

كلية: التربية للعلوم الصرفة

القسم او الفرع: الرياضيات

المرحلة: الثالثة

أستاذ المادة: م.د. ناديه علي ناظم

اسم المادة بالغة العربية: التحليل الرياضي

اسم المادة باللغة الإنكليزية: Mathematical Analysis

اسم الحاضرة االسابعة باللغة العربية: تقارب وتباعد المتتابعات في الفضاء المتري

converge and diverge the sequences in metric space: اسم المحاضرة االسابعة باللغة الإنكليزية

•••

Mathematical Analysis

Dr. Nadia Ali

Teaching at the University of Anbar College of Education for Pure Sciences Department of Mathematics

2022 - 2023

Example 3.2:

1.
$$<\frac{(-1)^{n+1}}{n}> = 1$$
, $-\frac{1}{2}$, $\frac{1}{3}$, $-\frac{1}{4}$, ...
$$|x_n| = \left|\frac{(-1)^{n+1}}{n}\right| = \frac{1}{n} \le 1 \implies < x_n > \text{ is bounded}$$
and $M = 1$

2.
$$< 5 + \frac{(-1)^{n+1}}{n} > = 6$$
, $\frac{9}{2}$, $\frac{16}{3}$, ...
 $< x_n \ge 5 + \frac{1}{n} \le 5 + 1 = 6 \implies < x_n >$ is bounded and $M = 6$

3.
$$< n + (-1)^n > =$$

$$\begin{cases} < n - 1 > , & \text{if } n \text{ is odd} \\ < n + 1 > , & \text{if } n \text{ is even} \end{cases}$$

4.
$$|x_n| = \begin{cases} |n-1| \ge 0 \\ |n+1| \ge 2 \end{cases}$$

Theorem 3.2: In metric space. Every convergent sequence is bounded.

Proof:

Let $\langle x_n \rangle$ be a convergent sequence in (X, d) and $x_n \to x$, to prove $\langle x_n \rangle$ is bounded

Since
$$x_n \to x \implies \forall \epsilon > 0$$
, $\exists k \in \mathbb{N} \text{ s. } t \ d(x_n, x) < \epsilon, \forall n > k$
That $\epsilon = 1 \implies d(x_n, x) < 1, \forall n \in k$.

Let
$$r = \max\{1, d(x_1, x), d(x_2, x), \dots, d(x_n, x)\}$$

 $\Rightarrow d(x_n, x) < r$

$$\therefore < x_n > \text{ is bounded and } M = 2r$$

Remark 3.1: The convers of above theorem is not true.

Example 3.3:
$$<(-1)^n>=-1$$
, 1, -1, 1, ... $|x_n|=|(-1)^n|=1 \implies < x_n>$ is bounded and $M=1$ $<(-1)^n>$ is divergent?

Remake 3.2: If $\langle x_n \rangle$ unbounded, then $\langle x_n \rangle$ is divergent.

Proof:

Suppose that $\langle x_n \rangle$ converged and unbounded sequence.

Since $< x_n >$ Convergent $\rightarrow < x_n >$ bounded by theorem (In metric space, every conv. Seq. is bounded) \rightarrow C! ,So $< x_n >$ unbounded is $< x_n >$ is divergent

Example 3.4:

- $\succ < x_n > = < \sqrt{n-1} > = 0$, $\sqrt{1}$, $\sqrt{2}$, $\sqrt{3}$, ... unbounded $\implies < x_n >$ divergent
- > < $x_n >$ = < $n^2 n >$ = 0 , 2 , 6 , 11 , ... unbounded \Rightarrow < $x_n >$ divergent

Definition 3.4: Let $\langle x_n \rangle$ be a real sequence. Then it is called

- Non decreasing. If $x_{n+1} \ge x_n$, $\forall n$
- Non increasing. If $x_{n+1} \le x_n$, $\forall n$.
- Not monotone. If it does not increasing and decreasing.

Example 3.5:

$$\begin{array}{l} * \ < x_n> = <\frac{1}{\sqrt{n}}> \\ x_n=\frac{1}{\sqrt{n}} \ \text{,} \ x_{n+1}=\frac{1}{\sqrt{n+1}} \\ \forall n \ \text{,} \ n+1>n \ \Longrightarrow \ \sqrt{n+1}>\sqrt{n} \to \frac{1}{\sqrt{n+1}} \leq \frac{1}{\sqrt{2}} \to x_{n+1} \leq x_n \end{array}$$

 $\therefore < x_n >$ is non – increasing

*
$$< x_n > = < \frac{n}{n+1} >$$

$$x_n = \frac{n}{n+1} , x_{n+1} = \frac{n+1}{n+2}$$

$$x_{n+1} - x_n = \frac{n+1}{n+2} - \frac{n}{n+1} = \frac{(n+1)-n(n+2)}{(n+1)(n+2)} = \frac{n^2+2n+1-n^2-2n}{(n+1)(n+2)} =$$

$$\frac{1}{(n+1)(n+2)} > 0$$

$$\therefore x_{n+1} - x_n > 0 \to x_{n+1} > x_n , \forall n, : < x_n > \text{non - decreasing}$$
* $< x_n > = < (-1)^n > \text{not monotone}$
* $< x_n > = < \frac{(-1)^n}{\sin(n)} > \text{not monotone}$.
* $< x_n > = < (-5)^n > \text{not monotone}$.

Theorem 3.2: Every monotone bounded real seq. is convergent

Example 3.6:
$$\langle x_n \rangle = \langle \frac{(-1)^n}{n} \rangle > 0$$
 $\langle x_n \rangle$ Convergent seq. but not monotone.

Example 3.7: Show that $x_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}$ is convergent.

Theorem 3.3: Let (X, d) be a metric space and $S \subseteq X$:

- i. If $\langle x_n \rangle$ seq. in S and $x_n \to x$ then $x \in S$ or $x \in S'$
- ii. If $x \in S$ or $x \in S'$, then there exists a sequence $\langle x_n \rangle$ in S s.t $x_n \to x$

Definition 3.5: The sequence $\langle x_n \rangle$ is a sub sequence of $\langle x_n \rangle$, if $\langle m \rangle$ is increasing sequence in N.