جامعة الانبار كلية: الصيدلة قسم: العلوم المختبرية السريرية اسم المادة باللغة العربية: الاحياء المجهرية اسم المدة باللغة العربية: المتقيم والتطهير عنوان المحاضرة باللغة العربية: التعقيم والتطهير

عنوان المحاضرة باللغة الإنكليزية: STERILIZATION AND DISINFECTION

STERILIZATION AND DISINFECTION

Introduction

Why we need Sterilization?

- Microorganisms capable of causing infection are constantly present in the external environment and on the human body.
- Microorganisms are responsible for contamination and infection.
- The aim of sterilization is to remove or destroy them from materials or from surfaces

Sterilization

Sterilization is a process that eliminates or kills all forms of microbial life, including transmissible agents (such as fungi, viruses, bacteria including spore forms) present on a surface, contained in a fluid, a medication, or in a compound such as biological culture media.

Disinfection

Reducing the number of pathogens or organisms capable of producing infections (but not spores) to a level that is no longer cause diseases.

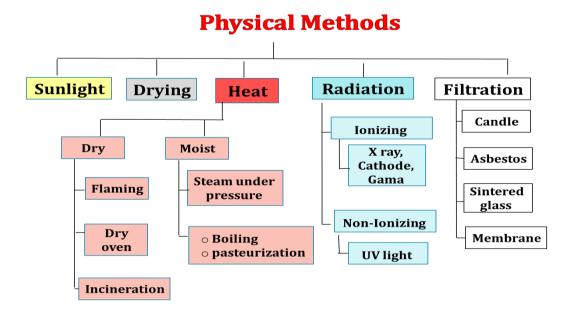
Order of resistance

Hardest to Kill

- Prions
- Spores
- Mycobacteria
- Non-enveloped viruses
- Fungi
- Vegetative bacteria
- Enveloped viruses

Easiest to Kill

Values used in sterilization


- *Thermal Death Point:* The lowest temperature that kills all microorganisms in a liquid suspension in 10 minutes.
- *F value:* the number of minutes required to kill a known population of microorganisms under specified conditions.
- Decimal reduction (D) value: The time required to reduce the survivors of microorganisms by 90%.

Basic Terminologies

- **Bactericidal agents:** An agent that kills bacteria. Most do not kill Endospores.
- Bacteriostatic agents: An agent that inhibits the growth of bacteria, but does not necessarily kill them.
- *Sporicidal agents:* An agent that kills spores.
- Antibiotics: are substances produced by one microbe that inhibits or kills another microbe.
- Antiseptics: microbicide agents harmless enough to be applied to the skin and mucous membrane such as alcohols, iodine solution and detergents.
- Asepsis: term used to indicate the prevention of infection by inhibiting the growth of bacteria in wounds or tissues.
- Decontamination: article or area free from contaminants that include microbial, chemical, radioactive and other hazards.
- Sanitize: Removal of pathogens from inanimate objects by mechanical or chemical cleaning

Methods of Sterilization

- Physical Methods
- Chemical Methods

1. Sunlight:

- > Action primarily due to UV rays however, effects vary places
- > Bacteria in water are readily destroyed by sunlight.

2. Drying:

- > Moisture is essential for growth of bacteria.
- > Drying in air has deleterious effect on many bacteria.
- However, spores are unaffected.

3. Heat (Dry and moist)

• Heat is considered to be the most reliable method of sterilization of objects that can stand with heat.

A. Dry Heat:

Causes denaturation of proteins and oxidative damage. Techniques include:

•Flaming

common uses: bacterial loops, needle and spatula.

- *Hot Air oven* (160°C/2hrs or 170°C/1hrs)
- common uses: <u>glassware</u> and <u>metallic instruments</u>.
- *Incineration:* This is a method of destroying contaminated material by burning them in incinerator.
- common uses: <u>animal carcasses</u>, <u>pathological material</u>, <u>disposable labs' materials</u> and <u>contaminated clothes</u>.

B. Moist Heat:

Moist heat is more efficient in contrast to dry heat; it causes coagulation and denaturation of proteins.

Techniques include:

- **Pasteurization** (At temperature 63°C for 30 minutes or 72°C for 15 minutes): Food (dairy) Industry. Kills most vegetative bacterial cells including pathogens such as *Staphylococci, streptococci* and *Mycobacterium tuberculosis*.
- *Boiling* (At temperature 100°C): 30 minutes of boiling kills microbial pathogens and vegetative forms of bacteria but may not kill bacterial endospores.
- *Intermittent boiling (tyndallization)* (At temperature 100°C): three time at 30 minutes intervals of boiling, followed by periods of cooling kill <u>bacterial</u> <u>endospores</u>.
- *Autoclave* (At temperature 121°C under 15 bar pressure for 15 minutes):

Principle: Water boils when its vapor pressure equals the surrounding atmosphere. Thus, when pressure inside closed vessels increases, the temperature at which water boils increases too.

• kills all forms of life including bacterial endospores. Used to sterilize <u>pharmaceutical products</u>, <u>culture media</u>, <u>surgical instrument</u> and <u>cotton</u>.

Autoclave

4. Radiation

• There are 2 types of Radiation:

A. Non-ionizing:

UV Radiation it has a germicidal effect on microorganisms.

• Common uses: Surface disinfection, in hospitals, operating theater and laboratories.

B. Ionizing: 2 types:

(Electron beam): Common uses: sterilization of instruments such as <u>syringes</u>, <u>gloves</u>, <u>dressing packs</u>, <u>foods</u> and <u>pharmaceuticals</u>.

(Gamma rays): Common uses: sterilization of <u>disposable petri dishes</u>, <u>plastic syringes</u>, <u>antibiotics</u>, <u>vitamins</u>, and <u>hormones</u>.

5. Filtrations

- > Helps to remove bacteria from heat labile liquids.
- commonly uses: for heat labile <u>pharmaceuticals</u> and <u>protein solutions</u> in medicinal drug processing (such as those containing proteins like large molecule <u>drug</u> <u>products</u>, <u>serum</u>, <u>enzymes</u>, <u>sugars</u>, <u>toxins</u>).

Types of filters:

- *Candle filters:* Used for purification of <u>water</u> for industrial and drinking purposes.
- Asbestos filters: Disposable, single-used disc used to filtered alkaline liquids.
- *Sintered glass filters:* used when we have small amount of liquid like <u>carbohydrate</u> to be added to culture media.
- *Membrane filters*: Made of cellulose esters or other polymers. Used to filtered water and preparation of sterile liquid.

Chemical Methods:

A. (Gases):

- *Ethylene oxide gas*: to sterilize heat –sensitive objects
- Common uses: <u>medical</u> and <u>pharmaceutical products</u>, <u>plastic containers</u>
- *Hydrogen Peroxide Gas Plasma:* Highly reactive/charged particles from hydrogen peroxide generated under vacuum
- Common uses: used to sterilize heat- and moisture-sensitive items like some <u>plastics</u>, and <u>electrical/electronic devices</u>.
 - •*Fumigation*: release of hydrogen peroxide, chlorine dioxide gas or possibly ozone in sealed rooms

• Common uses: For <u>rooms contaminated</u> with some pathogens such as *MRSA* and *Clostridium difficile*

B. liquids:

- •*Formaldehyde (35%):* is a broad-spectrum germicide for bacteria, fungi, and viruses. The mechanism of action of formaldehyde is based on protein denaturation.
- Common uses: Sterilization of <u>instruments</u>.
- *Phenols:* Synthetic phenolic compounds have broad-spectrum disinfecting action including a tuberculosis kill.
- Common uses: <u>surface</u> disinfection
- •*Alcohols*. Like Ethanol (80%), Propanol (60%), and Isopropanol (70%). Alcohols are quite effective against bacteria and fungi, less so against viruses. They do not kill bacterial spores.
- Common uses: surgical and hygienic disinfection of the <u>skin</u> and <u>hands</u>.
- •*Halogens:* Chlorine, Iodine. halogens denatures proteins by binding to free amino groups.
- Common uses: Chlorine is used to disinfect <u>drinking water</u> and <u>swimming-pool</u> <u>water</u>. Iodine used to disinfect <u>skin</u> and <u>small wounds</u>.

Sterilization Vs Disinfection

Sterilization	Disinfection
 Total destruction of all microorganisms (pathogenic or not). 	 Minimize the numbers of microorganisms but does not eliminate them completely.
 Highly effective methods like chemicals, heat, filtration and radiation. 	 Moderate effective methods like detergents, halogenes, alcohols and pasterization.
 Kill the bacteria and their spores. 	 Does not kill the bacterial spores.
 Used in surgical operation and various labs. 	 Commonly used in daily life.