

 135 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

Chapter Six

Introduction to

Collections and Linq

6.1 Introduction

This chapter discusses one of the most important parts of the .NET

Framework: collections. In C#, a collection is a group of objects. The .NET -

Framework contains a large number of interfaces and classes that define

and implement various types of collections. Collections simplify many

programming tasks because they provide off-the-shelf solutions to several

common, but sometimes tedious-to-develop. Finally, we discuss the

fundamental of LINQ.

6.2 Introduction to Collections
The .NET Framework Class Library provides several classes, called

collections, used to store groups of related objects. These classes provide

efficient methods that organize, store and retrieve your data without

requiring knowledge of how the data is being stored. This reduces

application-development time.

You’ve used arrays to store sequences of objects. Arrays do not

automatically change their size at execution time to accommodate additional

elements—you must do so manually by creating a new array or by using the

Array class’s Resize method The collection class List<T> (from namespace

System.Collections.Generic) provides a convenient solution to this problem.

The T is a placeholder—when declaring a new List, replace it with the type

of elements that you want the List to hold. This is similar to specifying the

type when declaring an array. For example,

List< int > list1;

 136 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

declares list1 as a List collection that can store only int values, and

List< string > list2;

declares list2 as a List of strings. Classes with this kind of placeholder that

can be used with any type are called generic classes. Figure 6.1 shows some

common methods and properties of class List<T>.

Fig. 6.1 | Some methods and properties of class List<T>.

Figure 6.2 demonstrates dynamically resizing a List object. The Add

and Insert methods add elements to the List (lines 13–14). The Add method

appends its argument to the end of the List. The Insert method inserts a new

element at the specified position. The first argument is an index—as with

arrays, collection indices start at zero. The second argument is the value

that’s to be inserted at the specified index. All elements at the specified index

and above are shifted up by one position. This is usually slower than adding

an element to the end of the List.

 137 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

1 // Fig. 6.2: ListCollection.cs

2 // Generic List collection demonstration.
3 using System;
4 using System.Collections.Generic;
5
6 public class ListCollection
7 {

8 public static void Main(string[] args)
9 {

10 // create a new List of strings

11 List< string > items = new List< string >();
12
13 items.Add("red"); // append an item to the List
14 items.Insert(0, "yellow"); // insert the value at index 0
15
16 // display the colors in the list

17 Console.Write(

18 "Display list contents with counter-controlled loop:");

19 for (int i = 0; i < items.Count; i++)
20 Console.Write(" {0}", items[i]);
21
22 // display colors using foreach

23 Console.Write(

24 "\nDisplay list contents with foreach statement:");
25 foreach (var item in items)
26 Console.Write(" {0}", item);
27
28 items.Add("green"); // add "green" to the end of the List
29 items.Add("yellow"); // add "yellow" to the end of the List
30

31 // display the List

32 Console.Write("\nList with two new elements:");
33 foreach (var item in items)
34 Console.Write(" {0}", item);
35
36 items.Remove("yellow"); // remove the first "yellow"
37
38 // display the List

39 Console.Write("\nRemove first instance of yellow:");
40 foreach (var item in items)
41 Console.Write(" {0}", item);
42
43 items.RemoveAt(1); // remove item at index 1
44
45 // display the List

46 Console.Write("\nRemove second list element (green):");
47 foreach (var item in items)
48 Console.Write(" {0}", item);
49
50 // check if a value is in the List

51 Console.WriteLine("\n\"red\" is {0}in the list",

52 items.Contains("red") ? string.Empty : "not ");
53
54 // display number of elements in the List

55 Console.WriteLine("Count: {0}", items.Count);

 138 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

56
57 // display the capacity of the List

58 Console.WriteLine("Capacity: {0}", items.Capacity);

59 } // end Main

60 } // end class ListCollection

Fig. 6.2 | Generic List<T> collection demonstration
Lines 19–20 display the items in the List. The Count property returns

the number of elements currently in the List. Lists can be indexed like arrays

by placing the index in square brackets after the List variable’s name. The

indexed List expression can be used to modify the element at the index. Lines

25–26 output the List by using a foreach statement. More elements are then

added to the List, and it’s displayed again (lines 28–34). The Remove method

is used to remove the first element with a specific value (line 36). If no such

element is in the List, Remove does nothing. A similar method, RemoveAt,

removes the element at the specified index (line 43). When an element is

removed through either of these methods, all elements above that index are

shifted down by one—the opposite of the Insert method.

Line 52 uses the Contains method to check if an item is in the List. The

Contains method returns true if the element is found in the List, and false

otherwise. The method compares its argument to each element of the List in

order until the item is found, so using Contains on a large List is inefficient.

Lines 55 and 58 display the List’s Count and Capacity. Recall that the

Count property (line 55) indicates the number of items in the List. The

Capacity property (line 58) indicates how many items the List can hold

without growing. When the List grows, it must create a larger internal array

and copy each element to the new array. This is a time-consuming operation.

It would be inefficient for the List to grow each time an element is added.

Instead, the List grows only when an element is added and the Count and

Capacity properties are equal—there’s no space for the new element.

 139 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

6.3 LINQ Providers

The syntax of LINQ is built into C#, but LINQ queries may be used in

many different contexts because of libraries known as providers. A LINQ

provider is a set of classes that implement LINQ operations and enable

programs to interact with data sources to perform tasks such as sorting,

grouping and filtering elements.

These providers, along with LINQ to Objects, mentioned above, are

included with Visual Studio and the .NET Framework. There are many providers

that are more specialized, allowing you to interact with a specific website or

data format.

6.4 Querying an Array of int Values Using LINQ

Figure 6.3 demonstrates querying an array of integers using LINQ.

Repetition statements that filter arrays focus on the process of getting the

results—iterating through the elements and checking whether they satisfy the

desired criteria. LINQ specifies the conditions that selected elements must

satisfy. This is known as declarative programming—as opposed to imperative

programming (which we’ve been doing so far) in which you specify the actual

steps to perform a task. The query in lines 20–22 specifies that the results should

consist of all the ints in the values array that are greater than 4. It does not

specify how those results are obtained—the C# compiler generates all the

necessary code automatically, which is one of the great strengths of LINQ. To

use LINQ to Objects, you must import the System.Linq namespace (line 4).

1 // Fig. 6.3: LINQWithSimpleTypeArray.cs

2 // LINQ to Objects using an int array.

3 using System;

4 using System.Linq;

5
6 class LINQWithSimpleTypeArray
7 {

8 public static void Main(string[] args)
9 {

10 // create an integer array

11 int[] values = { 2, 9, 5, 0, 3, 7, 1, 4, 8, 5 };
12
13 // display original values

14 Console.Write("Original array:");

 140 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

15 foreach (var element in values)

16 Console.Write(" {0}", element);
17
18 // LINQ query that obtains values greater than 4 from the array

19 var
20
21
22
23

 filtered =

from value in values

where value > 4

select value;

24 // display filtered results

25 Console.Write("\nArray values greater than 4:");
26 foreach (var element in filtered)
27 Console.Write(" {0}", element);
28
29 // use orderby clause to sort original array in ascending order

30 var sorted =

31 from value in values
32 orderby value
33 select value;
34
35 // display sorted results

36 Console.Write("\nOriginal array, sorted:");
37 foreach (var element in sorted)
38 Console.Write(" {0}", element);
39
40 // sort the filtered results into descending order

41 var sortFilteredResults =

42 from value in filtered
43 orderby value descending
44 select value;
45
46 // display the sorted results

47 Console.Write(

48 "\nValues greater than 4, descending order (separately):");
49 foreach (var element in sortFilteredResults)

50 Console.Write(" {0}", element);
51
52 // filter original array and sort in descending order

53 var sortAndFilter =

54 from value in values
55 where value > 4
56 orderby value descending
57 select value;

58
59 // display the filtered and sorted results

60 Console.Write(

61 "\nValues greater than 4, descending order (one query):");
62 foreach (var element in sortAndFilter)
63 Console.Write(" {0}", element);

64
65 Console.WriteLine();

66 } // end Main
67 } // end class LINQWithSimpleTypeArray

 141 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

Fig. 6.3 | LINQ to Objects using an int array.

The from Clause and Implicitly Typed Local Variables

A LINQ query begins with a from clause (line 20), which specifies a

range variable (value) and the data source to query (values). The range

variable represents each item in the data source (one at a time), much like

the control variable in a foreach statement. We do not specify the range

variable’s type. Since it is assigned one element at a time from the array

values, which is an int array, the compiler determines that the range

variable value should be of type int. This is a C# feature called implicitly

typed local variables, which enables the compiler to infer a local variable’s

type based on the context in which it’s used.

Introducing the range variable in the from clause at the beginning of

the query allows the IDE to provide IntelliSense while you write the rest of

the query. The IDE knows the range variable’s type, so when you enter the

range variable’s name followed by a dot (.) in the code editor, the IDE can

display the range variable’s methods and properties.

The var Keyword and Implicitly Typed Local Variables

You can also declare a local variable and let the compiler infer the

variable’s type based on the variable’s initializer. To do so, the var keyword

is used in place of the variable’s type when declaring the variable. Consider

the declaration

var x = 7;

Here, the compiler infers that the variable x should be of type int,

because the compiler assumes that whole-number values, like 7, are of type

int. Similarly, in the declaration

var y = -123.45;

the compiler infers that y should be of type double, because the

compiler assumes that floating-point number values, like -123.45, are of

 142 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

type double. Typically, implicitly typed local variables are used for more

complex types, such as the collections of data returned by LINQ queries. We

use this feature in lines 19, 30, 41 and 53 to enable the compiler to

determine the type of each variable that stores the results of a LINQ query.

We also use this feature to declare the control variable in the foreach

statements at lines 15–16, 26–27, 37–38, 49–50 and 62–63. In each case,

the compiler infers that the control variable is of type int because the array

values and the LINQ query results all contain int values.

The where Clause

If the condition in the where clause (line 21) evaluates to true, the

element is selected—i.e., it’s included in the results. Here, the ints in the

array are included only if they’re greater than 4. An expression that takes

an element of a collection and returns true or false by testing a condition on

that element is known as a predicate.

The select Clause

For each item in the data source, the select clause (line 22)

determines what value appears in the results. In this case, it’s the int that

the range variable currently represents. A LINQ query typically ends with a

select clause.

Iterating Through the Results of the LINQ Query

Lines 26–27 use a foreach statement to display the query results. As

you know, a foreach statement can iterate through the contents of an array,

allowing you to process each element in the array. Actually, the foreach

statement can iterate through the contents arrays, collections and the results

of LINQ queries. The foreach statement in lines 26–27 iterates over the

query result filtered, displaying each of its items.

LINQ vs. Repetition Statements

It would be simple to display the integers greater than 4 using a

repetition statement that tests each value before displaying it. However, this

would intertwine the code that selects elements and the code that displays

them. With LINQ, these are kept separate, making the code easier to

understand and maintain.

 143 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

The orderby Clause

The orderby clause (line 32) sorts the query results in ascending

order. Lines 43 and 56 use the descending modifier in the orderby clause to

sort the results in descending order. An ascending modifier also exists but

isn’t normally used, because it’s the default. Any value that can be

compared with other values of the same type may be used with the orderby

clause. A value of a simple type (e.g., int) can always be compared to

another value of the same type; we’ll say more about comparing values of

reference types in Chapter 12.

The queries in lines 42–44 and 54–57 generate the same results, but in

different ways. The first query uses LINQ to sort the results of the query

from lines 20–22. The second query uses both the where and orderby

clauses. Because queries can operate on the results of other queries, it’s

possible to build a query one step at a time, and pass the results of queries

between methods for further processing.

More on Implicitly Typed Local Variables

Implicitly typed local variables can also be used to initialize arrays

without explicitly giving their type. For example, the following statement

creates an array of int values:

var array = new[] { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };

There are no square brackets on the left side of the assignment

operator, and that new[] is used to specify that the variable is an array.

 144 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

6.5 Querying an Array of Employee Objects Using LINQ

 LINQ is not limited to querying arrays of primitive types such as ints.

It can be used with most data types, including strings and user-defined

classes. It cannot be used when a query does not have a defined meaning—

for example, you cannot use orderby on objects that are not comparable.

Figure 6.4 presents the Employee class and uses LINQ to query an array of

Employee objects.

1 // Fig. 6.4: LINQWithArrayOfObjects.cs

2 // LINQ to Objects using an array of Employee objects.

3 using System;
4 using System.Linq;
5
6 public class LINQWithArrayOfObjects
7 {

8 public struct Employee
9 {
10 public decimal monthlySalaryValue; // monthly salary of employee

11 public string FirstName;

12 public string LastName;

13 // constructor initializes first name, last name and monthly salary

14 public Employee(string first, string last, decimal salary)
15 {

16 FirstName = first;

17 LastName = last;

18 MonthlySalary = salary;

19 } // end constructor

20 } // end struct
21 public static void Main(string[] args)
22 {

23 // initialize array of employees

24 Employee[] employees = {

25 new Employee("Jason", "Red", 5000M),
26 new Employee("Ashley", "Green", 7600M),
27 new Employee("Matthew", "Indigo", 3587.5M),

28 new Employee("James", "Indigo", 4700.77M),
29 new Employee("Luke", "Indigo", 6200M),
30 new Employee("Jason", "Blue", 3200M),
31 new Employee("Wendy", "Brown", 4236.4M) };
32
33 // display all employees

34 Console.WriteLine("Original array:");
35 foreach (var element in employees)
36 Console.WriteLine(element);

37
38 // filter a range of salaries using && in a LINQ query

39 var between4K6K =

40 from e in employees
41 where e.MonthlySalary >= 4000M && e.MonthlySalary <= 6000M
42 select e;

 145 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

43
44 // display employees making between 4000 and 6000 per month

45 Console.WriteLine(string.Format(
46 "\nEmployees earning in the range {0:C}-{1:C} per month:",
47 4000, 6000));
48 foreach (var element in between4K6K)
49 Console.WriteLine(element);

50
51 // order the employees by last name, then first name with LINQ

52 var nameSorted =

53 from e in employees
54 orderby e.LastName, e.FirstName
55 select e;
56
57 // header

58 Console.WriteLine("\nFirst employee when sorted by name:");
59
60 // attempt to display the first result of the above LINQ query

61 if (nameSorted.Any())

62 Console.WriteLine(nameSorted.First());

63 else

64 Console.WriteLine("not found");
65
66 // use LINQ to select employee last names

67 var lastNames =

68 from e in employees
69 select e.LastName;
70
71 // use method Distinct to select unique last names

72 Console.WriteLine("\nUnique employee last names:");

73 foreach (var element in lastNames.Distinct())

74 Console.WriteLine(element);

75
76 // use LINQ to select first and last names

77 var names =

78 from e in employees
79 select new { e.FirstName, Last = e.LastName };
80
81 // display full names

82 Console.WriteLine("\nNames only:");
83 foreach (var element in names)
84 Console.WriteLine(element);

85
86 Console.WriteLine();

87 } // end Main

88 } // end class LINQWithArrayOfObjects

Fig. 6.4 | LINQ to Objects using an array of Employee objects

 146 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

The output of previous program is:

6.6 Querying a Generic Collection Using LINQ
You can use LINQ to Objects to query Lists just as arrays. In Fig. 6.5, a

List of strings is converted to uppercase and searched for those that begin

with "R".

1 // Fig. 6.5: LINQWithListCollection.cs

2 // LINQ to Objects using a List< string >.

3 using System;
4 using System.Linq;
5 using System.Collections.Generic;
6
7 public class LINQWithListCollection
8 {

9 public static void Main(string[] args)
10 {

11 // populate a List of strings

12 List< string > items = new List< string >();
13 items.Add("aQua"); // add "aQua" to the end of the List
14 items.Add("RusT"); // add "RusT" to the end of the List
15 items.Add("yElLow"); // add "yElLow" to the end of the List
16 items.Add("rEd"); // add "rEd" to the end of the List

 147 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

17
18 // convert all strings to uppercase; select those starting with "R"

19 var startsWithR =
20 from item in items

21 let uppercaseString = item.ToUpper()
22 where uppercaseString.StartsWith("R")

23 orderby uppercaseString
24 select uppercaseString;
25
26 // display query results

27 foreach (var item in startsWithR)
28 Console.Write("{0} ", item);
29
30 Console.WriteLine(); // output end of line

31
32 items.Add("rUbY"); // add "rUbY" to the end of the List
33 items.Add("SaFfRon"); // add "SaFfRon" to the end of the List
34
35 // display updated query results

36 foreach (var item in startsWithR)
37 Console.Write("{0} ", item);
38
39 Console.WriteLine(); // output end of line

40 } // end Main
41 } // end class LINQWithListCollection

RED RUST

RED RUBY RUST

 Fig. 6.5 | LINQ to Objects using a List<string>.

Line 21 uses LINQ’s let clause to create a new range variable. This is

useful if you need to store a temporary result for use later in the LINQ query.

Typically, let declares a new range variable to which you assign the result of

an expression that operates on the query’s original range variable. In this

case, we use string method ToUpper to convert each item to uppercase, then

store the result in the new range variable uppercaseString. We then use the

new range variable uppercaseString in the where, orderby and select clauses.

The where clause (line 22) uses string method StartsWith to determine

whether uppercaseString starts with the character "R". Method StartsWith

performs a case- sensitive comparison to determine whether a string starts

with the string received as an argument. If uppercaseString starts with "R",

method StartsWith returns true, and the element is included in the query

results. More powerful string matching can be done using the regular-

expression capabilities introduced in Chapter 16, Strings and Charac- ters.

 148 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

The query is created only once (lines 20–24), yet iterating over the

results (lines 27–28 and 36–37) gives two different lists of colors. This

demonstrates LINQ’s deferred execution—the query executes only when you

access the results—such as iterating over them or using the Count method—

not when you define the query. This allows you to create a query once and

execute it many times. Any changes to the data source are reflected in the

results each time the query executes.

There may be times when you do not want this behavior, and want to

retrieve a col- lection of the results immediately. LINQ provides extension

methods ToArray and ToList for this purpose. These methods execute the

query on which they’re called and give you the results as an array or

List<T>, respectively. These methods can also improve efficiency if you’ll be

iterating over the results multiple times, as you execute the query only once.

C# has a feature called collection initializers, which provide a

convenient syntax (similar to array initializers) for initializing a collection.

For example, lines 12–16 of Fig. 6.5 could be replaced with the following

statement:

List< string > items =
new List< string > { "aQua", "RusT", "yElLow", "rEd" };

6.7 Computer Files
When data items are stored in a computer system, they can be stored for

varying periods of time—temporarily or permanently. Temporary storage is

usually called computer memory or random access memory (RAM). When you

write a C# program that stores a value in a variable, you are using temporary

storage; the value you store is lost when the program ends or the computer

loses power. This type of storage is volatile.

Permanent storage, on the other hand, is not lost when a computer loses

power; it is nonvolatile. When you write a program and save it to a disk, you

are using permanent storage. A computer file is a collection of data stored on

a nonvolatile device in a computer system. Files exist on permanent storage

devices, such as hard disks, USB drives, reels of magnetic tape, and optical

discs, which include CDs and DVDs.

 149 Mahmoud Hilal Farhan College Of Computer Sciences &
 Information Technology – University Of AL Anbar

6.7.1 Files Categories
You can categorize files by the way they store data:

• Text files contain data that can be read in a text editor because the data

has been encoded using a scheme such as ASCII or Unicode. Text files

might include facts and figures used by business programs; when they

do, they are also called data files. The C# source programs you have

written are stored in text files.

• Binary files contain data that has not been encoded as text. Their

contents are in binary format, which means that you cannot understand

them by viewing them in a text editor. Examples include images, music,

and the compiled program files with an .exe extension that you have

created using this book.

Although their contents vary, files have many common characteristics,

as follows:

• Each has a name. The name often includes a dot and a file extension that

describes the type of the file. For example, .txt isa plain text file, .dat is a

data file, and .jpg is an image file in Joint Pictures Expert Group format.

Each file has a specific time of creation and a time it was last modified.

• Each file occupies space on a section of a storage device; that is, each

file has a size. Sizes are measured in bytes. A byte is a small unit of

storage; for example, in a simple text file, a byte holds only one

character. Because a byte is so small, file sizes usually are expressed in

kilobytes (thousands of bytes), megabytes (millions of bytes), or

gigabytes (billions of bytes).

