CONVERSION OF NFA INTO DFA

1. Convert the NFA $(\mathrm{a} / \mathrm{b}) *$ into DFA?

Solution:
The NFA for $(\mathrm{a} / \mathrm{b})^{*}$ is,

ε closure $\{0\}=\{0,1,2,4,7\}$ \qquad
Transition of input symbol an on $A=\{3\}$
Transition of input symbol b on $A=\{5\}$
ε closure $\{3\}=\{3,6,1,2,4,7\}$------------ B
Transition of input symbol a on $B=\{3\}$
Transition of input symbol b on $B=\{5\}$
ε closure $\{5\}=\{5,6,1,2,4,7\}---------\quad$ C
Transition of input symbol a on $\mathrm{C}=\{3\}$
Transition of input symbol b on $C=\{5\}$
Since A is the start state and state C is the only accepting state then, the transition table is,

State	Input symbol	
	a	b
A	B	C
B	B	C
C	B	C

The DFA is,

2. Convert the NFA $(\mathrm{a} / \mathrm{b}) *$ abb into DFA?

Solution:

The NFA for $(\mathrm{a} / \mathrm{b})^{*} \mathrm{abb}$ is,

ε closure $\{0\}=\{0,1,2,4,7\}$
A
Transition of input symbol a on $\mathrm{A}=\{3,8\}$
Transition of input symbol b on $A=\{5\}$
ε closure $\{3,8\}=\{3,6,7,1,2,4,8\} \quad-------------$ B
Transition of input symbol a on $B=\{8,3\}$
Transition of input symbol b on $B=\{5,9\}$
ε closure $\{5\}=\{5,6,7,1,2,4\}$ C
Transition of input symbol a on $C=\{8,3\}$
Transition of input symbol b on $\mathrm{C}=\{5\}$
ε closure $\{5,9\}=\{5,6,7,1,2,4,9\}$ \qquad D
Transition of input symbol a on $\mathrm{D}=\{8,3\}$
Transition of input symbol b on $D=\{5,10\}$
ε closure $\{5,10\}=\{5,6,7,1,2,4,10\}$ \qquad
Transition of input symbol a on $E=\{8,3\}$
Transition of input symbol b on $E=\{5\}$
Since A is the start state and state E is the only accepting state then, the transition table is,

State	Input symbol	
	a	b
A	B	C
B	B	D
C	B	C
D	B	E
E	B	C

MINIMIZATION OF STATES

Problem 1: Construct a minimum state DFA for a regular expression (a/b)* abb
Solution:-

1. The NFA of $(a / b)^{*} a b b$ is

2. Construct a DFA:

ε closure $\{0\}=\{0,1,2,4,7\}$-------------- A
Transition of input symbol a on $A=\{3,8\}$
Transition of input symbol b on $A=\{5\}$
ε closure $\{3,8\}=\{3,6,7,1,2,4,8\}$
Transition of input symbol a on $B=\{8,3\}$
Transition of input symbol b on $B=\{5,9\}$
ε closure $\{5\}=\{5,6,7,1,2,4\}$
Transition of input symbol a on $C=\{8,3\}$

Transition of input symbol b on $\mathrm{C}=\{5\}$
ε closure $\{5,9\}=\{5,6,7,1,2,4,9\} \quad-------------\quad D$
Transition of input symbol a on $D=\{8,3\}$
Transition of input symbol b on $D=\{5,10\}$
ε closure $\{5,10\}=\{5,6,7,1,2,4,10\} \quad-------------$ E
Transition of input symbol a on $\mathrm{E}=\{8,3\}$
Transition of input symbol b on $E=\{5\}$
Since A is the start state and state E is the only accepting state then, the transition table is,

State	Input symbol	
	a	b
A	B	C
B	B	D
C	B	C
D	B	E
E	B	C

3. Minimizing the DFA

Let $\Pi=\mathrm{ABCDE}$

The initial partition Π consists of two groups.
$\Pi_{1}=\mathrm{ABCD}$ (that is the non - accepting states)
$\Pi_{2}=\mathrm{E}$ (that is the accepting state)
So, (ABCD) (E)

AB

$\mathrm{B} \xrightarrow{\mathrm{b}} \mathrm{D}$

AC

$\mathrm{C} \xrightarrow{\mathrm{b}} \mathrm{C}$

AD

On input "a" each of these states has a transition to B, so they could all remain in one group as far as input a is concerned.
On input "b" A,B,C go to members of the group $\Pi_{1}(A B C D)$ while D goes to $\Pi_{2}(E)$. Thus Π_{1} group is split into two new groups.
$\Pi_{1}=\mathrm{ABC} \quad \Pi_{2}=\mathrm{D}, \Pi_{3}=\mathrm{E}$
So, (ABC) (D) (E)

AB

Here B goes to Π_{2}. Thus Π_{1} group is again split into two new groups. The new groups are,
$\Pi_{1}=\mathrm{AC} \quad \Pi_{2}=\mathrm{B}, \Pi_{3}=\mathrm{D}, \Pi_{4}=\mathrm{E}$
So, (AC) (B) (D) (E)
Here we cannot split any of the groups consisting of the single state. The only possibility is try to split only (AC)

For AC

But A and C go the same state B on input a , and they go to the same state C on input b .
Hence after this,
(AC) (B) (D) (E)
Here we choose A as the representative for the group AC.
Thus A is the start state and state E is the only accepting state.

So the minimized transition table is,

State	Input symbol	
	a	b
A	B	A
B	B	D
D	B	E
E	B	A

Thus the minimized DFA is,

References

1. J. Tremblay, P.G. Sorenson,"The Theory and Practice of Compiler Writing ", McGRAWHILL, 1985.
2. W.M. Waite, L.R. Carter,"An Introduction to Compiler Construction",Harper Collins,New york,1993
3. A.W. Appel,"Modern Compiler Implementation in, CambridgeUniversity Press, 1998
4. Internet Papers
5. Aho, R. Sethi, J.D. Ullman," Compilers- Principles, Techniques and Tools"AddisonWeseley, 2007
