

كلية : التربية للعلوم الصرفة القسم او الفرع :الرياضيات المرحلة: الثالثة أستاذ المادة : م.د. نـاديه علي نـاظم اسم المادة بالغة العربية : التحليل الرياضي

Mathematical Analysis : اسم المادة بـاللغة الإنكليزية
اسم الحاضرة الثانية بـللفة العربية: بعض النظريات حول الاعداد الحقيقية اسم المحاضرة الثانية باللفةة الإنكليزيـة some theorems of real numbers

Mathematical Analysis

Dr. Nadia Ali

Teaching at the University of Anbar
 College of Education for Pure Sciences
 Department of Mathematics

2022-2023

Proposition 1.2:

If $\emptyset \neq S \subset R$ and $\sup (S)=M$, then $\forall p<M \exists x \in S$ s.t $p<x \leq M$ i.e.: if $\sup (S)=M$ then $\forall \epsilon>0, \exists x \in S$ s.t $M-\epsilon<x \leq M$
proof:
let $\sup (S)=M$ then $\forall x \in S, x \leq M$
T.P $\forall x \in S, p<x$?

Suppose that $x \leq p, \forall x \in S$
$\rightarrow \mathrm{p}$ is upper bounded for S , but by hypothesis $p<M=\sup (S)$
.......... C!
$\therefore \exists x \in S \ni p<x \leq M$.
Theorem 1.5: The set N of natural numbers is unbounded above in R
Proof:
Suppose N is bounded above.
By completeness axiom
N has a supreme M
Let $\sup (N)=M$
From proposition above $\exists n \in N$ s.t $M-1<n<M$.
Then $M-1<n \rightarrow M<n+1$,
But $n+1 \in N$
And $n+1>M=\sup (N) \rightarrow C$!
Therefore, N is unbounded above

Theorem 1.6: Archimedan property

If $x \in R^{++}$then for any $y \in R$, there exists $n \in N$ s.t $n>y$
Detention 1.2: let F a field, F is called Archimedean filed, if for any $x \in$ $F, \exists n \in N$ s.t $n>x$
i.e.: N is abounded above in F

Example 1.1:

1. R is Archimedean field
2. Q is Archimedean field
3. $s=\{a+b \sqrt{2}: a, b \in Q\}$ is Archimedean field

Theorem 1.7: Denseness property

Between any two distinct reals, there exists infinitely many rationales and irrationals
Detention 1.3: (irrational numbers Q')
Let Q^{\prime} be a complement of Q in the real number R .
i.e.: $Q^{\prime}=R-Q$, we called is set of irrational numbers
remark: $R=Q \cup Q^{\prime}$
Theorem 1.8: prove that $\sqrt{2}$ is irrational number
i.e.: There are no rational numbers whose square is 2
i.e.: $\nexists x \in Q \ni x^{2}=2$
proof:
suppose $\sqrt{2}$ is rational number i.e. $\sqrt{2}=\frac{m}{n}$
So $2=\frac{m^{2}}{n^{2}}$, then $m^{2}=2 n^{2}$
Case 1:
m and n are odd.
Since m is odd $\rightarrow m^{2}$ is odd
Since n is odd $\rightarrow n^{2}$ is odd
But $2 n^{2}$ is even $\rightarrow m^{2}=2 n^{2} \rightarrow C$!
Case 2:
m is even and n is odd, then $m=2 p$
and $m^{2}=4 p^{2}, \rightarrow 4 p^{2}=2 n^{2} \rightarrow 2 p^{2}=n^{2} \rightarrow C!$
Case 3:
m is odd and n is even, then, since m is odd
$\rightarrow m^{2}$ is odd, and $2 n^{2}$ is even $\rightarrow m^{2}=2 n^{2} \rightarrow C!$
$\therefore \sqrt{2}$ is irrational number
Theorem 1.9: Q is not Complete field
Theorem 1.10: for every real $x>0$ and every integer $n>0$ there is one and only one positive real y such that $y^{n}=x$

$$
\text { i.e.: } \forall x>0, \forall n \in N, \exists!, y \in R^{+} \text {s.t } y=\sqrt[n]{x}
$$

Theorem 1.11: if $\frac{m}{n}$ and $\frac{p}{q}$ are rationales and $q \neq 0$ then $\frac{m}{n}+\sqrt{2} \frac{p}{q}$ is irrational number
Proof:
Suppose $\frac{m}{n}+\sqrt{2} \frac{p}{q}$ is rational
Then there is $r, s \in Z, s \neq 0$ s.t $\frac{m}{n}+\sqrt{2} \frac{p}{q}=\frac{r}{s}$
So $\sqrt{2} \frac{p}{q}=\frac{r}{s}-\frac{m}{n} \rightarrow \sqrt{2}=\frac{p}{q}\left(\frac{r n-s m}{s n}\right) \in Q$
So $2=\left(\frac{q(n r-s m)}{p s n}\right)^{2} \rightarrow!$ with theorem: $\nexists x \in Q \ni x^{2}=2$

Theorem 1.12: Between any two distinct rationales there is an irrational number.

Example 1.2:

1. Prove $x^{2} \geq 0, \forall x \in R$
2. Let a, b be tow real s.t $a \leq b+\epsilon \forall \epsilon>0$ then $a \leq b$

Proof (2):
Suppose $a>b$
Then $a+a>b+a$
$\frac{2 a}{2}>\frac{b+a}{2}$
$a>\frac{b+a}{2}$
Take $\epsilon=\frac{a-b}{2}>0 \quad\left(\right.$ Since $>b$, then $\left.a-b>0 \rightarrow \frac{a-b}{2}>0\right)$
$a \leq b+\epsilon \rightarrow a \leq b+\frac{a-b}{2}=\frac{2 b+a-b}{2}=\frac{a+b}{2}<a$
From (1) C!

$$
a \leq b
$$

Example 1.3:

1. Q is order field $\left(A_{1} \rightarrow A_{14}\right)$
2. C is field but not order
since: if $x=1 \rightarrow x=\sqrt{1} \rightarrow x^{2}=-1<0 \rightarrow C$! since: $\left(x^{2} \geq 0, \forall x \in R\right)$
