

Intermediate Code Generation

1

INTERMEDIATE CODE GENERATION

 A compiler while translating a source program into a functionally equivalent object code

representation may first generate an intermediate representation.

Advantages of generating intermediate representation

1. Ease of conversion from the source program to the intermediate code

2. Ease with which subsequent processing can be performed from the intermediate code

 Parse Tree Intermediate Code

INTERMEDIATE LANGUAGES:

 There are three kinds of Intermediate representation. They are,

1. Syntax Trees

2. Postfix Notation

3. Three address code

1. Syntax Tree:-

 A syntax tree depicts the natural hierarchical structure of a source program. A DAG

(Direct Acyclic Graph) gives the same information but in a more compact way because common

sub expressions are identified.

A syntax tree and dag for the assignment statement a:= b* -c + b* -c

 assign

 a +

 Syntax Tree

 * *

 b uminus b uminus

 c c

 assign

 a +

 DAG

 *

 b uminus

Parser Intermediate code

 Generator

 Code

Generator

Intermediate Code Generation

2

 c

 2. Postfix notation:-

 Post fix notation is a linearized representation of a syntax tree. It is a list of nodes of the

tree in which a node appears immediately after its children.

The postfix notation for the syntax tree is,

 a b c uminus * b c uminus * + assign

3. Three Address Code:-

 Three Address code is a sequence of statements of the general form

 x := y op z

where x,y and z are names, constants or compiler generated temporaries.

op stands for any operator such as a fixed or floating point arithmetic operator or a logical

operator on a Boolean valued data.

The Three Address Code for the source language expression like x+y*z is,

 t1:= y * z

 t2 := x + t1

Where t1 and t2 are compiler generated temporary names

So, three address code is a linearized representation of a syntax tree or a dag in which explicit

names correspond to the interior nodes of the graph.

Three Address Code Corresponding to the syntax tree and DAG is,

Code for Syntax Tree

 t1 := -c

 t2 := b * t1

 t3 := -c

 t4 := b * t3

 t5 := t2 + t4

 a := t5

Code for DAG

 t1 := -c

 t2 := b * t1

 t5 := t2 + t2

 a := t5

Intermediate Code Generation

3

Types of Three Address Statements:-

1. Assignment statement of the form x := y op z

2. Assignment instructions of the form x := op z

where op is a unary operation.

3. Copy statements of the form x := y

where, the value of y is assigned to x.

4. The Unconditional Jump GOTO L

5. Conditional Jumps such as if x relop y goto l

6. param x and call p, n for procedure calls and return y.

7. Indexed assignments of the form x := y[i] and x[i] := y

8. Address and pointer assignments, x :=&y, x := *y and *x := y

Implementations of Three Address Statements:

 It has three types,

1. Quadruples

2. Triples

3. Indirect Triples

Quadruples:-

 A Quadruple is a record structure with four fields, which we call op, arg1, arg2, and

result. The op field contains an internal code for the operator.

For Eg, the three address statements,

 x := y op z is represented by

 y in arg1

 z in arg2

 x in result.

The quadruples for the assignment a:=b* -c + b* -c are,

 op arg1 arg2 result

(0)

(1)

(2)

(3)

(4)

(5)

uminus

*

uminus

*

+

:=

c

b

c

b

t2

t5

t1

t3

t4

t1

t2

t3

t4

t5

a

Intermediate Code Generation

4

Triples:-

 A triple is a record structure with three fields: op, arg1, arg2. This method is used to

avoid entering temporary names into the symbol table.

Ex. Triple representation of a:= b * -c + b * -c

 op arg1 arg2

(0)

(1)

(2)

(3)

(4)

(5)

uminus

*

uminus

*

+

assign

c

b

c

b

(1)

a

(0)

(2)

(3)

(4)

Indirect Triples:-

 Listing pointers to triples rather than listing the triples themselves are called indirect

triples.

Eg. Indirect Triple Representation of a := b * -c + b * -c

 statement op arg1 arg2

(0)

(1)

(2)

(3)

(4)

(5)

(10)

(11)

(12)

(13)

(14)

(15)

(10)

(11)

(12)

(13)

(14)

(15)

uminus

*

uminus

*

+

assign

c

b

c

b

(11)

a

(10)

(12)

(13)

(14)

Intermediate Code Generation

5

References

1. J. Tremblay, P.G. Sorenson,"The Theory and Practice of Compiler Writing “, McGRAW-

HILL,1985.

2. W.M. Waite, L.R. Carter,"An Introduction to Compiler Construction",Harper

Collins,New york,1993

3. A.W. Appel,"Modern Compiler Implementation in, CambridgeUniversity

Press,1998

4. Internet Papers

5. Aho, R. Sethi, J.D. Ullman," Compilers- Principles, Techniques and Tools"Addison-

Weseley, 2007

