desired set of

random integers. The preceding statement assigns to face a random

integer in the range 1–6.

The third alternative of method Next provides a more intuitive way to

express both shifting and scaling. This method receives two int arguments

 56�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

and returns a value from the first argument’s value up to, but not

including, the second argument’s value. We could use this method to write

a statement equivalent to our previous statement, as in

face = randomNumbers.Next();

Rolling a Six-Sided Die

To demonstrate random numbers, let’s develop an application that

simulates 20 rolls of a six-sided die and displays each roll’s value. Figure

3.5 shows two sample outputs, which confirm that the results of the

preceding calculation are integers in the range 1–6 and that each run of

the application can produce a different sequence of random numbers. The
using directive (line 3) enables us to use class Random without fully

qualifying its name. Line 9 creates the Random object randomNumbers to

produce random values. Line 16 executes 20 times in a loop to roll the die.

The if statement (lines 21–22) starts a new line of output after every five

numbers, so the results can be presented on multiple lines.

1� // Fig. 3.5: RandomIntegers.cs

2� // Shifted and scaled random integers.

3� System;
4�
5� RandomIntegers
6� {

7� Main([] args)
8� {

9� Random randomNumbers = Random(); // random-number generator

10� face; // stores each random integer generated

11�
12� // loop 20 times

13� (counter = ; counter <= ; counter++)
14� {

15� � // pick random integer from 1 to 6

16� face = randomNumbers.Next(,);
17�
18� Console.Write(, face); // display generated value
19�
20� // if counter is divisible by 5, start a new line of output

21� (counter % ==)
22� Console.WriteLine();

23� } // end for

24� } // end Main

25� } // end class RandomIntegers

 57�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

�
Fig.�3.5� |�Shifted�and�scaled�random� integers.��

Rolling a Six-Sided Die 6000 Times

To show that the numbers produced by Next occur with

approximately equal likelihood, let’s simulate 6000 rolls of a die (Fig.

3.6). Each integer from 1 to 6 should appear approximately 1000 times.

1� // Fig. 3.6: RollDie.cs

2� // Roll a six-sided die 6000 times.

3� System;
4�
5� RollDie
6� {

7� Main([] args)
8� {

9� Random randomNumbers = Random(); // random-number generator
10�
11� frequency1 = ; // count of 1s rolled
12� frequency2 = ; // count of 2s rolled
13� frequency3 = ; // count of 3s rolled
14� frequency4 = ; // count of 4s rolled
15� frequency5 = ; // count of 5s rolled
16� frequency6 = ; // count of 6s rolled
17�
18� face; // stores most recently rolled value
19�
20� // summarize results of 6000 rolls of a die

21� (roll = ; roll <= ; roll++)
22� {

23� �face = randomNumbers.Next(,); // number from 1 to 6
24�
25� // determine roll value 1-6 and increment appropriate counter

26� (
27� {

face)

28� :
29� ++frequency1; // increment the 1s counter

30� ;
31� :
32� ++frequency2; // increment the 2s counter

 58�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

33� ;
34� :
35� ++frequency3; // increment the 3s counter

36� ;
37� :
38� ++frequency4; // increment the 4s counter

39� ;
40� :
41� ++frequency5; // increment the 5s counter

42� ;
43� :
44� ++frequency6; // increment the 6s counter

45� ;
46� } // end switch

47� } // end for

48�
49� Console.WriteLine(); // output headers
50� Console.WriteLine(

51� ,frequency1,
52� frequency2, frequency3, frequency4, frequency5, frequency6);

53� } // end Main

54� } // end class RollDie

�
Fig.�3.6� |�Roll�a�six-sided�die�6000�times.� �

As the sample outputs show, the values produced by Next enable
the application to realistically simulate rolling a six-sided die. We used

nested control statements (the switch is nested inside the for) to

determine the number of times each side of the die occurred. Lines 21–

47 iterate 6000 times. Line 23 produces a random value from 1 to 6.

This face value is then used as the switch expression (line 26) in the
switch statement (lines 26–46). Based on the face value, the switch

 59�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

statement increments one of the six counter variables during each

iteration of the loop. The switch statement has no default label because

we have a case label for every possible die value that the expression in

line 23 can produce. Run the application several times and observe the

results. You’ll see that every time you execute this application, it

produces different results.

3.9 Method Overloading

Methods of the same name can be declared in the same class, as

long as they have different sets of parameters (determined by the

number, types and order of the parameters). This is called method

overloading. When an overloaded method is called, the C# compiler

selects the appropriate method by examining the number, types and
order of the arguments in the call. Method overloading is commonly

used to create several methods with the same name that perform the

same or similar tasks, but on different types or different numbers of

arguments. For example, Math methods Min and Max (summarized in

Section 3.3) are overloaded with 11 versions. These find the minimum

and maximum, respectively, of two values of each of the 11 numeric

simple types. Our next example demonstrates declaring and invoking
overloaded methods. You’ll see examples of overloaded constructors in

Chapter 10.

Declaring Overloaded Methods

In class MethodOverload (Fig. 3.7), we include two overloaded

versions of a method called Square—one that calculates the square of

an int (and returns an int) and one that calculates the square of a

double (and returns a double). Although these methods have the same

name and similar parameter lists and bodies, you can think of them

simply as different methods. It may help to think of the method names

as “Square of int” and “Square of double,” respectively.

 60�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

// square method with int argument

l t i Square(i intValue)

{

Console.WriteLine(" l s e w t i t a g t { } ,

intValue);

e n intValue * intValue;

} // end method Square with int argument

// square method with double argument

l t d b Square(d doubleValue)

{

Console.WriteLine(" l s e w t d u a m : 0 ",

doubleValue);

e n doubleValue * doubleValue;
} // end method Square with double argument

1���� // Fig. 3.7: MethodOverload.cs
2���� // Overloaded method declarations.
3���� System;
4�
5���� MethodOverload
6���� {
7���������� // test overloaded square methods
8��������� Main([] args)
9���������{
10�������������Console.WriteLine(, Square());
11�������������Console.WriteLine(, Square());
12��������} // end Main
13�
14�
15�
16�
17�
18�
19�
20�
21�
22�
23�
24�
25�
26�
27�
28�
29���} // end class MethodOverload

Called square with int argument: 7
Square of integer 7 is 49
Called square with double argument: 7.5
Square of double 7.5 is 56.25

Fig.�3.7� |�Overloaded�method� declarations.�

Line 10 in Main invokes method Square with the argument 7.

Literal integer values are treated as type int, so the method call in line

10 invokes the version of Square at lines 15–20 that specifies an int

parameter. Similarly, line 11 invokes method Square with the argument

7.5. Literal real-number values are treated as type double, so the
method call in line 11 invokes the version of Square at lines 23–28 that

specifies a double parameter. Each method first outputs a line of text to

prove that the proper method was called in each case.

 61�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

Notice that the overloaded methods in Fig. 3.7 perform the same

calculation, but with two different types. C#’s generics feature provides

a mechanism for writing a single “generic method” that can perform

the same tasks as an entire set of overloaded methods.

Distinguishing Between Overloaded Methods

The compiler distinguishes overloaded methods by their

signature—a combination of the method’s name and the number, types

and order of its parameters. The signature also includes the way those

parameters are passed, which can be modified by the ref and out

keywords. If the compiler looked only at method names during
compilation, the code in Fig. 3.7 would be ambiguous—the compiler

would not know how to distinguish between the Square methods (lines

15–20 and 23–28). Internally, the compiler uses signatures to

determine whether a class’s methods are unique in that class.

For example, in Fig. 3.7, the compiler will use the method

signatures to distinguish between the “Square of int” method (the

Square method that specifies an int parameter) and the “Square of

double” method (the Square method that specifies a double parameter).

If Method1’s declaration begins as

Method1(a, b)

then that method will have a different signature than the method

declared beginning with

Method1(a, b)

The order of the parameter types is important—the compiler

considers the preceding two Method1 headers to be distinct.

Return Types of Overloaded Methods

In discussing the logical names of methods used by the compiler,

we did not mention the return types of the methods. This is because

 62�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

method calls cannot be distinguished by return type. The application in

Fig. 3.8 illustrates the compiler errors generated when two methods

have the same signature but different return types. Overloaded methods

can have the same or different return types if the methods have

different parameter lists. Also, overloaded methods need not have the
same number of parameters.

1�

//

Fig. 3.8: MethodOverload.cs

2� // Overloaded methods with identical signatures

3� // cause compilation errors, even if return types are different.

4� MethodOverloadError
5� {

6� // declaration of method Square with int argument

7� Square(x)
8� {

9� x * x;
10� } // end method Square

11�
12� // second declaration of method Square with int argument

13� // causes compilation error even though return types are different

14� Square(y)
15� {

16� y * y;
17� } // end method Square

18� } // end class MethodOverloadError

�

Fig.�3.8� |�Overloaded� methods� with��identical� signatures�cause�compilation�� errors,�
even�if�return� types�are�different.���

3.10 Optional Parameters

As of Visual C# 2010, methods can have optional parameters that
allow the calling method to vary the number of arguments to pass. An

optional parameter specifies a default value that’s assigned to the

parameter if the optional argument is omitted. You can create methods

with one or more optional parameters. All optional parameters must be

placed to the right of the method’s non-optional parameters—that is, at

the end of the parameter list.

 63�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

When a parameter has a default value, the caller has the option of

passing that particular argument. For example, the method header

Power(baseValue, exponentValue =)

specifies an optional second parameter. A call to Power must

pass at least an argument for the parameter baseValue, or a

compilation error occurs. Optionally, a second argument (for the

exponentValue parameter) can be passed to Power. Consider the

following calls to Power:

Power()

Power()

Power(,)

The first call generates a compilation error because this method

requires a minimum of one argument. The second call is valid because

one argument (10) is being passed—the optional exponentValue is not

specified in the method call. The last call is also valid—10 is passed as

the required argument and 3 is passed as the optional argument.

In the call that passes only one argument (10), parameter

exponentValue defaults to 2, which is the default value specified in the

method’s header. Each optional parameter must specify a default value

by using an equal (=) sign followed by the value. For example, the

header for Power sets 2 as exponentValue’s default value. Figure 3.9

demonstrates an optional parameter. The program calculates the result

of raising a base value to an exponent. Method Power (Fig. 3.9, lines

15–23) specifies that its second parameter is optional. In method

DisplayPowers, lines 10–11 of Fig. 3.9 call method Power. Line 10

calls the method without the optional second argument. In this case, the

compiler provides the second argument, 2, using the default value of

the optional argument, which is not visible to you in the call.

1� // Fig. 3.9: Power.vb

2� // Optional argument demonstration with method Power.

3� System;
4�
5� CalculatePowers

 64�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

6� {

7� // call Power with and without optional arguments

8� Main([] args)
9� {

10� Console.WriteLine(, Power()) ;

11� Console.WriteLine(,
12� } // end Main

13�
14� // use iteration to calculate power

Power(,));

15� Power(baseValue, exponentValue =)
16� {

17� result = ; // initialize otal
18�
19� (i = ; i <= exponentValue; i++)
20� result *= baseValue;

21�
22� result;
23� } // end method Power

24� } // end class CalculatePowers

Power(10) = 100
Power(2, 10) = 1024

Fig.�3.9� |�Optional� argument�demonstration�with� method�Power.�

3.11 Named Parameters

Normally, when calling a method that has optional parameters, the

argument values—in order—are assigned to the parameters from left to

right in the parameter list. Consider a Time class that stores the time of

day in 24-hour clock format as int values representing the hour (0–23),

minute (0–59) and second (0–59). Such a class might provide a SetTime
method with optional parameters like

SetTime(hour = , minute = , second =)

In the preceding method header, all of three of SetTime’s

parameters are optional. Assuming that we have a Time object named t,

we can call SetTime as follows:

SetTime(); // sets the time to 12:00:00 AM

SetTime(); // sets the time to 12:00:00 PM

SetTime(,); // sets the time to 12:30:00 PM
SetTime(, ,); // sets the time to 12:30:22 PM

In the first call, no arguments are specified, so the compiler assigns

0 to each parameter. In the second call, the compiler assigns the

 65�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

argument, 12, to the first parameter, hour, and assigns default values of

0 to the minute and second parameters. In the third call, the compiler

assigns the two arguments, 12 and 30, to the parameters hour and

minute, respectively, and assigns the default value 0 to the parameter

second. In the last call, the compiler assigns the three arguments, 12, 30
and 22, to the parameters hour, minute and second, respectively. What if

you wanted to specify only arguments for the hour and second? You

might think that you could call the method as follows:

SetTime(, ,); // COMPILATION ERROR

Unlike some programming languages, C# doesn’t allow you to skip

an argument as shown in the preceding statement. However, Visual C#

2010 provides a new feature called named parameters, which enable you
to call methods that receive optional parameters by providing only the

optional arguments you wish to specify. To do so, you explicitly specify

the parameter’s name and value—separated by a colon (:)—in the

argument list of the method call. For example, the preceding statement

can be implemented in Visual C# 2010 as follows:

SetTime(hour: , second:); // sets the time to 12:00:22

In this case, the compiler assigns parameter hour the argument 12
and parameter second the argument 22. The parameter minute is not

specified, so the compiler assigns it the de- fault value 0. It’s also

possible to specify the arguments out of order when using named

parameters. The arguments for the required parameters must always be

supplied.

