

كلية : التربية للعلوم الصرفة

القسم او الفرع : الرياضيات

المرحلة: الثالثة

أستاذ المادة : م.د. ناديه علي ناظم

اسم المادة بالغة العربية : التحليل الرياضي

اسم المادة باللغة الإنكليزية : Mathematical Analysis

اسم الحاضرة الثامنة باللغة العربية: المتتابعات الكوشية

اسم المحاضرة الثامنة باللغة الإنكليزية :Caushy sequences

...

Mathematical Analysis

Dr. Nadia Ali

Teaching at the University of Anbar College of Education for Pure Sciences Department of Mathematics

2022 - 2023

Example 3.8: find a sub Seq. of the following seq.

1.
$$\langle x_n \rangle = \langle \sqrt{n} \rangle$$

Solution:
 $\langle \sqrt{n} \rangle = \sqrt{1}, \sqrt{2}, \sqrt{3}, ...$
Let $\langle m \rangle = \langle 2n \rangle$ increasing Seq. in N, the Sequence is
 $\langle Xm \rangle = \langle \sqrt{2n} \rangle = \sqrt{2}, \sqrt{4}, \sqrt{6}, ...$
Let $\langle m \rangle = \langle n+3 \rangle$ increasing seq in N, the sub seq is
 $\langle m \rangle = \langle \sqrt{n+3} \rangle = \sqrt{4}, \sqrt{5}, \sqrt{6}, ...$

Theorem 3.4: Let $\langle x_n \rangle$ be a convergent Seq and $\lim_{n \to \infty} X_n = x$ then the sub seq $\langle X_{nm} \rangle$ also conv. To *x*, where $n \to \infty$

Proof: Since $x_n \to x, \forall \epsilon > 0$, $\exists k \in N \text{ s. } t \ d(x_n, x) < \epsilon, \forall n > k$ Choose nr > k, then $\forall m > r \to nm > nr > k$ $\Rightarrow d(x_{nm}, x) < \epsilon, \forall nm > k$ $\Rightarrow < x_{nm} > \to x$.

Definition 3.5: Let (X, d) be a metrices space and $< x_n >$ be a seq. in X we say that

 $\langle x_n \rangle$ is a principle. (Caushy) seq. if $\forall \epsilon > 0, \exists k \in N \text{ s. } t \ d(x_n, x_m) < \epsilon, \forall n, m > k$.

Example 3.9: prove that $<\frac{1}{n}>$ is Caushy seq in R? Solution: $\forall \epsilon > 0$, to find $k \in N$ s.t $d(x_n, x_m) < \epsilon, \forall n, m > k, \forall n, m > k$.

Let
$$m > n \to d(x_n, x_m) = \left|\frac{1}{n} - \frac{1}{m}\right| \le \left|\frac{1}{n}\right| + \left|\frac{1}{m}\right| < \frac{1}{n} + \frac{1}{n} = \frac{2}{n}$$

Since $\epsilon > 0$ (by Arch. Prop) $\to \exists k \in N$ s.t
 $k\epsilon > 2 \to \frac{2}{k} < \epsilon$
 $\forall n > k, d(x_n, x_m) = |x_n - x_m| < \frac{2}{n} < \epsilon, \forall n, m > k \to < X_n > \text{is}$
Caushy seq.

Theorem 3.5: I metric space (*X*, *d*), every Convergent seq. is Caushy.

Remark 3.3: The Converse of the above theorem. Is not true by the following example.

Example 3.10: Let $X = IR^{++}$ positive numbers $d(x, y) = |x - y|, \forall x, y \in R^{++}, \forall n > k$. $< x_n > = < \frac{1}{n} >$ is Caushy seq. But $\frac{1}{n} \to 0 \notin R^{++}$ $\therefore < \frac{1}{n} >$ is not Conv

Theorem 3.11: In metric Space (x, d) every Caushy seq. is bounded.

Example 3.11: Let $\langle x_n \rangle = (-1)^n$ be a seq. $\langle x_n \rangle$ is bounded seq, but not Caushy Seq Since $d(-1,1) = 1 < \epsilon, \forall \epsilon > 0$ If $\epsilon = \frac{1}{2} \rightarrow 2 < \frac{1}{2} \rightarrow C!$

Theorem 3.12: For any real number r, \exists rational Caushy Seq $< x_n >$ Conv to r.

Definition 3.6: Let(X, d) be a metric space we say that X is Compete. If every Cauchy Seq.

In X coverage to a point in X. i.e.: X is complete. If $\forall < X_n >$ Cauchy Seq. $\rightarrow \exists \bar{x} \in X \text{ s. } t X_n \rightarrow X.$

Theorem 3.13: Cantor's theorem for Nested sets.

Proof:

Let (X, d) be a Complete matric Space and $\langle E_n \rangle$ be a seq of closed bounded Subset of X such that $E_1 \supset E_2 \supset \cdots \models E_n \supset E_{n+1} \forall n$ and the Sequence of Positive numbers $\langle daim E_n \rangle \rightarrow 0$, then $\cap E_n =$ Singleton point

Remark 3.4: The condition of closed sets of Cantor's theorem is necessary.

Example 3.11: Let $E_n = \left(0, \frac{1}{n}\right)$ be the open intervals, $E_{n+1} \subset E_n$, and $daim(E_n) = \frac{1}{n} \to 0, \forall n$ E_n is bounded and not closed. Prove that $\cap E_n = \emptyset$ Proof: Suppose $\cap E_n \neq \emptyset \to \exists r \in E_n \ s.t$ $r \in \left(0, \frac{1}{n}\right), \forall n$ Since r > 0, by Arch.pvop, $\exists k \in N \ s.t$

$$kr > 1 \to \frac{1}{k} < r \to C!$$

$$\Rightarrow \cap E_n = \emptyset$$

Corollary 3.14: Let $< \pm n >$ be aseq of closed intervals, $I_n = [a_n, b_n]$ such that

1. $I_n \supset I_{n+1}$ 2. $\lim_{n\to\infty} |I_n| = 0$, then $\cap I_n$ =singleton Point **Theorem 3.15:** R^n is Complete metric Space, $n \ge 1$

i.e.: (Every Cauchy sequence in \mathbb{R}^n is Convergent)

Theorem 3.16: Let $\langle X_n \rangle$, $\langle Y_n \rangle$ and $\langle Z_n \rangle$ real Sequence s.t $\forall n$, $X_n \leq Y_n \leq Z_n$ and $\lim_{n \to \infty} X_n = \lim_{n \to \infty} Z_n = a$ then $\lim_{n \to \infty} Y_n = a$

Theorem 3.17: let $\langle X_n \rangle$ be a real sequence such that $\langle X_n \rangle$ Converge to 0 and

 $X_n \ge 0$, p > 0 then $\langle X_n^p \rangle$ converges to 0

Proof: