
�
�
�

129�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

5.16 Structs

Structs are composed of several pieces of data, possibly of different

types. They have data members and function members. They enable you to

define your own types of variables based on this structure.� Structs are

declared outside of the main body of the code. Structs are defined using the

struct keyword as follows:

struct StructName
{
 MemberDeclarations
}

The MemberDeclarations section contains declarations of variables

(called the data members of the struct) in almost the same format as usual.

Each member declaration takes the following form:

< accessibility > < type > < name >;

For example, the following code declares a struct named Point (which

are demonstrated in Fig. 5.16) . It has two public fields, named X and Y. In

Main, three variables of struct type Point are declared, and their values are

assigned and printed out.

1�

2�

3�

4�

5�

6�

7�

8�

9�

10�

11

12�

13�

14�

15�

16�

17�

18�

19�

20

// Fig. 5.16 : Points.cs

// Declare Point with two fields (x,y) as structure

struct Point

{

public int X;

public int Y;

}

class Program

{

static void Main()

{

Point first, second, third;

first.X = 10; first.Y = 10;

second.X = 20; second.Y = 20;

third.X = first.X + second.X;

third.Y = first.Y + second.Y;

Console.WriteLine("first: {0}, {1}", first.X, first.Y);

Console.WriteLine("second:{0}, {1}", second.X, second.Y);

Console.WriteLine("third: {0}, {1}", third.X, third.Y);

}

}

�
��Fig�.�5.16��|�Declare�Point�with�two�field�(x,�y)�using�struct�Structure.

�
�
�

130�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

The output of the previous program is:

�
Structures with Constructors

Structs can have instance constructors, but destructors are not

allowed. The language implicitly supplies a parameterless constructor for

every struct. This constructor sets each of the struct’s members to the default

value for that type. Value members are set to their default values. Reference
members are set to null.

The predefined parameterless constructor exists for every struct—and

you cannot delete or redefine it. You can, however, create additional

constructors, as long as they have parameters. For example, the following

code declares a simple struct with a constructor that takes two int

parameters (which are demonstrated in Fig. 5.24). Main creates two

instances of the struct—one using the implicit parameterless constructor and

the second with the declared two-parameter constructor.

1�
2�
3�
4�
5�
6�
7�
8�
9�
10�
11�
12�
13�
14�
15�
16�
17�
18�
19�
20�
21�
22�

// Fig. 5.24: ConPoints.cs

// Declare Point with two fields (x,y) as structure with constuctor

struct Simple

{

public int X;

public int Y;

public Simple(int a, int b) // Constructor with parameters

{

X = a; Y = b;

}

}

class Program

{

static void Main()

{

Simple s1 = new Simple();

Simple s2 = new Simple(5, 10);

Console.WriteLine("{0},{1}", s1.X, s1.Y);

Console.WriteLine("{0},{1}", s2.X, s2.Y);

}

}

�
Fig�.�5.17�|�Declare�Point�with�two�field�(x,�y)�using�struct�Structure�with�Constructor.

�
�
�

131�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

5.17 Enumerations
�

An enumeration, or enum, is a programmer-defined type, such as a struct,

enumerations like, structs, are declared outside of the main body of the code.

Like structs, enums are value types and therefore store their data directly,

rather than separately, with a reference and data. Enums have only one type

of member: named constants with integer values. Enums can be defined

using the enum keyword as follows:

enum typeName
{

value1 ,
value2 ,
value3 ,
...
valueN

}

The following code shows an example of the declaration of a new

enum type called TrafficLight, which contains three members. Notice that the

list of member declarations is a comma-separated list; there are no

semicolons in an enum declaration.

 Every enum type has an underlying integer type, which by default is

int, and is assigned a constant value of the underlying type. By default, the

compiler assigns 0 to the first member and assigns each subsequent member
the value one more than the previous member.For example, in the

TrafficLight type, the compiler assigns the int values 0, 1, and 2 to members

Green, Yellow, and Red, respectively. In the output of the following code,

you can see the underlying member values by casting them to type int. �

TrafficLight t1 = TrafficLight.Green;

TrafficLight t2 = TrafficLight.Yellow;

TrafficLight t3 = TrafficLight.Red;

�
�
�

132�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

Console.WriteLine("{0},\t{1}", t1, (int) t1);

Console.WriteLine("{0},\t{1}", t2, (int) t2);

Console.WriteLine("{0},\t{1}\n", t3, (int) t3);

This code produces the following output:

Green,���0�
Yellow,��1�
Red,�2�
�

5.17.1 Setting the Underlying Type and Explicit Values

You can use an integer type other than int by placing a colon and the

type name after the enum name. The type can be any integer type. All the

member constants are of the enum’s underlying type.

The values of the member constants can be any values of the

underlying type. To explicitly set the value of a member, use an initializer

after its name in the enum declaration. There can be duplicate values,

although not duplicate names, as shown here:

enum TrafficLight

{

Green = 10,

Yellow = 15, // Duplicate values

Red=15 // Duplicate values

}

For example, the code in Figure 16-25 shows two equivalent

declarations of enum TrafficLight. The code on the left accepts the default

type and numbering. The code on the right explicitly sets the underlying type

to int and the members to values corresponding to the default values.

Fig�.�5.18�|�Equivalent�enum�declarations�

�
�
�

133�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

5.17.2 Implicit Member Numbering�
�

You can explicitly assign the values for any of the member constants. If

you don’t initialize a member constant, the compiler implicitly assigns it a

value. For example, the following code declares two enumerations. CardSuit

accepts the implicit numbering of the members, as shown in the comments.

FaceCards sets some members explicitly and accepts implicit numbering of

the others.

�

enum��CardSuit�
{�

Hearts,�� //�0���-�Since� this�is� first�
Clubs,�� //�1���-�One��more�than� the��previous��one�
Diamonds,� //�2���-�One��more�than� the��previous��one��
Spades,� //�3���-�One��more�than� the��previous��one��
MaxSuits� //�4���-�A��common��way�� to��assign� a� constant�

}� //�� to��the��number��of�� listed�� items�
�

enum��FaceCards�
{�
//�Member�������������������������������������//�Value�assigned�
Jack����������=�11,����� � � � � � � � � �//�11�-� Explicitly� set�
Queen,����������������������������������//�12�-�One��more�than� the��previous��one��
King,�������������������������������������//�13�-�One��more�than� the��previous��one��
Ace,���������������������������������������//�14�-�One��more�than� the��previous��one�
NumberOfFaceCards��=�4,�������//�4���-�Explicitly�set�
SomeOtherValue,�����������������//�5���-�One��more�than� the��previous��one�
HighestFaceCard��� =�Ace���� //�14�-�Ace�is�defined��above�

}�
�

More About Enums
�

An enum is a distinct type. Comparing enum members of different

enum types results in a compile- time error. For example, the following code

declares two different enum types with the exact same structure and member

names.

1�
2�
3�
4�
5�
6�
7�
8�
9�
10�
11�
12�

// Fig. 5.19: TwoEnum.cs

// Declare two enumeration and some operation on them

enum FirstEnum // First enum type

{

 Mem1,

 Mem2

}

enum SecondEnum // Second enum type

{

 Mem1,

 Mem2

}

�
�
�

134�Mahmoud Hilal Farhan College Of Computer Sciences &

 Information Technology – University Of AL Anbar

13�
14�
15�
16�
17�
18�
19�
20�
21�
22�
23�
24�
25�
26�

class Program

{

static void Main()

{

// OK--members of same enum type

if (FirstEnum.Mem1 < FirstEnum.Mem2)

 Console.WriteLine("True");

// Error--different enum types

if (FirstEnum.Mem1 < SecondEnum.Mem1)

 Console.WriteLine("True");

}

}

��Fig�.�5.19�|�Equivalent�enum�declarations�

The first if statement is fine because it compares different members

from the same enum type. The second if statement produces an error

because it attempts to compare members from different enum types. This

error occurs even though the structures and member names are exactly the

same.�

�

