
�
�
�

101�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

�

CHAPTER FIVE�

STRINGS, CHARACTERS, REGULAR
EXPRESSIONS, STRUCTURES AND

ENUMERATIONS

5.1 Introduction

This chapter introduces the .NET Framework Class Library’s string-

and character-processing capabilities and demonstrates how to use regular

expressions to search for patterns in text. The techniques it presents can be

employed in text editors, word processors, page layout software,

computerized typesetting systems and other kinds of text-processing

software.

We discuss regular expressions. We present classes Regex and Match

from the System.Text.RegularExpressions namespace as well as the symbols

that are used to form regular expressions. Finally, we introduce to structures

and enumerations and using them in C# Language.

�

5.2 Fundamentals of Characters and Strings
Characters are the fundamental building blocks of C# source code.

Every program is composed of characters that, when grouped together

meaningfully, create a sequence that the compiler interprets as instructions

describing how to accomplish a task. In addition to normal characters, a

program also can contain character constants. A character constant is a

character that’s represented as an integer value, called a character code.

For example, the integer value 122 corresponds to the character constant 'z'.

The integer value 10 corresponds to the newline character '\n'. Character

constants are established according to the Unicode character set, an

international character set that contains many more symbols and letters than

does the ASCII character set.

�
�
�

102�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

A string is a series of characters treated as a unit. These characters
can be uppercase letters, lowercase letters, digits and various special

characters: + , -, *, /, $ and others. A string is an object of class string in the

System namespace. We write string literals, also called string constants, as

sequences of characters in double quotation marks, as follows:

�

�

A declaration can assign a string literal to a string reference. The declaration

color = ;

initializes string reference color to refer to the string literal object "blue". On

occasion, a string will contain multiple backslash characters (this often occurs

in the name of a file). To avoid excessive backslash characters, it’s possible to

exclude escape sequences and interpret all the characters in a string literally,

using the @ character. Backslashes within the double quotation marks

following the @ character are not considered escape sequences, but rather

regular backslash characters. Often this simplifies programming and makes

the code easier to read. For example, consider the string

"C:\MyFolder\MySubFolder\MyFile.txt" with the following assignment:

file = ;
�

Using the verbatim string syntax, the assignment can be altered to
�

file = @ ;

This approach also has the advantage of allowing string literals to span

multiple lines by preserving all newlines, spaces and tabs.
�

�
�
�

103�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

// string initialization

[] characterArray =
{ ' , ' , ' ', ' ', ' ', ' ', ' , ' , ' };
i g originalString = " e m r m n ";
i g string1 = originalString;

string2 = (characterArray);
i g string3 = n s n (characterArray, 6, 3);
i g string4 = n s n (' ', 5);

5.3 string Constructors
Class string provides eight constructors for initializing strings in

various ways. Figure 5.1 demonstrates three of the constructors.

1� // Fig. 5.1: StringConstructor.cs

2� // Demonstrating string class constructors.

3� System;
4�
5� StringConstructor
6� {
7� Main([] args)
8� {
9�
10�
11�
12�
13�
14�
15�
16�
17�
18� Console.WriteLine(+ + string1 + +
19� + + string2 + +
20� + + string3 + +
21� + + string4 +);
22� } // end Main

23� } // end class StringConstructor

 string1 = "Welcome to C# programming!"

string2 = "birth day"
string3 = "day" string4 = "CCCCC"

Fig.�5.1� |�string constructors.�
�

Lines 10–11 allocate the char array characterArray, which contains

nine characters. Lines 12–16 declare the strings originalString, string1,

string2, string3 and string4. Line 12 assigns string literal "Welcome to C#

programming!" to string reference originalString. Line 13 sets string1 to

reference the same string literal.

Line 14 assigns to string2 a new string, using the string constructor

with a character array argument. The new string contains a copy of the

array’s characters. Line 15 assigns to string3 a new string, using the string

constructor that takes a char array and two int arguments. The second
argument specifies the starting index position (the offset) from which

characters in the array are to be copied.

�
�
�

104�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

The third argument specifies the number of characters (the count) to
be copied from the specified starting position in the array. The new string

contains a copy of the specified characters in the array. Line 16 assigns to

string4 a new string, using the string constructor that takes as arguments a

character and an int specifying the number of times to repeat that character

in the string.

5.4 string Indexer, Length Property and CopyTo Method�

The application in Fig. 5.2 presents the string indexer, which

facilitates the retrieval of any character in the string, and the string property

Length, which returns the length of the string. The string method CopyTo

copies a specified number of characters from a string into a char array.

1� // Fig. 5.2: StringMethods.cs

2� // Using the indexer, property Length and method CopyTo

3� // of class string.

4� System;
5�
6� StringMethods
7� {
8� Main([] args)
9� {

10� string1 = ;
11� [] characterArray = char[];
12�
13� // output string1

14� Console.WriteLine(+ string1 +);
15�
16� // test Length property

17� Console.WriteLine(+ string1.Length);
18�
19� // loop through characters in string1 and display reversed

20� Console.Write();
21�
22� (i = string1.Length - ; i >= ; i--)

23� Console.Write(

24�
string1[i]);

25� // copy characters from string1 into characterArray

26� string1.CopyTo(0, characterArray, 0, characterArray.Length);

27� Console.Write();
28�
29� (i = ; i < characterArray.Length; i++)

30� Console.Write(

31�
characterArray[i]);

32� Console.WriteLine();
33� } // end Main

34� } // end class StringMethods

�
�
�

105�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

string1: "hello there"

Length of string1: 11
The string reversed is: ereht olleh

The character array is: hello
�

�

Fig.�5.2� |�string indexer,�Length property�and�CopyTo method.� �

This application determines the length of a string, displays its

characters in reverse order and copies a series of characters from the string

to a character array. Line 17 uses string property Length to determine the

number of characters in string1. Like arrays, strings always know their own
size. Lines 22–23 write the characters of string1 in reverse order using the

string indexer. The string indexer treats a string as an array of chars and

returns each character at a specific position in the string. The indexer

receives an integer argument as the position number and returns the

character at that position. As with arrays, the first element of a string is

considered to be at position 0.

Line 26 uses string method CopyTo to copy the characters of string1

into a character array (characterArray). The first argument given to method

CopyTo is the index from which the method begins copying characters in the

string. The second argument is the character array into which the characters

are copied. The third argument is the index specifying the starting location

at which the method begins placing the copied characters into the character

array. The last argument is the number of characters that the method will

copy from the string. Lines 29–30 output the char array contents one

character at a time.

�5.5 Comparing strings

The next two examples demonstrate various methods for comparing
strings. To understand how one string can be “greater than” or “less than”

another, consider the process of alphabetizing a series of last names. The

reader would, no doubt, place "Jones" before "Smith", because the first

letter of "Jones" comes before the first letter of "Smith" in the alphabet. The

alphabet is more than just a set of 26 letters—it’s an ordered list of

characters in which each letter occurs in a specific position. For example, Z

is more than just a letter of the alphabet; it’s specifically the twenty-sixth

letter of the alphabet..

�
�
�

106�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

�

Comparing Strings with Equals, CompareTo and the Equality
Operator (==)

Class string provides several ways to compare strings. The application

in Fig. 5.3 demonstrates the use of method Equals, method CompareTo and

the equality operator (==). The condition in line 21 uses string method

Equals to compare string1 and literal string "hello" to determine whether

they’re equal. Method Equals (inherited from object and overridden in

string) tests any two objects for equality (i.e., checks whether the objects

have identical contents). The method returns true if the objects are equal and

false otherwise. In this case, the condition returns true, because string1

references string literal object "hello". Method Equals uses word sorting

rules that depend on your system’s currently selected culture. Comparing

"hello" with "HELLO" would return false, because the lowercase letters are
different from the those of corresponding uppercase letters.

1���� // Fig. 5.3: StringCompare.cs
2���� // Comparing strings
3���� System;
4�
5���� StringCompare
6���� {
7���������� Main([] args)
8���������� {
9���������������� string1 = ;
10� string2 = ;
11� string3 = ;
12� string4 = ;
13�
14� // output values of four strings

15� Console.WriteLine(+ string1 + +
16� + string2 + +
17� + string3 + +
18� + string4 +);
19�
20� // test for equality using Equals method

21� (string1.Equals())

22� Console.WriteLine();
23�
24� Console.WriteLine();
25�
26� // test for equality with ==

27� (string1 ==)

28� Console.WriteLine();
29�
30� Console.WriteLine();
31�

�
�
�

107�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

32� // test for equality comparing case

33� (string.Equals(string3, string4)) // static method

34� Console.WriteLine();
35�
36� Console.WriteLine();
37�
38� // test CompareTo

39� Console.WriteLine(+

40� string1.CompareTo(string2) + +

41� +

42� string2.CompareTo(string1) + +

43� +

44� string1.CompareTo(string1) + +

45�

46� string3.CompareTo(string4) +

+ +

47� +

48� string4.CompareTo(string3) +);

49� } // end Main

50� } // end class StringCompare
�

�

Fig.�5.3� |�string test�to�determine�equality.��
�

The condition in line 27 uses the overloaded equality operator (==) to

compare string string1 with the literal string "hello" for equality. In C#, the

equality operator also compares the contents of two strings. Thus, the

condition in the if statement evaluates to true, because the values of string1

and "hello" are equal.

Line 33 tests whether string3 and string4 are equal to illustrate that

comparisons are indeed case sensitive. Here, static method Equals is used to

compare the values of two strings. "Happy Birthday" does not equal "happy

birthday", so the condition of the if statement fails, and the message "string3

does not equal string4" is output (line 36).

�
�
�

108�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

Lines 40–48 use string method CompareTo to compare strings.
Method CompareTo returns 0 if the strings are equal, a negative value if the

string that invokes CompareTo is less than the string that’s passed as an

argument and a positive value if the string that invokes CompareTo is

greater than the string that’s passed as an argument. Notice that

CompareTo considers string3 to be greater than string4. The only difference

between these two strings is that string3 contains two uppercase letters in

positions where string4 contains lowercase letters.

Determining Whether a String Begins or Ends with a Specified String

Figure 5.4 shows how to test whether a string instance begins or ends

with a given string. Method StartsWith determines whether a string instance

starts with the string text passed to it as an argument. Method EndsWith

determines whether a string instance ends with the string text passed to it as

an argument. Class stringStartEnd’s Main method defines an array of

strings (called strings), which contains "started", "starting", "ended" and

"ending". The remainder of method Main tests the elements of the array to

determine whether they start or end with a particular set of characters.

Line 13 uses method StartsWith, which takes a string argument. The

condition in the if statement determines whether the string at index i of the

array starts with the characters "st". If so, the method returns true, and

strings[i] is output along with a message.

1� // Fig. 5.4: StringStartEnd.cs

2� // Demonstrating StartsWith and EndsWith methods.

3� System;
4�
5� StringStartEnd
6� {
7� Main([] args)
8� {

9� [] strings = { , , , };
10�
11� // test every string to see if it starts with "st"

12� (i = ; i < strings.Length; i++)

13� (strings[i].StartsWith())

14� Console.WriteLine(+ strings[i] + +
15�);
16�
17� Console.WriteLine();

18�

�
�
�

109�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

19� // test every string to see if it ends with "ed"

20� (i = ; i < strings.Length; i++)

21� (strings[i].EndsWith())

22� Console.WriteLine(+ strings[i] + +
23�);
24�
25� Console.WriteLine();
26� } // end Main

27� } // end class StringStartEnd
�

"started" starts with "st"

"starting" starts with "st"

"started" ends with "ed"
"ended" ends with "ed"
�

Fig.�5.4� |�StartsWith and�EndsWith methods.�
�

Line 21 uses method EndsWith to determine whether the string at

index i of the array ends with the characters "ed". If so, the method returns

true, and strings[i] is displayed along with a message.

5.6 Locating Characters and Substrings in strings

In many applications, it’s necessary to search for a character or set of

characters in a string. For example, a programmer creating a word

processor would want to provide capabilities for searching through

documents. The application in Fig. 5.5 demonstrates some of the many

versions of string methods IndexOf, IndexOfAny, LastIndexOf and

LastIndexOfAny, which search for a specified character or substring in a

string. We perform all searches in this example on the string letters

(initialized with "abcdefghi- jklmabcdefghijklm") located in method Main of

class StringIndexMethods.

Lines 14, 16 and 18 use method IndexOf to locate the first occurrence

of a character or substring in a string. If it finds a character, IndexOf

returns the index of the specified character in the string; otherwise, IndexOf

returns –1. The expression in line 16 uses a version of method IndexOf that

takes two arguments—the character to search for and the starting index at

which the search of the string should begin. The method does not examine

any characters that occur prior to the starting index (in this case, 1). The

expression in line 18 uses another version of method IndexOf that takes

three arguments—the character to search for, the index at which to start

searching and the number of characters to search.

�
�
�

110�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

�

1� // Fig. 5.5: StringIndexMethods.cs

2� // Using string-searching methods.

3� System;
4�
5� StringIndexMethods
6� {
7� Main([] args)
8� {

9� letters = ;
10� [] searchLetters = { , , };
11�
12� // test IndexOf to locate a character in a string

13� Console.WriteLine(+

14� �� letters.IndexOf());

15� Console.WriteLine(+

16� letters.IndexOf(,));

17� Console.WriteLine(+

18� +
19�

letters.IndexOf(, ,));

20� // test LastIndexOf to find a character in a string

21� Console.WriteLine(+

22� � letters.LastIndexOf());

23� Console.WriteLine(+

24� + letters.LastIndexOf(,));

25� Console.WriteLine(+

26� +
27�

letters.LastIndexOf(, ,));

28� // test IndexOf to locate a substring in a string

29� Console.WriteLine(+

30� �letters.IndexOf());

31� Console.WriteLine(+

32� + letters.IndexOf(,));

33� Console.WriteLine(+
34� +
35� letters.IndexOf(, ,));
36�
37� // test LastIndexOf to find a substring in a string

38� Console.WriteLine(+

39� letters.LastIndexOf());

40� Console.WriteLine(+

41� + letters.LastIndexOf(,));

42� Console.WriteLine(+
43� +
44� letters.LastIndexOf(, ,));
45�
46� // test IndexOfAny to find first occurrence of character in array

47� Console.WriteLine(+

48� + letters.IndexOfAny(searchLetters));

49� Console.WriteLine(+

50� + letters.IndexOfAny(searchLetters,));

51� Console.WriteLine(+
52� +

53� letters.IndexOfAny(searchLetters, ,));

54�
�

�
�
�

111�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

55� // test LastIndexOfAny to find last occurrence of character

56� // in array

57� Console.WriteLine(+

58���������������������� + letters.LastIndexOfAny(searchLetters));

59� Console.WriteLine(+
60� +

61� letters.LastIndexOfAny(searchLetters,));

62� Console.WriteLine(+
63� +

64� letters.LastIndexOfAny(searchLetters, ,));

65� } // end Main

66� } // end class StringIndexMethods
�

Fig.�5.5� |�Searching�for� characters�and�substrings� in�strings.��

Lines 22, 24 and 26 use method LastIndexOf to locate the last

occurrence of a character in a string. Method LastIndexOf performs the

search from the end of the string to the beginning of the string. If it finds the

character, LastIndexOf returns the index of the specified character in the

string; otherwise, LastIndexOf returns –1. There are three versions of

method LastIndexOf. The expression in line 22 uses the version that takes as

an argument the character for which to search. The expression in line 24

uses the version that takes two arguments—the character for which to search

and the highest index from which to begin searching backward for the

character. The expression in line 26 uses a third version of method

LastIndexOf that takes three arguments—the character for which to search,

the starting index from which to start searching backward and the number of

�
�
�

112�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

characters (the portion of the string) to search.

Lines 29–44 use versions of IndexOf and LastIndexOf that take a

string instead of a character as the first argument. These versions of the

methods perform identically to those described above except that they search

for sequences of characters (or substrings) that are specified by their string

arguments. Lines 47–64 use methods IndexOfAny and LastIndexOfAny,

which take an array of characters as the first argument.

5.7 Extracting Substrings from strings

Class string provides two Substring methods, which create a new

string by copying part of an existing string. Each method returns a new

string. The application in Fig. 5.6 demonstrates the use of both methods.

1� // Fig. 5.6: SubString.cs

2� // Demonstrating the string Substring method.

3� System;
4�
5� SubString
6� {

7� Main([] args)
8� {
9� letters = ;
10�
11� // invoke Substring method and pass it one parameter

12� Console.WriteLine(+

13� letters.Substring()
14�

+);

15� // invoke Substring method and pass it two parameters

16� Console.WriteLine(+

17� letters.Substring(,) +);

18� } // end method Main

19� } // end class SubString
�
�

Substring from index 20 to end is "hijklm"

Substring from index 0 of length 6 is "abcdef"
�
�

Fig.�5.6� |�Substrings�generated�from� strings.�
�

The statement in line 13 uses the Substring method that takes one int

argument. The argument specifies the starting index from which the method

copies characters in the original string. The substring returned contains a

copy of the characters from the starting index to the end of the string. The

second version of method Substring (line 17) takes two int arguments.

�
�
�

113�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

The first argument specifies the starting index from which the method
copies characters from the original string. The second argument specifies

the length of the substring to copy. The substring returned contains a copy of

the specified characters from the original string.

5.8 Concatenating strings

The + operator is not the only way to perform string concatenation.

The static method Concat of class string (Fig. 5.7) concatenates two strings

and returns a new string containing the combined characters from both

original strings. Line 16 appends the characters from string2 to the end of a

copy of string1, using method Concat. The statement in line 16 does not

modify the original strings.

1���� // Fig. 5.7: SubConcatenation.cs

2���� // Demonstrating string class Concat method.
3���� System;
4�
5���� StringConcatenation
6���� {
7���������� Main([] args)
8���������� {
9���������������� string1 = ;
10� string2 = ;
11�
12� Console.WriteLine(+ string1 + +
13� + string2 +);
14� Console.WriteLine(

15� +

16� string.Concat(string1, string2));

17� Console.WriteLine(+ string1);
18� } // end Main

19� } // end class StringConcatenation
�
�

string1 = "Happy "

string2 = "Birthday"
�
Result of string.Concat(string1, string2) = Happy Birthday
string1 after concatenation = Happy
�

Fig.�5.7� |�Concat static method.�
�

�
�
�

114�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

5.9 Miscellaneous string Methods�
Class string provides several methods that return modified copies of

strings. The application in Fig. 5.8 demonstrates the use of these methods,

which include string methods Replace, ToLower, ToUpper and Trim.

�

1���� // Fig. 5.8: StringMethods2.cs
2���� // Demonstrating string methods Replace, ToLower, ToUpper, Trim,
3���� // and ToString.
4���� System;
5�
6���� StringMethods2
7���� {
8���������� Main([] args)
9���������� {
10� string1 = ;
11� string2 = ;
12� string3 = ;
13�
14� Console.WriteLine(+ string1 + +
15� + string2 + +
16� + string3 +);
17�
18� // call method Replace

19� Console.WriteLine(

20� +

21� string1.Replace(,)
22�

+);

23� // call ToLower and ToUpper

24� Console.WriteLine(+

25� string1.ToUpper()

26� string2.ToLower()

27�

+ +
+);

28� // call Trim method

29� Console.WriteLine(+

30� string3.Trim() +);

31�
32� Console.WriteLine();
33� } // end Main

34� } // end class StringMethods2

�

�Fig.�5.8� |�string methods�Replace,�ToLower,�ToUpper and�Trim.�
�

�
�
�

115�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

Line 21 uses string method Replace to return a new string, replacing

every occurrence in string1 of character 'e' with 'E'. Method Replace takes

two arguments—a char for which to search and another char with which to

replace all matching occurrences of the first argument. The original string

remains unchanged. If there are no occurrences of the first argument in the

string, the method returns the original string. An over- loaded version of this

method allows you to provide two strings as arguments.

The string method ToUpper generates a new string (line 25) that

replaces any lowercase letters in string1 with their uppercase equivalents.

The method returns a new string containing the converted string; the original

string remains unchanged. If there are no characters to convert, the original

string is returned. Line 26 uses string method ToLower to return a new string

in which any uppercase letters in string2 are replaced by their lowercase

equivalents. The original string is unchanged. As with ToUpper, if there are

no characters to convert to lowercase, method ToLower returns the original

string.

Line 30 uses string method Trim to remove all whitespace characters

that appear at the beginning and end of a string. Without otherwise altering

the original string, the method returns a new string that contains the string,

but omits leading and trailing whitespace characters. This method is

particularly useful for retrieving user input (i.e., via a TextBox). Another

version of method Trim takes a character array and returns a copy of the

string that does not begin or end with any of the characters in the array

argument.

�

