

73�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

4.1 Introduction

This chapter introduces the important topic of data structures—

collections of related data items. Arrays are data structures consisting of
related data items of the same type. Arrays are fixed-length entities—they

remain the same length once they’re created, although an array variable

may be reassigned such that it refers to a new array of a different length.

After discussing how arrays are declared, created and initialized, I

present a series of examples that demonstrate several common array

manipulations. The chapter demonstrates C#’s last structured control

statement—the foreach repetition statement—which provides a concise

notation for accessing data in arrays.

4.2 Arrays
An array is a group of variables (called elements) containing values

that all have the same type. Recall that types are divided into two

categories—value types and reference types. Arrays are reference types.
As you’ll see, what I typically think of as an array is actually a reference

to an array object. The elements of an array can be either value types or

reference types, including other arrays. To refer to a particular element

in an array, we specify the name of the reference to the array and the

position number of the element in the array, which is known as the

element’s index.

Figure 4.1 shows a logical representation of an integer array called c. This

array contains 12 elements. An application refers to any one of these elements

with an array-access expression that includes the name of the array, followed by

74�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

the index of the particular element in square brackets ([]). The first element in

every array has index zero and is some- times called the zeroth element. Thus,

the elements of array c are c[0], c[1], c[2] and so on. The highest index in array

c is 11, which is one less than the number of elements in the array, because

indices begin at 0. Array names follow the same conventions as other variable

names. An index must be a nonnegative integer and can be an expression. For

example, if we assume that variable a is 5 and variable b is 6, then the statement

c[a + b] += ;

������Fig.�4.1� |�A�12-element� array.�

adds 2 to array element c[11]. An indexed array name is an array-access

expression. Such expressions can be used on the left side of an assignment to

place a new value into an array element. The array index must be a value of type

int, uint, long or ulong, or a value of a type that can be implicitly promoted to

one of these types.

Let’s examine array c in Fig. 4.1 more closely. The name of the variable that

references the array is c. Every array instance knows its own length and provides

access to this information with the Length property. For example, the expression

75�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

c.Length uses array c’s Length property to determine the length of the array (that

is, 12). The Length property of an array cannot be changed, because it does not

provide a set accessor. The array’s 12 elements are referred to as c[0], c[1],

c[2], …, c[11]. Referring to elements outside of this range, such as c[-1] or

c[12] is a runtime error. The value of c[0] is -45, the value of c[1] is 6, the value

of c[2] is 0, the value of c[7] is 62 and the value of c[11] is 78. To calculate the

sum of the values contained in the first three elements of array c and store the

result in variable sum, we would write

sum = c[] + c[] + c[];

To divide the value of c[6] by 2 and assign the result to the variable x, we

would write

x = c[] / ;

4.3 Declaring and Creating Arrays
Arrays occupy space in memory. Since they’re objects, they’re typically

created with key- word new. To create an array object, you specify the type and

the number of array elements as part of an array-creation expression that uses

keyword new. Such an expression returns a reference that can be stored in an

array variable. The following declaration and array- creation expression create

an array object containing 12 int elements and store the array’s reference in

variable c:

int[] c = new int[12];

This expression can be used to create the array shown in Fig. 4.1 (but not the

initial values in the array—we’ll show how to initialize the elements of an array

momentarily). This task also can be performed as follows:

int[] c; // declare the array variable

c = new int[12]; // create the array; assign to array variable

In the declaration, the square brackets following the type int indicate that c is

a variable that will refer to an array of ints (i.e., c will store a reference to an

array object). In the assignment statement, the array variable c receives the

76�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

reference to a new array object of 12 int elements. The number of elements can

also be specified as an expression that’s calculated at execution time. When an

array is created, each element of the array receives a default value—0 for the

numeric simple-type elements, false for bool elements and null for references. As

we’ll soon see, we can provide specific, non default initial element values when

we create an array. An application can create several arrays in a single

declaration. The following statement reserves 100 elements for string array b

and 27 elements for string array x:

[] b = [], x = [];

In this statement, string[] applies to each variable. For readability and

ease of commenting, we prefer to split the preceding statement into two

statements, as in:
[] b = []; // create string array b
[] x = []; // create string array x

An application can declare variables that will refer to arrays of value-type

elements or reference-type elements. For example, every element of an int array

is an int value, and every element of a string array is a reference to a string

object.

Resizing an Array

Though arrays are fixed-length entities, you can use the static Array method

Resize, which takes two arguments—the array to be resized and the new length—

to create a new array with the specified length. This method copies the contents

of the old array into the new array and sets the variable it receives as its first

argument to reference the new array. For example, consider the following

statements:

[] newArray = [];

Array.Resize(newArray,);

The variable newArray initially refers to a five-element array. The resize

method sets newArray to refer to a new 10-element array. If the new array is

smaller than the old array, any content that cannot fit into the new array is

truncated without warning.

77�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

This section presents several examples that demonstrate declaring arrays,

creating arrays, initializing arrays and manipulating array elements.

Creating and Initializing an Array

The application of Fig. 4.2 uses keyword new to create an array of five int
elements that are initially 0 (the default for int variables).

1� // Fig. 4.2: InitArray.cs

2� // Creating an array.

3� System;
4�
5� InitArray
6� {

7� Main([] args)
8� {

9� [] array; // declare array named array
10�
11� // create the space for array and initialize to default zeros

12� array = []; // 5 int elements
13�
14� Console.WriteLine(, ,); // headings
15�
16� // output each array element's value

17� (counter = ; counter < array.Length; counter++)
18� Console.WriteLine(, counter, array[counter]
);

19� } // end Main

20� } // end class InitArray

�
Fig.�4.2� |�Creating�an�array.�

�

Line 9 declares array—a variable capable of referring to an array of int

elements. Line 12 creates the five-element array object and assigns its reference

to variable array. Line 14 outputs the column headings. The first column contains

the index (0–9) of each array element, and the second column contains the

default value (0) of each array element and has a field width of 8.

78�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

The for statement in lines 17–18 outputs the index number (represented by

counter) and the value (represented by array[counter]) of each array element.

The loop-control variable counter is initially 0—index values start at 0, so using

zero-based counting allows the loop to access every element of the array. The for

statement’s loop-continuation condition uses the property array.Length (line 17)

to obtain the length of the array. In this example, the length of the array is 10, so

the loop continues executing as long as the value of control variable counter is

less than 10. The highest index value of a 10-element array is 9, so using the less-

than operator in the loop-continuation condition guarantees that the loop does

not attempt to access an element beyond the end of the array (i.e., during the

final iteration of the loop, counter is 9). I’ll soon see what happens when such an

out- of-range index is encountered at execution time.

Using an Array Initializer

An application can create an array and initialize its elements with an array

initializer, which is a comma-separated list of expressions (called an initializer

list) enclosed in braces. In this case, the array length is determined by the

number of elements in the initializer list. For example, the declaration

[] n = { , , , , };

creates a five-element array with index values 0, 1, 2, 3 and 4. Element

n[0] is initialized to 10, n[1] is initialized to 20 and so on. This statement does

not require new to create the array object. When the compiler encounters an

array initializer list, the compiler counts the number of initializers in the list to

determine the size of the array, then sets up the ap- propriate new operation

“behind the scenes.” The application in Fig. 4.3 initializes an in- teger array

with 10 values (line 10) and displays the array in tabular format. The code for

displaying the array elements (lines 15–16) is identical to that in Fig. 4.2

(lines 17–18)

79�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

1� // Fig. 4.3: InitArray.cs

2� // Initializing the elements of an array with an array initializer.

3� System;
4�
5� InitArray
6� {

7� Main([] args)
8� {

9� // initializer list specifies the value for each element

10� [] array = { , , , , , , , , , };
11�
12� Console.WriteLine(, ,); // headings
13�
14� // output each array element's value

15� (counter = ; counter < array.Length; counter++)
16� Console.WriteLine(, counter, array[counter]);
17� } // end Main

18� } // end class InitArray

Fig.�4.3� |�Initializing��the�elements�of�an�array�with��an�array�initializer.�
�

�

Calculating a Value to Store in Each Array Element

Some applications calculate the value to be stored in each array element.

The application in Fig. 4.4 creates a 10-element array and assigns to each

element one of the even integers from 2 to 20 (2, 4, 6, …, 20). Then the

application displays the array in tabular format. The for statement at lines 13–

14 calculates an array element’s value by multiplying the current value of the

for loop’s control variable counter by 2, then adding 2.

1� // Fig. 4.4: InitArray.cs

2� // Calculating values to be placed into the elements of an array.

3� System;
4�
5� InitArray
6� {

80�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

7� Main([] args)
8� {

9� = ; // create a named constant
10� � [] array = []; // create array
11�
12� // calculate value for each array element

13� (counter = ; counter < array.Length; counter++)

14� � array[counter] = + * counter;
15�
16� Console.WriteLine(, ,); // headings
17�
18� // output each array element's value

19� (counter = ; counter < array.Length; counter++)
20� Console.WriteLine(, counter, array[counter]

);
21� } // end Main

22� } // end class InitArray

�
Fig.�4.4� |�Calculating� values�to�be�placed�into� the�elements�of�an�array.�
�

Line 9 uses the modifier const to declare the constant ARRAY_LENGTH,

whose value is 10. Constants must be initialized when they’re declared and

cannot be modified thereafter. We declare constants with all capital letters by

convention to make them stand out in the code.

Summing the Elements of an Array

Often, the elements of an array represent a series of values to be used in a

calculation. For example, if the elements of an array represent exam grades,

an instructor may wish to total the elements and use that total to calculate the

class average for the exam. The application in Fig. 4.5 sums the values

contained in a 10-element integer array. The application creates and

initializes the array at line 9. The for statement performs the calculations.
�
�

81�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

�

1� // Fig. 4.5: SumArray.cs

2� // Computing the sum of the elements of an array.

3� System;
4�
5� SumArray
6� {
7� Main([] args)
8� {

9� [] array = { , , , , , , , , , };
10� total = ;
11�
12� // add each element's value to total

13� (counter = ; counter < array.Length; counter++)
14� total += array[counter];

15�
16� Console.WriteLine(, total);
17� } // end Main

18� } // end class SumArray

Total of array elements: 849

Fig.�4.5� |�Computing� the�sum�of�the�elements�of�an�array.�

Using Bar Charts to Display Array Data Graphically

Many applications present data to users in a graphical manner. For example,

numeric values are often displayed as bars in a bar chart. In such a chart, longer

bars represent proportionally larger numeric values. One simple way to display

numeric data graphically is with a bar chart that shows each numeric value as a

bar of asterisks (*). An instructor might graph the number of grades in each of

several categories to visualize the grade distribution for the exam. Suppose the

grades on an exam were 87, 68, 94, 100, 83, 78, 85, 91, 76 and 87. There was one

grade of 100, two grades in the 90s, four grades in the 80s, two grades in the 70s,

one grade in the 60s and no grades below 60. Our next application (Fig. 4.6)

stores this grade distribution data in an array of 11 elements, each corresponding

to a category of grades. For example, array[0] indicates the number of grades in

the range 0–9, array[7] the number of grades in the range 70–79 and array[10]

the number of 100 grades. For now, we manually create array by examining the

set of grades and initializing the elements of array to the number of values in

each range (line 9).

The application reads the numbers from the array and graphs the information

as a bar chart. Each grade range is followed by a bar of asterisks indicating the

number of grades in that range.

82�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

To label each bar, lines 17–21 output a grade range (e.g., "70-79: ") based on

the current value of counter. When counter is 10, line 18 outputs " 100: " to align

the colon with the other bar labels. When counter is not 10, line 20 uses the

format items {0:D2} and {1:D2} to output the label of the grade range. The

format specifier D indicates that the value should be formatted as an integer, and

the number after the D indicates how

1���� // Fig. 4.6: BarChart.cs
2���� // Bar chart displaying application.
3���� System;
4�
5���� BarChart
6���� {
7���������� Main([] args)
8���������� {
9���������������� [] array = { , , , , , , , , , , };
10�
11� Console.WriteLine();
12�
13� // for each array element, output a bar of the chart

14� (counter = ; counter < array.Length; counter++)
15� {

16� // output bar labels ("00-09: ", ..., "90-99: ", "100: ")

17� (counter ==)
18� Console.Write();
19�
20� Console.Write(,
21� counter * , counter * +);
22�
23� // display bar of asterisks

24� (stars = ; stars < array[counter]; stars++)
25� Console.Write();
26�
27� Console.WriteLine(); // start a new line of output

28� } // end outer for

29� } // end Main

30� } // end class BarChart
�

Grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80-89: ****
90-99: **
100: *

��Fig.�4.6� |�Bar�chart�displaying� application.���

83�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

many digits this formatted integer must contain. The 2 indicates that values

with fewer than two digits should begin with a leading 0.The nested for statement

(lines 24–25) outputs the bars. Note the loop-continuation condition at line 24

(stars < array[counter]). Each time the application reaches the inner for, the

loop counts from 0 up to one less than array[counter], thus using a value in array

to determine the number of asterisks to display. In this example, array[0]–

array[5] contain 0s because no students received a grade below 60. Thus, the

application displays no asterisks next to the first six grade ranges.

4.6 foreach Statement

In previous examples, we demonstrated how to use counter-controlled for

statements to iterate through the elements in an array. In this section, we

introduce the foreach statement, which iterates through the elements of an entire

array or collection. This section dis- cusses how to use the foreach statement to

loop through an array. The syntax of a foreach statement is:

()

where type and identifier are the type and name (e.g., int number) of the

iteration variable, and arrayName is the array through which to iterate. The type

of the iteration variable must be consistent with the type of the elements in the

array. As the next example illustrates, the iteration variable represents successive

values in the array on successive iterations of the foreach statement.

Figure 4.12 uses the foreach statement (lines 13–14) to calculate the sum of

the integers in an array of student grades. The type specified is int, because array

contains int values—therefore, the loop will select one int value from the array

during each iteration. The foreach statement iterates through successive values in

the array one by one. The foreach header can be read concisely as “for each

iteration, assign the next element of array to int variable number, then execute the

following statement.” Thus, for each iteration, identifier number represents the

next int value in the array. Lines 13–14 are equivalent to the following counter-

controlled repetition used in lines 13–14 of Fig. 4.5 to total the integers in array:

(counter = ; counter < array.Length; counter++)
 total += array[counter];

84�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

1� // Fig. 4.12: ForEachTest.cs

2� // Using the foreach statement to total integers in an array.

3� System;
4�
5� ForEachTest
6� {

7� Main([] args)
8� {
9� [] array = { , , , , , , , , , };
10� total = ;
11�
12� // add each element's value to total

13� (number array)
14� total += number;

15�
16� Console.WriteLine(, total);
17� } // end Main

18� } // end class ForEachTest

Total of array elements: 849

Fig.�4.12� |�Using�the�foreach statement�to�total� integers�in�an�array.�
�

The foreach statement can be used in place of the for statement whenever

code looping through an array does not require access to the counter indicating

the index of the current array element. For example, totaling the integers in an

array requires access only to the element values—the index of each element is

irrelevant. However, if an application must use a counter for some reason other

than simply to loop through an array (e.g., to display an index number next to

each array element value, as in the examples earlier in this chapter), use the for

statement.

Implicitly Typed Local Variables

In each for statement presented so far and in the foreach statement of Fig.

4.12, we declared the type of the control variable either in the for or foreach

statement’s header. C# provides a new feature—called implicitly typed local

variables—that enables the compiler to infer a local variable’s type based on the

type of the variable’s initializer. To distinguish such an initialization from a

simple assignment statement, the var keyword is used in place of the variable’s

type. Recall that a local variable is any variable declared in the body of amethod.

In the declaration

85�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

x = ;

the compiler infers that the variable x should be of type int, because the

compiler assumes that whole-number values, like 7, are of type int. Similarly, in

the declaration

y = ;

the compiler infers that the variable y should be of type double, because the

compiler assumes that floating-point number values, like -123.45, are of type

double. You can also use local type inference with control variables in the header

of a for or foreach statement. For example, the for statement header

(counter = ; counter < ; counter++)

can be written as

(counter = ; counter < ; counter++)

 In this case, counter is of type int because it’s initialized with a whole-

number value (1). Similarly, assuming that myArray is an array of ints, the

foreach statement header

(number myArray)

can be written as

(number myArray)

In this case, number is of type int because it’s used to process elements of
the int array myArray. For example, the following statement creates an array of
int values:

array = [] { , , , , , , , , , };

4.7 Passing Arrays and Array Elements to Methods

To pass an array argument to a method, specify the name of the array without

any brackets. For example, if hourlyTemperatures is declared as

[] hourlyTemperatures = [];

then the method call
ModifyArray(hourlyTemperatures);

86�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

passes the reference of array hourlyTemperatures to method ModifyArray.

Every array object “knows” its own length (and makes it available via its Length

property). Thus, when we pass an array object’s reference to a method, we need

not pass the array length as an additional argumentt For a method to receive an

array reference through a method call, the method’s parameter list must specify

an array parameter. For example, the method header for method ModifyArray

might be written as
ModifyArray([] b)

indicating that ModifyArray receives the reference of an array of doubles in

parameter b. The method call passes array hourlyTemperature’s reference, so

when the called method uses the array variable b, it refers to the same array

object as hourlyTemperatures in the calling methodd When an argument to a

method is an entire array or an individual array element of a reference type, the

called method receives a copy of the reference. However, when an argument to a

method is an individual array element of a value type, the called method receives

a copy of the element’s value. To pass an individual array element to a method,

use the indexed name of the array as an argument in the method call. If you want

to pass a value- type array element to a method by reference, you must use the

ref keyword .

Figure 4.13 demonstrates the difference between passing an entire array and

passing a value-type array element to a method. The foreach statement at lines

17–18 outputs the five elements of array (an array of int values). Line 20 invokes

method ModifyArray, passing array as an argument. Method ModifyArray (lines

37–41) receives a copy of array’s reference and uses the reference to multiply

each of array’s elements by 2. To prove that array’s elements (in Main) were

modified, the foreach statement at lines 24–25 outputs the five elements of array

again. As the output shows, method ModifyArray doubled the value of each

element.

87�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

// multiply each element of an array by 2�
l t v d ModifyArray(i [] array2)�

{�
o (i counter = 0; counter < array2.Length; counter++)�

array2[counter] *= 2;�
} // end method ModifyArray�

// multiply argument by 2�
l t v d ModifyElement(i element)�

{�
element *= 2;�
Console.WriteLine(�

V l t d l n { } , element);�
} // end method ModifyElement�

1� // Fig. 4.13: PassArray.cs

2� // Passing arrays and individual array elements to methods.

3� using System;
4�
5� public class PassArray
6� {

7� // Main creates array and calls ModifyArray and ModifyElement

8� Main([] args)
9� {

10� [] array = { , , , , };
11�
12� Console.WriteLine(

13� +
14�);
15�
16� // output original array elements

17� (value array)
18� Console.Write(, value);
19�
20� � ModifyArray(array); // pass array reference

21� Console.WriteLine();
22�
23� // output modified array elements

24� (value array)
25� Console.Write(, value);
26�
27� Console.WriteLine(

28� +
29� , array[]);
30�
31� ModifyElement(array[]); // attempt to modify array[3]

32� Console.WriteLine(

33� , array[]);
34� } // end Main

35�
36�
37�
38�
39�
40�
41�
42�
43�
44�
45�
46�
47�
48�
49�
50� } // end class PassArray

Fig.�4.13� |�Passing�arrays�and� individual�� array�elements� to�methods

88�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

Output�of�previous�Progarm�

Effects of passing reference to entire array: The
values of the original array are:

1 2 3 4 5

The values of the modified array are:
2 4 6 8 10

Effects of passing array element value:
array[3] before ModifyElement: 8
Value of element in ModifyElement:
16 array[3] after ModifyElement: 8

�

Figure 4.13 next demonstrates that when a copy of an individual value-type

array element is passed to a method, modifying the copy in the called method

does not affect the original value of that element in the calling method’s array.

To show the value of array[3] before invoking method ModifyElement, lines 27–

29 output the value of array[3], which is 8. Line 31 calls method ModifyElement

and passes array[3] as an argument. Remember that array[3] is actually one int

value (8) in array. Therefore, the application passes a copy of the value of

array[3]. Method ModifyElement (lines 44–49) multiplies the value received as

an argument by 2, stores the result in its parameter element, then outputs the

value of element (16). Since method parameters, like local variables, cease to

exist when the method in which they’re declared completes execution, the method

parameter ele- ment is destroyed when method ModifyElement terminates. Thus,

when the application returns control to Main, lines 32–33 output the unmodified

value of array[3] (i.e., 8).

4.8 Passing Arrays by Value and by Reference

In C#, a variable that “stores” an object, such as an array, does not actually

store the object itself. Instead, such a variable stores a reference to the object.

The distinction between reference-type variables and value-type variables raises

some subtle issues that you must understand to create secure, stable programs.

As you know, when an application passes an argument to a method, the

called method receives a copy of that argument’s value. Changes to the local

copy in the called method do not affect the original variable in the caller. If the

89�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

argument is of a reference type, the method makes a copy of the reference, not a

copy of the actual object that’s referenced. The local copy of the reference also

refers to the original object, which means that changes to the object in the called

method affect the original object.

In Section 4.8, you learned that C# allows variables to be passed by

reference with keyword ref. You can also use keyword ref to pass a reference-

type variable by reference, which allows the called method to modify the original

variable in the caller and make that variable refer to a different object. This is a

subtle capability, which, if misused, can lead to problems.

For instance, when a reference-type object like an array is passed with ref,

the called method actually gains control over the reference itself, allowing the

called method to replace the original reference in the caller with a reference to a

different object, or even with null. Such behavior can lead to unpredictable

effects, which can be disastrous in mission-critical applications.

The application in Fig. 4.14 demonstrates the subtle difference between

passing a reference by value and passing a reference by reference with keyword

ref.

1� // Fig. 4.14: ArrayReferenceTest.cs

2� // Testing the effects of passing array references

3� // by value and by reference.

4� System;
5�
6� ArrayReferenceTest
7� {

8� Main([] args)
9� {

10� // create and initialize firstArray

11� [] firstArray = { , , };
12�
13� // copy the reference in variable firstArray

14� [] firstArrayCopy = firstArray;
15�
16� Console.WriteLine(

17�);
18�
19� Console.Write(+
20�);
21�
22� // display contents of firstArray

90�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

23� (i = ; i < firstArray.Length; i++)
24� Console.Write(, firstArray[i]);
25�
26� // pass variable firstArray by value to FirstDouble

27� FirstDouble(firstArray);

28�
29� Console.Write(+
30�);
31�
32� // display contents of firstArray

33� (i = ; i < firstArray.Length; i++)
34� Console.Write(, firstArray[i]);
35�
36� // test whether reference was changed by FirstDouble

37� (firstArray == firstArrayCopy)
38� Console.WriteLine(

39�);
40�
41� Console.WriteLine(

42�);
43�
44� // create and initialize secondArray

45� [] secondArray = { , , };
46�
47� // copy the reference in variable secondArray

48� [] secondArrayCopy = secondArray;
49�
50� Console.WriteLine(+
51�);
52�
53� Console.Write(+
54�);
55�
56� // display contents of secondArray before method call

57� (i = ; i < secondArray.Length; i++)
58� Console.Write(, secondArray[i]);
59�
60� // pass variable secondArray by reference to SecondDouble

61� SecondDouble(secondArray);
62�
63� Console.Write(+
64�);
65�
66� // display contents of secondArray after method call

67� (i = ; i < secondArray.Length; i++)
68� Console.Write(, secondArray[i]);
69�
70� // test whether reference was changed by SecondDouble

71� (secondArray == secondArrayCopy)
72� Console.WriteLine(

73�);
74�

91�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

75� Console.WriteLine(

76�);
77� } // end Main

78�
79� // modify elements of array and attempt to modify reference

80� FirstDouble([] array)
81� {

82� // double each element's value

83� (i = ; i < array.Length; i++)
84� array[i] *= ;
85�
86� // create new object and assign its reference to array

87� array = int[] { , , };

88� } // end method FirstDouble

89�
90� // modify elements of array and change reference array

91� // to refer to a new array

����92� SecondDouble([] array)
93� {

94� // double each element's value

95� (i = ; i < array.Length; i++)
96� array[i] *= ;
97�
98� // create new object and assign its reference to array

99� array = [] { , , };

100� } // end method SecondDouble

101� } // end class ArrayReferenceTest

Fig.�4.14� |�Passing�an�array�reference�by� value�and�by� reference.��
�

92�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

Lines 11 and 14 declare two integer array variables, firstArray and

firstArrayCopy. Line 11 initializes firstArray with the values 1, 2 and 3. The

assignment statement at line 14 copies the reference stored in firstArray to

variable firstArrayCopy, causing these variables to reference the same array

object. We make the copy of the reference so that we can determine later whether

reference firstArray gets overwritten. The for statement at lines 23–24 displays

the contents of firstArray before it’s passed to method FirstDouble (line 27) so

that we can verify that the called method indeed changes the array’s contents.

The for statement in method FirstDouble (lines 83–84) multiplies the values

of all the elements in the array by 2. Line 87 creates a new array containing the

values 11, 12 and 13, and assigns the array’s reference to parameter array in an

attempt to overwrite reference firstArray in the caller—this, of course, does not

happen, because the reference was passed by value. After method FirstDouble

executes, the for statement at lines 33–34 dis- plays the contents of firstArray,

demonstrating that the values of the elements have been changed by the method.

The if...else statement at lines 37–42 uses the = = operator to compare references

firstArray (which we just attempted to overwrite) and firstArray- Copy. The

expression in line 37 evaluates to true if the operands of operator = = reference

the same object. In this case, the object represented by firstArray is the array

created in line 11—not the array created in method FirstDouble (line 87)—so the

original reference stored in firstArray was not modified.

Lines 45–76 perform similar tests, using array variables secondArray and

second- ArrayCopy, and method SecondDouble (lines 92–100). Method

SecondDouble performs the same operations as FirstDouble, but receives its

array argument using keyword ref. In this case, the reference stored in

secondArray after the method call is a reference to the array created in line 99 of

SecondDouble, demonstrating that a variable passed with key- word ref can be

modified by the called method so that the variable in the caller actually points to

a different object—in this case, an array created in SecondDouble. The if...else

statement in lines 71–76 confirms that secondArray and secondArrayCopy no

longer refer to the same array.

