

كلية : التربية للعلوم الصرفة

القسم او الفرع : الرياضيات

المرحلة: الثالثة

أستاذ المادة : م.د. ناديه علي ناظم

اسم المادة بالغة العربية : التحليل الرياضي

اسم المادة باللغة الإنكليزية : Mathematical Analysis

اسم الحاضرة الثانية باللغة العربية: بعض النظريات حول الاعداد الحقيقية

اسم المحاضرة الثانية باللغة الإنكليزية :some theorems of real numbers

...

Mathematical Analysis

Dr. Nadia Ali

Teaching at the University of Anbar College of Education for Pure Sciences Department of Mathematics

2022 - 2023

Proposition 1.2:

If $\emptyset \neq S \subset R$ and $\sup(S) = M$, then $\forall p < M \exists x \in S$ s.t $p < x \leq M$ i.e.: if $\sup(S) = M$ then $\forall \epsilon > 0$, $\exists x \in S$ s.t $M - \epsilon < x \leq M$ **proof:** let $\sup(S) = M$ then $\forall x \in S, x \leq M$ T.P $\forall x \in S, p < x$? Suppose that $x \leq p$, $\forall x \in S$ \rightarrow p is upper bounded for S, but by hypothesis $p < M = \sup(S)$ C! $\therefore \exists x \in S \ni p < x \leq M$.

Theorem 1.5: The set N of natural numbers is unbounded above in R *Proof:*

Suppose N is bounded above. By completeness axiom N has a supreme M Let sup(N) = MFrom proposition above $\exists n \in N$ s.t M - 1 < n < M. Then $M - 1 < n \rightarrow M < n + 1$, But $n + 1 \in N$ And $n + 1 > M = sup(N) \rightarrow C!$ Therefore, N is unbounded above

Theorem 1.6: Archimedan property

If $x \in R^{++}$ then for any $y \in R$, there exists $n \in N$ s.t n > y

Detention 1.2: let F a field, F is called Archimedean filed, if for any $x \in F$, $\exists n \in N$ s.t n > x

i.e.: N is abounded above in F

Example 1.1:

- 1. R is Archimedean field
- 2. Q is Archimedean field
- 3. $s = \{a + b\sqrt{2} : a, b \in Q\}$ is Archimedean field

Theorem 1.7: Denseness property

Between any two distinct reals, there exists infinitely many rationales and irrationals

Detention 1.3: (irrational numbers Q')

Let Q' be a complement of Q in the real number R.

i.e.: Q' = R - Q, we called is set of irrational numbers remark: $R = Q \cup Q'$

Theorem 1.8: prove that $\sqrt{2}$ is irrational number

i.e.: There are no rational numbers whose square is 2

i.e.: $\nexists x \in Q \ni x^2 = 2$

proof:

suppose $\sqrt{2}$ is rational number i.e. $\sqrt{2} = \frac{m}{n}$ So $2 = \frac{m^2}{n^2}$, then $m^2 = 2n^2$ Case 1: m and n are odd. Since m is odd $\rightarrow m^2$ is odd Since n is odd $\rightarrow n^2$ is odd But $2n^2$ is even $\rightarrow m^2 = 2n^2 \rightarrow C$! Case 2: m is even and n is odd, then m = 2pand $m^2 = 4p^2$, $\rightarrow 4p^2 = 2n^2 \rightarrow 2p^2 = n^2 \rightarrow C$! Case 3: m is odd and n is even, then, since m is odd $\rightarrow m^2$ is odd, and $2n^2$ is even $\rightarrow m^2 = 2n^2 \rightarrow C$! $\therefore \sqrt{2}$ is irrational number Theorem 1.9: Q is not Complete field

Theorem 1.10: for every real x > 0 and every integer n > 0 there is one and only one positive real y such that $y^n = x$

i.e.:
$$\forall x > 0$$
, $\forall n \in N$, $\exists !, y \in R^+$ s. $t y = \sqrt[n]{x}$

Theorem 1.11: if $\frac{m}{n}$ and $\frac{p}{q}$ are rationales and $q \neq 0$ then $\frac{m}{n} + \sqrt{2}\frac{p}{q}$ is irrational number

Proof:

Suppose
$$\frac{m}{n} + \sqrt{2} \frac{p}{q}$$
 is rational
Then there is $r, s \in Z$, $s \neq 0$ s. $t \frac{m}{n} + \sqrt{2} \frac{p}{q} = \frac{r}{s}$
So $\sqrt{2} \frac{p}{q} = \frac{r}{s} - \frac{m}{n} \rightarrow \sqrt{2} = \frac{p}{q} \left(\frac{rn - sm}{sn} \right) \in Q$
So $2 = \left(\frac{q(nr - sm)}{psn} \right)^2 \rightarrow !$ with theorem: $\nexists x \in Q \ni x^2 = 2$

Theorem 1.12: Between any two distinct rationales there is an irrational number.

Example 1.2:

1. Prove
$$x^2 \ge 0$$
, $\forall x \in R$
2. Let a, b be tow real s.t $a \le b + \epsilon \forall \epsilon > 0$ then $a \le b$
Proof (2):
Suppose $a > b$
Then $a + a > b + a$
 $\frac{2a}{2} > \frac{b+a}{2}$
 $a > \frac{b+a}{2}$ (1)
Take $\epsilon = \frac{a-b}{2} > 0$ (Since $> b$, then $a - b > 0 \rightarrow \frac{a-b}{2} > 0$)
 $a \le b + \epsilon \rightarrow a \le b + \frac{a-b}{2} = \frac{2b+a-b}{2} = \frac{a+b}{2} < a$
From (1) C!
 $a \le b$
Example 1.3:

1. \hat{Q} is order field $(A_1 \rightarrow A_{14})$

2. C is field but not order

since: if $x = 1 \rightarrow x = \sqrt{1} \rightarrow x^2 = -1 < 0 \rightarrow C!$ since: $(x^2 \ge 0, \forall x \in R)$