Chapter Two

Partial Derivative

2.1 partial derivatives of function of two variables

Suppose that (x_{0}, y_{o}) is a point in the domain of a function $f(x, y)$.
If we fix $y=y_{0}$ then $f\left(x, y_{0}\right)$ is a function of a variable x alone .
The value of derivative is : $\quad \frac{d}{d x}\left[f\left(x, y_{0}\right)\right]$
If we fix $\mathrm{x}=\mathrm{x}_{0}$, then $\mathrm{f}\left(\mathrm{x}_{0}, \mathrm{y}\right)$ is a function of a variable y alone.
The value of derivative is : $\quad \frac{d}{d y}\left[f\left(x_{0}, y\right)\right]$
If $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ and $\left(\mathrm{x}_{0}, y_{o}\right)$ is a point in the domain of f , then the partial derivative of z with respect to x at $\left(\mathrm{x}_{0}, \mathrm{y}_{\mathrm{o}}\right)$ is :

$$
f x\left(x_{0}, y_{0}\right)=\frac{d}{d x}\left[f\left(x, y_{0}\right)\right]_{x=x_{O}}=\lim _{x \rightarrow x_{0}} \frac{f\left(x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{x-x_{O}}
$$

$\mathrm{fx}\left(x_{0}, y_{0}\right)=$ The slope of the surface $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ in the x direction at $\left(x_{0}, y_{0}\right)$.
$=$ The rate of change of z with respect to x along the curve C_{1}.Fig.(2.1)
Similarly... $f y\left(x_{0}, y_{0}\right)=\frac{d}{d y}\left[f\left(x_{0}, y\right]_{y=y_{o}}=\lim _{y \rightarrow y_{0}} \frac{f\left(x_{0}, y\right)-f\left(x_{0}, y_{0}\right)}{y-y_{0}}\right.$
$f y\left(x_{0}, y_{0}\right)=$ The slope of the surface $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ in the y direction at $\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{\mathrm{o}}\right)$
$=$ The rate of change of z with respect to y along the curve $\mathrm{C}_{2} \cdot \boldsymbol{F i g}(\mathbf{2} .2)$

Slopes and Rates of Change

If $\mathrm{y}=\mathrm{f}(\mathrm{x})$, then the average rate of change of y with respect to x over the interval [x_{0}, x_{1}] is
$r_{a v e}=\frac{f\left(x_{1}\right)-f\left(x_{O}\right)}{x_{1}-x_{O}}$

If $y=f(x)$, then the instantaneous rate of change of y with respect to x when $x=x_{0}$ is $r_{\text {inst }}=\lim _{x_{1 \rightarrow x_{0}}} \frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}$
$\lim _{x_{1} \rightarrow x_{0}} \frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}$ exists, then

The value of this limit is called the derivative of \boldsymbol{f} at $\boldsymbol{x}=\boldsymbol{x}_{0}$ and if denoted by $\bar{f}\left(x_{O}\right)$
$\bar{f}\left(x_{O}\right)=\lim _{x_{1 \rightarrow x_{0}}} \frac{f\left(x_{1}\right)-f\left(x_{O}\right)}{x_{1}-x_{O}}$
$\bar{f}\left(x_{O}\right)$ is the slope of the graph of f at point $p\left(x_{O}, f\left(x_{0}\right)\right)$

Example :let $f(x, y)=x^{2} y+5 y^{3}$

1) Find the slope of the surface $z=f(x, y)$ in the x - direction at the point $(1,-2)$
2) Find the slope of the surface $z=f(x, y)$ in the y-direction at the point $(1,-2)$

Solution :

1) Differentiating f with respect to x with y held fixed yields

$$
f x(x, y)=2 x y
$$

The slope in the x - direction is $\mathrm{fx}(1,-2)=-4$, that is z is decreasing at the rate of 4 unit per unit increase in x.
2) Differentiating f with respect to y with x held fixed yields

$$
f y(x, y)=x^{2}+15 y^{2}
$$

The slope in the y -direction is $\mathrm{fy}(1,-2)=61$, that is, z is increasing at the rate of 61 units per unit increase in y.

Example : determined $\mathrm{fx}(1,3)$ and $\mathrm{fy}(1,3)$ for the function

$$
f(x, y)=2 x^{3} y^{2}+2 y+4 x
$$

Solution :

$f x(x, y)=\frac{d}{d x}\left[2 x^{3} y^{2}+2 y+4 x\right]=6 x^{2} y^{2}+4$
$f x(1,3)=6(1)^{2}(3)^{2}+4=58$
$f y(x, y)=\frac{d}{d y}\left[2 x^{3} y^{2}+2 y+4 x\right]=4 x^{3} y+2$
$f y(1,3)=4(1)^{3}(3)+2=14$

2.2 Partial Derivative notation

If $z=f(x, y)$, then the partial derivatives $f x$ and fy are also denoted by the symbols

$$
\frac{\partial f}{\partial x}, \frac{\partial z}{\partial x} \text { and } \frac{\partial f}{\partial y}, \frac{\partial z}{\partial y}
$$

Some typical notations for the partial derivatives of $z=f(x, y)$ at a point $\left(x_{0}, y_{0}\right)$ are

$$
\frac{\partial f}{\partial x}\left|x=x_{0}, y=y_{0}, \quad \frac{\partial z}{\partial x}\right|\left(x_{0}, y_{0}\right), \left.\quad \frac{\partial y}{\partial x} \right\rvert\,\left(x_{0,} y_{0}\right), \quad \frac{\partial f}{\partial x}\left(x_{0,} y_{0}\right), \quad \frac{\partial z}{\partial x}\left(x_{0}, y_{0}\right)
$$

Example : find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $z=x^{4} \sin \left(x y^{3}\right)$

$$
\begin{aligned}
\frac{\partial z}{\partial x}=\frac{\partial}{\partial x} & {\left[x^{4} \sin \left(x y^{3}\right)\right]=x^{4} \frac{\partial}{\partial x}\left[\sin \left(x y^{3}\right)\right]+\sin \left(x y^{3}\right) \frac{\partial}{\partial x}\left[x^{4}\right] } \\
& =x^{4} \cos \left(x y^{3}\right) * y^{3}+\sin \left(x y^{3}\right) * 4 x^{3}=x^{4} y^{3} \cos \left(x y^{3}\right)+4 x^{3} \sin \left(x y^{3}\right)
\end{aligned}
$$

$$
\frac{\partial z}{\partial y}=\frac{\partial}{\partial y}\left[x^{4} \sin \left(x y^{3}\right]=x^{4} \frac{\partial}{\partial y}\left[\sin \left(x y^{3}\right)\right]+\sin \left(x y^{3}\right) \frac{\partial}{\partial y}\left[x^{4}\right]\right.
$$

$$
=x^{4} \cos \left(x y^{3}\right) * 3 x y^{2}+\sin \left(x y^{3}\right) * 0=3 x^{5} y^{2} \cos \left(x y^{3}\right)
$$

Note :

The partial derivatives of a function give the instantaneous rates of change of that function in directions parallel to the coordinate .

2.3 Partial Derivatives of functions with more than two variables

For a function $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ of three variables, there are three partial derivatives

$$
f x(x, y, z), \quad f y(x, y, z), \quad f z(x, y, z)
$$

The partial derivative $f x$ is calculated by holding y and z constant and different rating with respect to x. For fy the variables x and y are held constant . if w $=(\mathrm{x}, \mathrm{y}, \mathrm{z})$

The three partial derivatives of f can be denoted by

$$
\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, \text { and } \frac{\partial w}{\partial z}
$$

Example :if $f=(x, y, z)=x^{3} y^{2} z^{4}+2 x y+z$, then

$$
\begin{aligned}
& f x(x, y, z)=3 x^{2} y^{2} z^{4}+z y \\
& f y(x, y, z)=2 x^{3} y z^{4}+z x \\
& f z(x, y, z)=4 x^{3} y^{2} z^{3}+1
\end{aligned}
$$

2.4 Higher - Order Partial Derivatives

The partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$, themselves have partial derivatives. This gives rise to four possible second - order partial derivatives of f, which are defined by : $\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=f_{x x} \quad$ differential twice with respect to x $\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=f_{y y}$ differential twice with respect to y $\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=f_{x y}$ differential first with respect to x and then with respect to y $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=f_{y x}$ differential first with respect to y and then with respect to x

The last two cases are called the mixed second -order partial derivatives .
Also, the derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are called the first - order partial derivatives

Some possibilities of third-order, fourth - order are :

$$
\begin{array}{cc}
\frac{\partial^{3} f}{\partial x^{3}}=\frac{\partial}{\partial x}\left(\frac{\partial^{2} f}{\partial x^{2}}\right)=f_{x x x} \quad, \quad \frac{\partial^{4} f}{\partial y^{4}}=\frac{\partial}{\partial y}\left(\frac{\partial^{3} f}{\partial y^{3}}\right)=f_{y y y} \\
\frac{\partial^{3} f}{\partial y^{2} \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial^{2} f}{\partial y \partial x}\right)=f_{x y y}, \quad \frac{\partial^{4 f}}{\partial y^{2} \partial x^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial^{3} f}{\partial y \partial x^{2}}\right)=f_{x x y y}
\end{array}
$$

Example :find the second -order partial derivative of $f(x, y)=x^{2} y^{2}+x^{4 y}$
Solution :
$\frac{\partial f}{\partial x}=2 x y^{3}+4 x^{3} y \quad$ and $\quad \frac{\partial f}{\partial y}=3 x^{2} y^{2}+x^{4}$
$\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}\left(2 x y^{3}+4 x^{3} y\right)=2 y^{3}+12 x^{2} y=f_{x x}$
$\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial y}\left(3 x^{2} y^{2}+x^{4}\right)=6 x^{2} y=f_{y y}$
$\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial x}\left(3 x^{2} y^{2}+x^{4}\right)=6 x y^{2}+4 x^{3}=f_{y x}$
$\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial y}\left(2 x y^{3}+4 x^{3} y\right)=6 x y^{2}+4 x^{3}=f_{x y}$

Example :let $f(x, y)=y^{2} e^{x}+y$ find $f_{x y y}$
Solution :

$$
f_{x y y}=\frac{\partial^{3} f}{\partial y^{2} \partial x}=\frac{\partial^{2}}{\partial y^{2}}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2}}{\partial y^{2}}\left(y^{2} e^{x}\right)=\frac{\partial}{\partial y}\left(2 y e^{x}\right)=2 e^{x}
$$

