
2.5 The Chain Role  

If   x = x(t)  and  y = y(t) are differentiable at  t, and if   z = f(x,y) is differentiable at 

the point  (x,y) = { x(t) , y(t)} , then : 

  

  
 
  

  
 
  

  
 
  

  
 
  

  
           Two – variable chain rule  

Where the ordinary derivatives are evaluated at  t  and the partial derivatives are 

evaluated  at (x, y)  

Also,  

  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
       Three – variable chain rule  

Where the ordinary derivatives are evaluated at   t  and the partial derivatives are 

evaluated at  (x, y, z)  
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Example : Suppose  that  z= x
2
y  , x=t

2
 , y=t

3
 , use the chain rule to find  dz/dt ? 

Solution :  
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Alternatively ,   z =     (  ) (  )           
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2.5.1 Impact Differentiation  

Consider the special case where  z = f(x,y) is a function of  x  and  y is a 

differentiable function of x , then  

  

  
 
  

  
 
  

   
 
  

  
 
  

  
 
  

  
 
  

  
 
  

   
 

Suppose  that the equation : 

F(x,y) = c       by differentiating both sides with respect to x  
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2.6 The chain rule for partial derivatives  

2.6.1  consider the case where  x  and  y are each functions of two variables let : 
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Example: given that ,                         ⁄  Find                 ⁄⁄  

using the chain rule. 

Solution:  
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2.6.2  

if the functions     (   )       (   )        (   ) have first order partial 

derivatives at the point (u,v) , and if the function  w= f(x,y,z) is differentiable at the 

point ( (   )  (   )  (   )   then : 

  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
                 

  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 

 

 

 

 

 

 

 

 

 

 

Tree diagram for three –variable chain rule 

Example : suppose that  w=                               
  

   
     

  

  
 

Solution : 
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2.7 Direction derivatives and the gradient  

2.7.1 Direction Derivatives  

Directional derivatives allow as to compute the rates of change of a function with 

respect to distance  in any direction  

Duf: direction derivatives of   f  in the direction of u  

Geometrically : 

Duf (xO,yO) is the slope of the surface  z=f(x,y) in the direction of u at the point 

 (xO,yO , f(xO,yO))  

Analytically :  

Duf (xO,yO) represents the instantaneous rate of change of f(x,y) with respect to 

distance in the direction  of u at the point (xO,yO)  

 

 

 

 

 

 

 

 

Theorem : 

a) If f(x,y) is differentiable at (xO,yO), and if u= u1i+u2j is a unit vector then : 

   (     )    (     )     (     )   

b) If f(x,y,z) is differentiable at (xO,yO,zO), and if u=u1i+u2j+u3k is a unite 

vector , then  

   (        )    (        )     (        )     (        )   

 

 

 

Slope in u direction =rate of z with 

respect  to the distance from (xO,yO) 
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Example : let f (x,y) =xy and find Duf (1,2), where u= 
  

 
  

 

 
  

Solution :  
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We conclude that if we move a small distance from the point (1,2) in the direction of  

u , the function  f (x,y) =xy will increase by about 2.23 times the distance moved . 

 

Example :find the directional derivative of f(x,y) =       (    ) in the direction of 

the unit vector that makes an angle of      with the positive  x –axis  

 

Solution : the partial derivatives of  f are  
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Example : find Duf for  f(x,y,z) =             the point (1,-2,0) in the direction 

of the vector     a=2i+j-2k  

Solution :  
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