
�
�
�

116�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

5.10 Char Methods

The simple types are actually aliases for struct types. For instance, an

int is defined by struct System.Int32, a long by System.Int64 and so on. All

struct types derive from class ValueType, which derives from object. In the

struct Char, which is the struct for characters, take at least one character

argument and perform either a test or a manipulation on the character. We

present several of these methods in the next example. Figure 5.9 demonstrates

static methods that test characters to determine whether they’re of a specific

character type and static methods that perform case conversions on

characters.

1�����������// Fig. 5.9 : StaticCharMethods.cs
2� // Demonstrates static character-testing and case-conversion methods

3� // from Char struct

4� System;
5�
6� StaticCharMethods
7� {

8� Main([] args)
9� {
10� Console.Write();
11� char character = Convert.ToChar(Console.ReadLine());

12�
13� Console.WriteLine(, Char.IsDigit(character));

14� Console.WriteLine(, Char.IsLetter(character));

15� Console.WriteLine(,

16� Char.IsLetterOrDigit(character));

17� Console.WriteLine(,

18� Char.IsLower(character));

19� Console.WriteLine(,

20� Char.IsUpper(character));

21� Console.WriteLine(,

22� Char.ToUpper(character));

23� Console.WriteLine(,

24� Char.ToLower(character));

25� Console.WriteLine(,

26� Char.IsPunctuation(character));

27� Console.WriteLine(, Char.IsSymbol(character));
28� } // end Main

29� } // end class StaticCharMethods

�
Fig.�5.9|�Char’s�static character-testing�and�case-conversion�methods.�(Part�1�of�2.)�

�
�
�

117�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

Fig.�5.9|�Char’s�static character-testing�and�case-conversion�methods.�(Part�2�of�2.)�
�

After the user enters a character, lines 13–27 analyze it. Line 13 uses

Char method IsDigit to determine whether character is defined as a digit. If

so, the method returns true; otherwise, it returns false (note again that bool

values are output capitalized). Line 14 uses Char method IsLetter to

determine whether character character is a letter. Line 16 uses Char method

IsLetterOrDigit to determine whether character character is a letter or a

digit. Line 18 uses Char method IsLower to determine whether character

character is a lowercase letter. Line 20 uses Char method IsUpper to

determine whether character character is an uppercase letter. Line 22 uses

Char method ToUpper to convert character character to its uppercase

equivalent. The method returns the converted character if the character has

an uppercase equivalent; otherwise, the method returns its original

argument.

�
�
�

118�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

Line 24 uses Char method ToLower to convert character character to
its lowercase equivalent. The method returns the converted character if the

character has a lowercase equivalent; otherwise, the method returns its

original argument. Line 26 uses Char method IsPunctuation to determine

whether character is a punctuation mark, such as "!", ":" or ")". Line 27 uses

Char method IsSymbol to determine whether character character is a

symbol, such as "+ ", "= " or "^". Structure type Char also contains other

methods not shown in this example. Many of the static methods are similar—

for instance, IsWhiteSpace is used to determine whether a certain character

is a whitespace character (e.g., newline, tab or space). The struct also

contains several public instance methods; many of these, such as methods

ToString and Equals, are methods that we have seen before in other classes.
This group includes method CompareTo, which is used to compare two

character values with one another.

5.11 Regular Expressions

We now introduce regular expressions—specially formatted strings

used to find patterns in text. They can be used to ensure that data is in a

particular format. For example, a U.S. zip code must consist of five digits, or

five digits followed by a dash followed by four more digits. Compilers use

regular expressions to validate program syntax. If the program code does not

match the regular expression, the compiler indicates that there’s a syntax

error. We discuss classes Regex and Match from the

System.Text.RegularExpressions namespace as well as the symbols used to

form regular expressions. We then demonstrate how to find patterns in a

string, match entire strings to patterns, replace characters in a string that

match a pattern and split strings at delimiters specified as a pattern in a

regular expression.

5.11.1 Simple Regular Expressions and Class Regex

The .NET Framework provides several classes to help developers

manipulate regular expressions. Figure 5.10demonstrates the basic regular-

expression classes. To use these classes, add a using statement for the

namespace System.Text.RegularExpressions (line 4). Class Regex represents

a regular expression. We create a Regex object named expression (line 16) to

�
�
�

119�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

represent the regular expression "e". This regular expression matches the
literal character "e" anywhere in an arbitrary string. Regex method Match

returns an object of class Match that represents a single regular-expression

match. Class Match’s ToString method returns the substring that matched

the regular expression. The call to method Match (line 17) matches the

leftmost occurrence of the character "e" in testString. Class Regex also

provides method Matches (line 21), which finds all matches of the regular

expression in an arbitrary string and returns a MatchCollection object

containing all the Matches. We use a foreach statement (lines 21–22) to

display all the matches to expression in testString. The elements in the

MatchCollection are Match objects, so the foreach statement infers variable

myMatch to be of type Match. For each Match, line 22 outputs the text that
matched the regular expression.

�

1���� // Fig. 5.16: BasicRegex.cs
2���� // Demonstrate basic regular expressions.
3���� System;
4���� System.Text.RegularExpressions;
5�
6���� BasicRegex
7���� {
8���������� Main([] args)
9���������� {
10� testString =
11� ;
12� Console.WriteLine(, testString);
13� Console.Write();
14�
15� // match 'e' in the test string

16� Regex expression = Regex();

17� Console.WriteLine(expression.Match(testString));

18� Console.Write();
19�
20� // match 'e' multiple times in the test string

21� (myMatch expression.Matches(testString))

22� Console.Write(, myMatch);
23�
24� Console.Write();
25�
26� // match 'regex' in the test string

27� (myMatch Regex.Matches(testString,))

28� Console.Write(, myMatch);
29�
30� Console.Write(

31�);
32�
33� // use the ? quantifier to include an optional 'p'

�

�
�
�

120�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

34� (myMatch Regex.Matches(testString,))
35� Console.Write(, myMatch);
36�
37� // use alternation to match either 'cat' or 'hat'

38��������������������expression = Regex();
39� Console.WriteLine(

40� ,
41� expression.Match(), expression.Match());
42� } // end Main

43� } // end class BasicRegex
�

Fig.�5.10|�Demonstrating� basic�regular�expressions.��
�

Regular expressions can also be used to match a sequence of literal

characters any- where in a string. Lines 27–28 display all the occurrences of

the character sequence "regex" in testString. Here we use the Regex static

method Matches. Class Regex provides static versions of both methods

Match and Matches. The static versions take a regular expression as an
argument in addition to the string to be searched. This is useful when you

want to use a regular expression only once.

The call to method Matches (line27) returns two matches to the

regular expression "regex". Notice that "regexp" in the testString matches

the regular expression "regex", but the "p" is excluded. We use the regular

expression "regexp?" (line 34) to match occurrences of both "regex" and

"regexp". The question mark (?) is a metacharacter—a character with

special meaning in a regular expression. More specifically, the question

mark is a quantifier—a metacharacter that describes how many times a part

of the pattern may occur in a match. The ? quantifier matches zero or one

occurrence of the pattern to its left. In line 34, we apply the ? quantifier to

the character "p". This means that a match to the regular expression

contains the sequence of characters "regex" and may be followed by a "p".

Notice that the foreach statement (lines 34–35) displays both "regex" and

"regexp".

�
�
�

121�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

Metacharacters allow you to create more complex patterns. The "|"
(alternation) metacharacter matches the expression to its left or to its right.

We use alternation in the regular expression "(c|h)at" (line 38) to match

either "cat" or "hat". Parentheses are used to group parts of a regular

expression, much as you group parts of a mathematical expression. The "|"

causes the pattern to match a sequence of characters starting with either "c"

or "h", followed by "at". The "|" character attempts to match the entire

expression to its left or to its right. If we didn’t use the parentheses around

"c|h", the regular expression would match either the single character "c" or

the sequence of characters

"hat". Line 41 uses the regular expression (line 38) to search the

strings "hat cat" and "cat hat". Notice in the output that the first match in

"hat cat" is "hat", while the first match in "cat hat" is "cat". Alternation

chooses the leftmost match in the string for either of the alternating

expressions—the order of the expressions doesn’t matter.

Regular-Expression Character Classes and Quantifiers

The table in Fig. 5.11 lists some character classes that can be used

with regular expressions. A character class represents a group of characters

that might appear in a string. For example, a word character (\w) is any

alphanumeric character (a-z, A-Z and 0-9) or underscore. A whitespace

character (\s) is a space, a tab, a carriage return, a newline or a form feed.

A digit (\d) is any numeric character.

Fig.�5.11|�Character�classes.�
�

Figure 5.12uses character classes in regular expressions. For this

example, we use method DisplayMatches (lines 53–59) to display all

matches to a regular expression. Method DisplayMatches takes two strings

representing the string to search and the reg- ular expression to match. The

method uses a foreach statement to display each Match in the

�
�
�

122�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

MatchCollection object returned by the static method Matches of class
Regex.

�

1� // Fig. 5.18: CharacterClasses.cs

2� // Demonstrate using character classes and quantifiers.

3� System;
4� System.Text.RegularExpressions;
5�
6� CharacterClasses
7� {

8� Main([] args)
9� {
10� testString = ;
11� Console.WriteLine(, testString);
12�
13� // find the digits in the test string

14� Console.WriteLine();

15� DisplayMatches(testString,

16�
);

17� // find anything that isn't a digit

18� Console.WriteLine();

19� DisplayMatches(testString,);

20�
21� // find the word characters in the test string

22� Console.WriteLine();
23� DisplayMatches(testString,);
24�
25� // find sequences of word characters

26� Console.WriteLine(

27�);

28� DisplayMatches(testString,

29�
30� // use a lazy quantifier

31� Console.WriteLine(

);

32�);

33� DisplayMatches(testString,

34�
);

35� // match characters from 'a' to 'f'

36� Console.WriteLine();

37� DisplayMatches(testString,

38�
);

39� // match anything that isn't in the range 'a' to 'f'

40� Console.WriteLine();

41� DisplayMatches(testString,

42�
);

43� // match any sequence of letters in any case

44� Console.WriteLine();

45� DisplayMatches(testString,);

46�
47� // use the . (dot) metacharacter to match any character

48� Console.WriteLine();

49� DisplayMatches(testString,);

50� } // end Main

51�

�
�
�

123�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

52� // display the matches to a regular expression

53� DisplayMatches(input, expression)
54� {
55� (regexMatch Regex.Matches(input, expression))
56� Console.Write(, regexMatch);
57�
58� Console.WriteLine(); // move to the next line

59� } // end method DisplayMatches

60� } // end class CharacterClasses

Fig.�5.12�|�Demonstrating�� using� character�classes�and�quantifiers.���
�

The first regular expression (line 15) matches digits in the testString.

We use the digit character class (\d) to match any digit (0–9). We precede

the regular expression string with @. Recall that backslashes within the

double quotation marks following the @ character are regular backslash

characters, not the beginning of escape sequences. To define the regular

expression without prefixing @ to the string, you would need to escape every

backslash character, as in

which makes the regular expression more difficult to read. The output

shows that the regular expression matches 1, 2, and 3 in the testString. You

can also match anything that isn’t a member of a particular character class

�
�
�

124�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

using an uppercase instead of a lowercase letter. For example, the regular
expression "\D" (line 19) matches any character tha t isn’t a digit. Notice in

the output that this includes punctuation and whitespace. Negating a

character class matches everything that isn’t a member of the character

class.

The next regular expression (line 23) uses the character class \w to

match any word character in the testString. Notice that each match consists

of a single character. It would be useful to match a sequence of word
characters rather than a single character. The regular expression in line 28

uses the + quantifier to match a sequence of word characters.

The + quantifier matches one or more occurrences of the pattern to its

left. There are three matches for this expression, each three characters long.

Quantifiers are greedy—they match the longest possible occurrence of the

pattern. You can follow a quantifier with a question mark (?) to make it

lazy—it matches the shortest possible occurrence of the pattern. The regular

expression "\w+?" (line 33) uses a lazy + quantifier to match the shortest

sequence of word characters possible. This produces nine matches of length

one instead of three matches of length three. Figure 5.13 lists other

quantifiers that you can place after a pattern in a regular expression, and

the purpose of each.

Regular expressions are not limited to the character classes in Fig.

5.17. You can create your own character class by listing the members of the

character class between square brackets, [and]. You can include a range of

characters using the "-" character. The regular expression in line 37 of Fig.

5.12 creates a character class to match any lowercase letter from a to f.

These custom character classes match a single character that’s a member of

the class. The output shows three matches, a, b and c. Notice that D, E and F

don’t match the character class [a-f] because they’re uppercase. You can

negate a custom character class by placing a "^" character after the opening

square bracket.

�
�
�

125�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

Fig.�5.13�|�Quantifiers� used�in�regular�expressions.�
�

The regular expression in line 41 matches any character that isn’t in

the range a-f. As with the predefined char- acter classes, negating a custom

character class matches everything that isn’t a member, including

punctuation and whitespace. You can also use quantifiers with custom

character classes. The regular expression in line 45 uses a character class

with two ranges of characters, a-z and A-Z, and the + quantifier to match a

sequence of lowercase or uppercase letters. You can also use the "." (dot)

character to match any character other than a newline.

The regular expression ".*" (line 49) matches any sequence of

characters. The * quantifier matches zero or more occurrences of the pattern

to its left. Unlike the + quantifier, the * quantifier can be used to match an

empty string.

5.11.2 Complex Regular Expressions

The program of Fig. 5.14 tries to match birthdays to a regular
expression. For demon- stration purposes, the expression matches only

birthdays that do not occur in April and that belong to people whose names

begin with "J". We can do this by combining the basic regular-expression

techniques we’ve already discussed.

1� // Fig. 5.20: RegexMatches.cs

2� // A more complex regular expression.

3� System;
4� System.Text.RegularExpressions;
5�
6� RegexMatches
7� {

8� Main([] args)
9� {

�
�
�

126�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

10� // create a regular expression
11� Regex expression = Regex();
12�
13� testString =
14� +
15� +
16� +
17� ;
18�
19� // display all matches to the regular expression

20� (regexMatch expression.Matches(testString))
21� Console.WriteLine(regexMatch);
22� } // end Main

23� } // end class RegexMatches
�

Jane's Birthday is 05-12-75
Joe's Birthday is 12-17-77
�

�

Fig.�5.14�|�A�more�complex� regular�expression.�

Line 11 creates a Regex object and passes a regular-expression

pattern string to its constructor. The first character in the regular

expression, "J", is a literal character. Any string matching this regular

expression must start with "J". The next part of the regular expression (".*")

matches any number of unspecified characters except newlines. The pattern

"J.*" matches a person’s name that starts with J and any characters that

may come after that.

Next we match the person’s birthday. We use the \d character class to

match the first digit of the month. Since the birthday must not occur in April,

the second digit in the month can’t be 4. We could use the character class

"[0-35-9]" to match any digit other than 4. However, .NET regular

expressions allow you to subtract members from a character class, called

character-class subtraction. In line 11, we use the pattern "[\d-[4]]" to

match any digit other than 4. When the "-" character in a character class is

followed by a character class instead of a literal character, the "-" is

interpreted as subtraction instead of a range of characters. The members of

the character class following the "-" are removed from the character class

preceding the "-". When using character-class subtraction, the class being

subtracted ([4]) must be the last item in the enclosing brackets ([\d-[4]]).

This notation allows you to write shorter, easier-to-read regular

expressions.

�
�
�

127�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

Although the "–" character indicates a range or character-class
subtraction when it’s enclosed in square brackets, instances of the "-"

character outside a character class are treated as literal characters. Thus,

the regular expression in line 11 searches for a string that starts with the

letter "J", followed by any number of characters, followed by a two- digit

number (of which the second digit cannot be 4), followed by a dash, another

two- digit number, a dash and another two-digit number.

 Lines 20–21 use a foreach statement to iterate through the
MatchCollection object returned by method Matches, which received

testString as an argument. For each Match, line 21 outputs the text that

matched the regular expression. The output in Fig. 5.14 displays the two

matches that were found in testString. Notice that both matches conform to

the pattern specified by the regular expression.

5.11.4 Regex Methods Replace and Split

Sometimes it’s useful to replace parts of one string with another or to

split a string ac- cording to a regular expression. For this purpose, class

Regex provides static and instance versions of methods Replace and Split,

which are demonstrated in Fig. 5.15 .

1���� // Fig. 5.15 : RegexSubstitution.cs
2���� // Using Regex methods Replace and Split.
3���� System;
4���� System.Text.RegularExpressions;

5�
6� RegexSubstitution
7� {
8� Main([] args)
9� {

10� testString1 = ;
11� testString2 = ;

12� � Regex testRegex1 = Regex();

13� output = string.Empty;
14�
15� Console.WriteLine(, testString1);
16�
17� // replace every '*' with a '^' and display the result

18� testString1 = Regex.Replace(testString1, ,);

19� Console.WriteLine(, testString1);
20�
21� // replace the word "stars" with "carets" and display the result

22� testString1 = Regex.Replace(testString1, ,);

23� Console.WriteLine(,
24� testString1);

�
�
�

128�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

25�
26� // replace every word with "word" and display the result

27� Console.WriteLine(,

28� Regex.Replace(testString1, ,));
29�
30� Console.WriteLine(, testString2);
31�
32� // replace the first three digits with the word "digit"

33� Console.WriteLine(,

34� � testRegex1.Replace(testString2, ,));
35�
36� Console.Write();
37�
38�����������// split the string into individual strings, each containing a digit
39� [] result = Regex.Split(testString2,);
40�
41� // add each digit to the output string

42� (resultString result)
43� output += ;
44�
45� // delete ", " at the end of output string

46� Console.WriteLine(output.Substring(, output.Length-)+);
47� } // end Main

48� } // end class RegexSubstitution
�

�

Fig.�5.15��|�Using�Regex methods�Replace and�Split.��

