

93�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

4.10 Multidimensional Arrays
Multidimensional arrays with two dimensions are often used to represent

tables of values consisting of information arranged in rows and columns. To

identify a particular table element, we must specify two indices. By convention,

the first identifies the element’s row and the second its column. Arrays that

require two indices to identify a particular element are called two-dimensional

arrays. C# supports two types of two-dimensional arrays—rectangular arrays

and jagged arrays.

Rectangular Arrays

Rectangular arrays are used to represent tables of information in the form of

rows and columns, where each row has the same number of columns. Figure

4.17 illustrates a rectangular array named a containing three rows and four

columns—a three-by-four array.

Every element in array a is identified in Fig. 4.17 by an array-access

expression of the form a[row, column]; a is the name of the array, and row and

column are the indices that uniquely identify each element in array a by row and

column number. The names of the elements in row 0 all have a first index of 0,

and the names of the elements in column 3 all have a second index of 3. Like one-

dimensional arrays, multidimensional arrays can be initialized with array

initializers in declarations. A rectangular array b with two rows and two

columns could be declared and initialized with nested array initializers as

follows:
[,] b = { { , }, { , } };

Fig.�4.17� |�Rectangular�array�with��three�rows� and� four� columns.�

94�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

The initializer values are grouped by row in braces. So 1 and 2 initialize b[0,

0] and b[0, 1], respectively, and 3 and 4 initialize b[1, 0] and b[1, 1],

respectively. The compiler counts the number of nested array initializers

(represented by sets of two inner braces with- in the outer braces) in the

initializer list to determine the number of rows in array b. The compiler counts

the initializer values in the nested array initializer for a row to determine the

number of columns (two) in that row. The compiler will generate an error if the

num- ber of initializers in each row is not the same, because every row of a

rectangular array must have the same length.

Jagged Arrays

A jagged array is maintained as a one-dimensional array in which each

element refers to a one-dimensional array. The manner in which jagged arrays

are represented makes them quite flexible, because the lengths of the rows in the

array need not be the same. For example, jagged arrays could be used to store a

single student’s exam grades across multiple classes, where the number of exams

may vary from class to class.

We can access the elements in a jagged array by an array-access expression

of the form arrayName[row][column]—similar to the array-access expression

for rectangular arrays, but with a separate set of square brackets for each

dimension. A jagged array with three rows of different lengths could be declared

and initialized as follows:

[][] jagged = { [] { , },
[] { },
[] { , , } };

In this statement, 1 and 2 initialize jagged[0][0] and jagged[0][1],

respectively; 3 initializes jagged[1][0]; and 4, 5 and 6 initialize jagged[2][0],

jagged[2][1] and jagged[2][2], respectively. Therefore, array jagged in the

preceding declaration is actu- ally composed of four separate one-dimensional

arrays—one that represents the rows, one containing the values in the first row

({1, 2}), one containing the value in the second row ({3}) and one containing the

values in the third row ({4, 5, 6}). Thus, array jagged itself is an array of three

elements, each a reference to a one-dimensional array of int values.

95�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

Observe the differences between the array-creation expressions for

rectangular arrays and for jagged arrays. Two sets of square brackets follow the

type of jagged, indicating that this is an array of int arrays. Furthermore, in the

array initializer, C# requires the key- word new to create an array object for

each row. Figure 4.18 illustrates the array reference jagged after it’s been

declared and initialized.

Fig.�4.18� |�Jagged�array�with��three�rows�of�different� lengths.�
�

Creating Two-Dimensional Arrays with Array-Creation Expressions

A rectangular array can be created with an array-creation expression. For

example, the following lines declare variable b and assign it a reference to a

three-by-four rectangular array:

[,] b;
b = [,];

In this case, we use the literal values 3 and 4 to specify the number of rows

and number of columns, respectively, but this is not required—applications can

also use variables and expressions to specify array dimensions. As with one-

dimensional arrays, the elements of a rectangular array are initialized when the

array object is createdd A jagged array cannot be completely created with a

single array-creation expression. The following statement is a syntax error:

int[][] c = new int[2][5]; // error

Instead, each one-dimensional array in the jagged array must be initialized

separately. A jagged array can be created as follows:
[][] c;

c = [][]; // create 2 rows
c[] = []; // create 5 columns for row 0
c[] = []; // create 3 columns for row 1

96�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

The preceding statements create a jagged array with two rows. Row 0 has

five columns, and row 1 has three columns.

Two-Dimensional Array Example: Displaying Element Values

Figure 4.19 demonstrates initializing rectangular and jagged arrays with

array initializers and using nested for loops to traverse the arrays (i.e., visit

every element of each array).

Class InitArray’s Main method creates two arrays. Line 12 uses nested

array initializers to initialize variable rectangular with an array in which row 0

has the values 1, 2 and 3, and row 1 has the values 4, 5 and 6. Lines 17–19 uses

nested initializers of different lengths to initialize variable jagged. In this case,

the initializer uses the keyword new to create a one-dimensional array for each

row. Row 0 is initialized to have two elements with values 1 and 2, respectively.

Row 1 is initialized to have one element with value 3. Row 2 is initialized to

have three elements with the values 4, 5 and 6, respectively.

Method OutputArray has been overloaded with two versions. The first

version (lines 27–40) specifies the array parameter as int[,] array to indicate

that it takes a rectangular array. The second version (lines 43–56) takes a

jagged array, because its array parameter is listed as int[][] array.

1� // Fig. 4.19: InitArray.cs

2� // Initializing rectangular and jagged arrays.

3� System;
4�
5� InitArray
6� {

7� // create and output rectangular and jagged arrays

8� Main([] args)
9� {

10� // with rectangular arrays,

11� // every column must be the same length.

12� [,] rectangular = { { , , }, { , , } };
13�
14� // with jagged arrays,

15� // we need to use "new int[]" for every row,

16� // but every column does not need to be the same length.

17� [][] jagged = { [] { , },
18� [] { },
19� [] { , , } };
20�

97�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

// loop through array's rows

 (i t row = 0; row < array.GetLength(0); row++)�
{

// loop through columns of current row

o (i column = 0; column < array.GetLength(1); column++)�
Console.Write(" ", array[row, column]);

�
Console.WriteLine(); // start new line of output�

} // end outer for�

// loop through each row�
e (v row i array)�

{

// loop through each element in current row�
o c (v element i row)�

Console.Write(" ", element);�
�

21� OutputArray(rectangular); // displays array rectangular by row

22� Console.WriteLine(); // output a blank line

23� OutputArray(jagged); // displays array jagged by row

24� } // end Main

25�
26� // output rows and columns of a rectangular array

����27� OutputArray ([,] array)
28� {

29� Console.WriteLine();
30�
31�
32�
33�
34�
35�
36�
37�
38�
39�
40� } // end method OutputArray

41�
42� // output rows and columns of a jagged array

43� OutputArray([][] array)
44� {

45� Console.WriteLine();
46�
47�
48�
49�
50�
51�
52�
53�
54� Console.WriteLine(); // start new line of output

55� } // end outer foreach

56� } // end method OutputArray

57� } // end class InitArray

Fig.�4.19� |�Initializing�jagged�and�rectangular� arrays.��

�

98�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

Line 21 invokes method OutputArray with argument rectangular, so the

version of OutputArray at lines 27–40 is called. The nested for statement (lines

32–39) outputs the rows of a rectangular array. The loop-continuation

condition of each for statement (lines 32 and 35) uses the rectangular array’s

GetLength method to obtain the length of each dimension. Dimensions are

numbered starting from 0, so the method call GetLength(0) on array returns the

size of the first dimension of the array (the number of rows), and the call

GetLength(1) returns the size of the second dimension (the number of columns).

Line 23 invokes method OutputArray with argument jagged, so the version

of OutputArray at lines 43–56 is called. The nested foreach statement (lines 48–

55) outputs the rows of a jagged array. The inner foreach statement (lines 51–

52) iterates through each element in the current row of the array. This allows

the loop to determine the exact number of columns in each row. Since the

jagged array is created as an array of arrays, we can use nested foreach

statements to output the elements in the console window. The outer loop iterates

through the elements of array, which are references to one-dimensional arrays

of int values that represent each row.

Common Multidimensional-Array Manipulations Performed with for
Statements

Many common array manipulations use for statements. As an example, the

following for statement sets all the elements in row 2 of rectangular array a in

Fig. 4.17 to 0:
(column = ; column < a.GetLength(); column++)

a[, column] = ;

We specified row 2; therefore, we know that the first index is always 2 (0 is

the first row, and 1 is the second row). This for loop varies only the second

index (i.e., the column index). The preceding for statement is equivalent to the

assignment statements

a[,] = ;

a[,] = ;

a[,] = ;

a[,] = ;

The following nested for statement totals the values of all the elements in array a:

99�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

total = ;

(row = ; row < a.GetLength(); row++)
{

(column = ; column < a.GetLength(); column++)
total += a[row, column];

} // end outer for

These nested for statements total the array elements one row at a time. The

outer for statement begins by setting the row index to 0 so that row 0’s elements

can be totaled by the inner for statement. The outer for then increments row to 1

so that row 1’s elements can be totaled. Then the outer for increments row to 2

so that row 2’s elements can be totaled. The variable total can be displayed

when the outer for statement terminates. In the next example, we show how to

process a rectangular array in a more concise manner using foreach

statements.

4.12 Variable-Length Argument Lists
Variable-length argument lists allow you to create methods that receive an

arbitrary number of arguments. A one-dimensional array-type argument

preceded by the keyword params in a method’s parameter list indicates that the

method receives a variable number of arguments with the type of the array’s

elements. This use of a params modifier can occur only in the last entry of the

parameter list. While you can use method overloading and ar- ray passing to

accomplish much of what is accomplished with variable-length argument lists,

using the params modifier is more concise.

Figure 4.22 demonstrates method Average (lines 8–17), which receives a

variable- length sequence of doubles (line 8). C# treats the variable-length

argument list as a one- dimensional array whose elements are all of the same

type. Hence, the method body can manipulate the parameter numbers as an

array of doubles. Lines 13–14 use the foreach loop to walk through the array

and calculate the total of the doubles in the array. Line 16 accesses

numbers.Length to obtain the size of the numbers array for use in the averaging

calculation. Lines 31, 33 and 35 in Main call method Average with two, three

and four arguments, respectively. Method Average has a variable-length

100�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

argument list, so it can average as many double arguments as the caller passes.

The output reveals that each call to method Average returns the correct value.

1���� // Fig. 4.22: ParamArrayTest.cs
2���� // Using variable-length argument lists.

3���� System;
4�
5���� ParamArrayTest
6���� {
7���������� // calculate average
8� Average([] numbers)
9� {

10� total = ; // initialize total
11�
12� // calculate total using the foreach statement

13� (d numbers)
14� total += d;

15�
16� total / numbers.Length;
17� } // end method Average

18�
19� Main([] args)
20� {

21� d1 = ;
22� d2 = ;
23� d3 = ;
24� d4 = ;
25�
26� Console.WriteLine(

27� ,
28� d1, d2, d3, d4);

29�

30� Console.WriteLine(,

31� � � Average(d1, d2));

32� Console.WriteLine(,

33� � Average(d1, d2, d3));

34� Console.WriteLine(,

35� � Average(d1, d2, d3, d4));

36� } // end Main

37� } // end class ParamArrayTest

�
Fig.�4.22� |�Using�variable-length�argument�lists.��

