
  66�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

                                                                      Information Technology – University Of AL Anbar   

 

3.12 Recursion 

The applications we have discussed thus far are generally 

structured as methods that call one another in a disciplined, hierarchical 

manner. For some problems, however, it’s useful to have a method call 

itself. A recursive method is a method that calls itself, either directly or 

indirectly through another method. 

We consider recursion conceptually first. Then we examine an 

application containing a recursive method. Recursive problem-solving 

approaches have a number of elements in common. When a recursive 

method is called to solve a problem, it actually is capable of solving only 
the simplest case(s), or base case(s). If the method is called with a base 

case, it returns a result. If the method is called with a more complex 

problem, it divides the problem into two conceptual pieces: a piece that 

the method knows how to do and a piece that it does not know how to do. 

To make recursion feasible, the latter piece must resemble the original 

problem, but be a slightly simpler or slightly smaller version of it. 
Because this new problem looks like the original problem, the method 

calls a fresh copy of itself to work on the smaller problem; this is 

referred to as a recursive call and is also called the recursion step. The 

recursion step normally includes a return statement, because its result 

will be combined with the portion of the problem the method knew how to 

solve to form a result that will be passed back to the original caller. 

The recursion step executes while the original call to the method is 

still active (i.e., while it has not finished executing). The recursion step 

can result in many more recursive calls, as the method divides each new 

subproblem into two conceptual pieces. For the recursion to terminate 
eventually, each time the method calls itself with a slightly simpler 

version of the original problem, the sequence of smaller and smaller 

problems must con- verge on the base case. At that point, the method 

recognizes the base case and returns a result to the previous copy of the 



  67�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

Information Technology – University Of AL Anbar  

method. A sequence of returns ensues until the original method call 

returns the result to the caller. This process sounds complex compared 

with the conventional problem solving we have performed to this point. 
 

Recursive Factorial Calculations 

As an example of recursion concepts at work, let’s write a recursive 

application to perform a popular mathematical calculation. Consider the 

factorial of a nonnegative integer n, written n! (and pronounced “n 

factorial”), which is the product 
 

 

1! is equal to 1 and 0! is defined to be 1. For example, 5! is the 

product 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1, which is equal to 120. The factorial of an integer, 

number, greater than or equal to 0 can be calculated iteratively 

(nonrecursively) using the for statement as follows:  
 

factorial = ; 
 

( counter = number; counter >= ; counter-- ) 
factorial *= counter; 

 

A recursive declaration of the factorial method is arrived at by 

observing the following relationship: 
 

 

For example, 5! is clearly equal to 5 ∙ 4!, as is shown by the 

following equations:
 

The evaluation of 5! would proceed as shown in Fig. 3.10. Figure 

3.10(a) shows how the succession of recursive calls proceeds until 1! is 
evaluated to be 1, which terminates the recursion. Figure 3.10(b) shows 

the values returned from each recursive call to its caller until the value is 

calculated and returned. Figure 3.11 uses recursion to calculate and 

display the factorials of the integers from 0 to 10. The recursive method 



  68�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

                                                                      Information Technology – University Of AL Anbar   

Factorial (lines 16–24) first tests to determine whether a terminating 

condition (line 19) is true.

 If number is less than or equal to 1 (the base case), Factorial 

returns 1, no further recursion is necessary and the method returns. If 

number is greater than 1, line 23 expresses the problem as the product of 

number and a recursive call to Factorial evaluating the factorial of 

number - 1, which is a slightly simpler problem than the original 

calculation, Factorial( number ). 
 

Fig.�3.10� |�Recursive�evaluation� of� 5!.�

Method Factorial (lines 16–24) receives a parameter of type long and 

returns a result of type long. As you can see in Fig. 3.11, factorial values 

become large quickly. We chose type long (which can represent relatively 

large integers) so that the application could calculate factorials greater 

than 20!. Unfortunately, the Factorial method produces large values so 

quickly that factorial values soon exceed even the maximum value that can 



  69�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

                                                                      Information Technology – University Of AL Anbar   

be stored in a long variable. Due to the restrictions on the integral types, 

variables of type float, double or decimal might ultimately be needed to 

calculate factorials of larger numbers. This situation points to a weakness 

in many programming languages—the languages are not easily extended to 

handle the unique requirements of various applications. As you know, C# 
allows you to create a type that supports arbitrarily large integers if you 

wish. For example, you could create a HugeInteger class that would enable 

an application to calculate the factorials of arbitrarily large numbers. You 

can also use the new type BigInteger from the .NET Framework’s class 

library.
 
1� // Fig. 3.11: FactorialTest.cs 

2� // Recursive Factorial method. 

3� System; 
4�
5� FactorialTest 
6� { 

7� Main( [] args ) 
8� { 

9� // calculate the factorials of 0 through 10 

10� ( counter = ; counter <= ; counter++ ) 
11� Console.WriteLine( , 

12� counter, 

13� } // end Main 

14�

Factorial( counter ) ); 

15� // recursive declaration of method Factorial 

16� Factorial( number ) 
17� { 

18� // base case 

19� ( number <= ) 
20� ; 
21� // recursion step 

22�  
23� number * Factorial( number - ); 
24� } // end method Factorial 

25� } // end class FactorialTest 

�����Fig.�3.11� |�Recursive�Factorial method.



  70�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

                                                                      Information Technology – University Of AL Anbar   

3.13 Passing Arguments: Pass-by-Value vs. Pass-by- Reference 

Two ways to pass arguments to functions in many programming 

languages are pass-by- value and pass-by-reference. When an argument 

is passed by value (the default in C#), a copy of its value is made and 

passed to the called function. Changes to the copy do not affect the 

original variable’s value in the caller. This prevents the accidental side 

effects that so greatly hinder the development of correct and reliable 

software systems. Each argument that has been passed in the programs 

in this chapter so far has been passed by value. When an argument is 

passed by reference, the caller gives the method the ability to access and 

modify the caller’s original variable.  

Previously, we discussed the difference between value types and 

reference types. A major difference between them is that value-type 

variables store values, so specifying a value-type variable in a method 

call passes a copy of that variable’s value to the method. Reference-type 

variables store references to objects, so specifying a reference-type 
variable as an argument passes the method a copy of the actual reference 

that refers to the object. Even though the reference itself is passed by 

value, the method can still use the reference it receives to interact with—

and possibly modify—the  original object. Similarly, when returning 

information from a method via a return statement, the method returns a 

copy of the value stored in a value-type variable or a copy of the 
reference stored in a reference- type variable. 

What if you would like to pass a variable by reference so the called 
method can modify the variable’s value? To do this, C# provides 

keywords ref and out. Applying the ref keyword to a parameter 
declaration allows you to pass a variable to a method by reference— the 

called method will be able to modify the original variable in the caller. 

The ref key- word is used for variables that already have been initialized 

in the calling method. Normally, when a method call contains an 

uninitialized variable as an argument, the compiler generates an error. 
Preceding a parameter with keyword out creates an output parameter. 



  71�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

                                                                      Information Technology – University Of AL Anbar   

This indicates to the compiler that the argument will be passed into the 

called method by reference and that the called method will assign a value 

to the original variable in the caller. If the method does not assign a 

value to the output parameter in every possible path of execution, the 

compiler generates an error. This also prevents the compiler from 
generating an error message for an uninitialized  variable that’s passed 

as an argument to a method. A method can return only one value to its 

caller via a return statement, but can return many values by specifying 

multiple output (ref and/or out) parameters. 

The application in Fig. 3.12 uses the ref and out keywords to 

manipulate integer values. The class contains three methods that 

calculate the square of an integer. Method SquareRef (lines 37–40) 

multiplies its parameter x by itself and assigns the new value to x. 

SquareRef’s parameter is declared as ref int, which indicates that the 

argument passed to this method must be an integer that’s passed by 

reference. Because the argument is passed by reference, the assignment 

at line 39 modifies the original argument’s value in the caller. 

Method SquareOut (lines 44–48) assigns its parameter the value 6 

(line 46), then squares that value. SquareOut’s parameter is declared as 

out int, which indicates that the argument passed to this method must be 

an integer that’s passed by reference and that the argument does not 

need to be initialized in advance. 
 
 

1� // Fig. 3.12: ReferenceAndOutputParameters.cs 

2� // Reference, output and value parameters. 

3� System; 
4�
5� ReferenceAndOutputParameters 
6� { 

7� // call methods with reference, output and value parameters 

8� Main( [] args ) 
9� { 
10� y = ; // initialize y to 5 
11� z; // declares z, but does not initialize it 
12�
13� // display original values of y and z 

14� Console.WriteLine( , y ); 
15� Console.WriteLine( ); 
16�



  72�Mahmoud Hilal Farhan                    College Of Computer Sciences &   

                                                                      Information Technology – University Of AL Anbar   

17� // pass y and z by reference 

18� SquareRef( y ); // must use keyword ref 
19� SquareOut( z ); // must use keyword out 
20�
21� // display values of y and z after they are modified by 

22� // methods SquareRef and SquareOut, respectively 

23� Console.WriteLine( , y ); 
24� Console.WriteLine( , z ); 
25�
26� // pass y and z by value 

27� Square( y ); 

28� Square( z ); 

29�
30�������������// display values of y and z after they are passed to method Square 
31� // to demonstrate that arguments passed by value are not modified 

32� Console.WriteLine( , y ); 
33� Console.WriteLine( , z ); 
34� } // end Main 

35�
36� // uses reference parameter x to modify caller's variable 

37� SquareRef( x ) 
38� { 

 

39� x = x * x; // squares value of caller's variable 

40� } // end method SquareRef 

41�
42� // uses output parameter x to assign a value 

43� // to an uninitialized variable 

44� SquareOut( 
45� { 

x ) 

46� x = ; // assigns a value to caller's variable 
47� x = x * x; // squares value of caller's variable 

48� } // end method SquareOut 

49�
50� // parameter x receives a copy of the value passed as an argument, 

51� // so this method cannot modify the caller's variable 

52� Square( x ) 
53� { 

54� x = x * x; 

55� } // end method Square 

56� } // end class ReferenceAndOutputParameters 

Fig.�3.12� |�Reference,�output�� and�value�parameters.  

 


