

كلية : التربية للعلوم الصرفة

القسم او الفرع : الرياضيات

المرحلة: الثالثة

أستاذ المادة : م.د. ناديه علي ناظم

اسم المادة بالغة العربية : التحليل الرياضي

اسم المادة باللغة الإنكليزية : Mathematical Analysis

اسم الحاضرة الرابعة باللغة العربية: بعض الخواص والنظريات حول المجاميع المفتوحة

اسم المحاضرة الرابعة باللغة الإنكليزية :some properties and theorems about open sets

...

Mathematical Analysis

Dr. Nadia Ali

Teaching at the University of Anbar College of Education for Pure Sciences Department of Mathematics

2022 - 2023

 $[a, b], [a, b), [a, \infty)$ and $(-\infty, b]$ are not open set Proof: If S=[a,b], then S is not open set ? Since, if $x = a \rightarrow \forall r > 0$, $B(a, r) = (a - r, a + r) \not\subset [a, b]$

The intersection of any tow open set is open set

i.e ((the intersection of any finite family of open set is open))

Proof: Let $A = \{S_k : S_k \text{ is open set } k = 1, 2, ..., n\}$ $T.p \cap_{k=1}^n S_k \text{ is open set}$ Let $x \in \bigcap_{k=1}^n S_k \to x \in S_k, \forall k$, but S_k is open set $\forall k$, then $\exists r_k > 0$ s.t $B(x, r_k) \subset S_k$ Let $r = \min \{r_1, r_2, ..., r_n\}$ Then $B(x, r) \subset S_k, \forall k$. $\therefore B(x, r) \subset \bigcap_{k=1}^n S_k$, therefore $\bigcap_{k=1}^\infty S_k$ is open set.

Theorem 2.1: the infinite intersection of open sets is not necessary open set.

Ex: let $S_n = \left(x - \frac{1}{n}, x + \frac{1}{n}\right) \forall x \in R$, open interval. $n = 1 \rightarrow s_1 = (x - 1, x + 1)$ $n = 2 \rightarrow S_2 = (x - \frac{1}{2}, x + \frac{1}{2})$ $n = 3 \rightarrow S_3 = (x - \frac{1}{3}, x + \frac{1}{3})$.

When $n \to \infty \bigcap_{k=1}^{\infty} S_k = \{x\}$ is not open

Theorem 2.2: the union of any family (finite or infinite) – (countable or uncountable) of open set is open

Proof:

Let $A = \{S_{\alpha}, S_{\alpha} \text{ is open set } \alpha \in \Lambda\}$ T.P: $\bigcup_{\alpha \in \Lambda} S_{\alpha}$ is open set Let $x \in \bigcup_{\alpha \in \Lambda} S_{\alpha} \to \exists \alpha \in \Lambda \text{ s. } t \ x \in S_{\alpha}$ Since S_{α} is open set $\to \exists \alpha > 0 \text{ s. } t$ $B(x, r_{\alpha}) \subset S_{\alpha}$, then $x \in B(x, r_{\alpha}) \subset S_{\alpha} \subset \bigcup_{\alpha \in \Lambda} S_{\alpha}$ This is true $\forall x \in \bigcup_{\alpha \in \Lambda} S_{\alpha}$, therefore $\bigcup_{\alpha \in \Lambda} S_{\alpha}$ is open set

Theorem 2.3: S is open iff S is the Union of balls

Definition 2.4: let X be anon-empty set and τ is a family of subsets of X, if τ satisfy the following

- 1- ϕ , $X \in \tau$
- 2- If G , $H \in \tau \rightarrow G \ \cap H \in \tau$
- 3- If $\{G_{\lambda}\} \in \tau \to \bigcup_{\lambda \in \Lambda} G_{\lambda} \in \tau$

Then, the order pair (X, τ) is called topological Space.

Theorem 2.4: every metric space is topological space.

Proof:

Let (X, d) be a metric space and τ = the family of all open subsets of X, then

1-
$$\phi$$
, X open sets $\rightarrow \phi$, X $\in \tau$
2- G_1 , $G_2 \in \tau \rightarrow G_1$, G_2 are open sets
 $\rightarrow G_1 \cap G_2 \in \tau$
3- If $G_\lambda \in \tau$, $\lambda \in \Lambda \rightarrow \forall \lambda$, G_λ open subset of X
 $\rightarrow \bigcup_{\lambda \in \Lambda} G_\lambda$ open set of
 $\rightarrow \bigcup_{\lambda \in \Lambda} G_\lambda \in \tau$
 $\therefore (X, \tau)$ is a topological space

Definition 2.5: let d_1 and d_2 be two metric mapping in the set X, then d_1 , d_2 are called Equivalent if every open set in (X, d_1) is open in (X, d_2) and Vice Versa

Definition 2.6: let (X, d) be a metric space and $S \subseteq X$, S is called closed set if S^c is open Set where $S^c = X - s$ (Complement of S)

Example 2.5:

1- S = X is closed set. Solution: Since $S^c = X^c = \phi$ open set 2- $S = \phi$ is closed set Solution: since $S^c = \phi^c = X$ is open set 3- $S = [a, b], [a, b), S = (-\infty, b]$ are closed set in R Solution: if $S = [a, b] \rightarrow S^c = (-\infty, a) \cup (b, \infty)$ open set $\rightarrow S$ is closed set 4- In R, $S = \{x\}$ is closed set Since : $S^c = (-\infty, x) \cup (x, \infty) \rightarrow S^c$ is open, So S is closed set. 5- Any finite set in R is closed set Solution: let $S = \{x_1, x_2, \dots, x_n\} \subseteq R$. $S^{c} = (-\infty, x_{1}) \cup (x_{1}, x_{2}) \cup ... \cup (x_{n-1}, x_{n}) \cup (x_{n}, \infty)$ So, S^c is open, then S is closed set 6- If S = N, S = Z, then S is Closed set Solution: let S = Nthen $S^c = (-\infty, 1) \cup (1, 2) \cup (2, 3) \dots (\bigcup_{n=4}^{\infty} (n, n+1))$ $\rightarrow S^c$ is open $\rightarrow S$ is closed if $S = Z \to S^c = (\bigcup_{n=1}^{\infty} (-(n+1), -n)) \cup (-1, 0) \cup (0, 1) \cup$ $(\bigcup_{n=1}^{\infty}(n,n+1))$

 S^c is open, then S is closed

7- The Union of finite number of closed sets is closed. Solution:
let A = {S_i, ; S_i closed set in X, i = 1,2,...,n}
T.P: Uⁿ_{i=1} S_i is closed set
i.e. T.P (Uⁿ_{i=1} S_i)^c is open set
Since S_i is closed, ∀i then S^c_i is open ∀i
and ∩ⁿ_{i=1} S^c_i is open
So, (Uⁿ_{i=1} S_i)^c is open
((Uⁿ_{i=1} S_i)^c = ∩ⁿ_{i=1} S^c_i)
therefore Uⁿ_{i=1} S_i is closed.