2.5 The Chain Role

If $x=x(t)$ and $y=y(t)$ are differentiable at t, and if $z=f(x, y)$ is differentiable at the point $(\mathrm{x}, \mathrm{y})=\{\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})\}$, then :
$\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \quad$ Two - variable chain rule
Where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at (x, y)

Also,
$\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t} \quad$ Three - variable chain rule
Where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at (x, y, z)

Tree diagram of two-variables
chain rule

Tree diagram of Three variables chain rule

Example : Suppose that $\mathrm{z}=\mathrm{x}^{2} \mathrm{y}, \mathrm{x}=\mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{3}$, use the chain rule to find $\mathrm{dz} / \mathrm{dt}$?
Solution :

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}=(2 x y)(2 t)+\left(x^{2}\right)\left(3 t^{3}\right)=7 t^{6}
$$

Alternatively, $\mathrm{z}=x^{2} y=\left(t^{2}\right)^{2}\left(t^{3}\right)=t^{7}$ then $\frac{d z}{d t}=7 t^{6}$

Example :Suppose that $z=\sqrt{x y+y}, x=\cos \theta, y=\sin \theta$ find $d z / d \theta$?
$\frac{d z}{d \theta}=\frac{\partial z}{\partial x} \frac{d x}{d \theta}+\frac{\partial z}{\partial y} \frac{d y}{d \theta}=\frac{1}{2}(x y+y)^{-1 / 2}(y)(-\sin \theta)+\frac{1}{2}(x y+y)^{-\frac{1}{2}}(x+1)(\cos \theta)$
When $\theta=\frac{\pi}{2}$, we have , $x=\cos \frac{\pi}{2}=0, y=\sin \frac{\pi}{2}=1, \theta=\frac{\pi}{2}$

$$
\left.\frac{d z}{d \theta}\right|_{\theta=\pi / 2}=\frac{1}{2}(1)(1)(-1)+\frac{1}{2}(1)(1)(0)=-\frac{1}{2}
$$

2.5.1 Impact Differentiation

Consider the special case where $z=f(x, y)$ is a function of x and y is a differentiable function of x, then

$$
\frac{d z}{d x}=\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \frac{d y}{d x}
$$

Suppose that the equation :
$\mathrm{F}(\mathrm{x}, \mathrm{y})=\mathrm{c} \quad$ by differentiating both sides with respect to x

$$
\begin{gathered}
\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \frac{d y}{d x}=0, \quad \text { if } \frac{\partial f}{\partial y} \neq 0, \text { we obtain } \\
\frac{d y}{d x}=-\frac{\partial f / \partial x}{\partial f / \partial y}=-\frac{f x}{f y}
\end{gathered}
$$

Example : given that $x^{3}+y^{2}-3=0$, find $\frac{d y}{d x}$?
Solution :
$\frac{d y}{d x}=-\frac{\partial f / \partial x}{\partial f / \partial y} \quad f(x, y)=x^{3}+y^{2}-3=0$
$\partial f / \partial x=3 x^{2}+y^{2} \quad \partial f / \partial y=2 y x$
$\frac{d y}{d x}=-\frac{3 x^{2}+y^{2}}{2 y x}$
$f(x, y, z)=0$ if $\partial f / \partial z \neq 0$ then
$\frac{\partial z}{\partial x}=-\frac{\partial f / \partial x}{\partial f / \partial z}$
$\frac{\partial z}{\partial y}=-\frac{\partial f / \partial y}{\partial f / \partial z}$

2.6 The chain rule for partial derivatives

2.6.1 consider the case where x and y are each functions of two variables let : $z=f(x, y)$ and $x=x(u, v), \quad y=y(u, v)$: then

$$
\mathrm{Zz}=f(x(u, v), y(u, v))
$$

$$
\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \quad \text { and } \quad \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}
$$

Example: given that, $z=e^{x y}, x=2 u+v, y=u / v$. Find $\partial z / \partial u$ and $\partial z / \partial v$ using the chain rule.

Solution:

$$
\begin{aligned}
& \frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}=\left(y e^{x y}\right)(2)+\left(x e^{x y}\right)\left(\frac{1}{v}\right)=\left[2 y+\frac{x}{v}\right] e^{x y} \\
& =\left[\frac{2 u}{v}+\frac{2 u+v}{v}\right] e^{(2 u+v)\left(\frac{u}{v}\right)}=\left[\frac{4 u}{v}+1\right] e^{(2 u+v)\left(\frac{u}{v}\right)} \\
& \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}=\left(y e^{x y}\right)(1)+\left(x e^{x y}\right)\left(-\frac{u}{v^{2}}\right) \\
& =\left[y-x\left(\frac{u}{v^{2}}\right)\right] e^{x y}=\left[\frac{u}{v}-(2 u+v)\left(\frac{u}{v^{2}}\right)\right] e^{(2 u+v)\left(\frac{u}{v}\right)}=-\frac{2 u^{2}}{v^{2}} e^{(2 u+v)\left(\frac{u}{v}\right)}
\end{aligned}
$$

2.6.2

if the functions $x=x(u, v), y=y(u, v)$ and $z=z(u, v)$ have first order partial derivatives at the point (u, v), and if the function $\mathrm{w}=\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is differentiable at the point $(x(u, v), y(u, v), z(u, v)$, then :

$$
\frac{\partial w}{\partial u}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial u}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial u} \quad \text { and } \quad \frac{\partial w}{\partial v}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial v}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial v}
$$

Tree diagram for three -variable chain rule
Example : suppose that $\mathrm{w}=e^{x y z}, x=3 u+v, z=u^{2} v$ find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$
Solution :

$$
\begin{aligned}
\frac{\partial w}{\partial u} & =y z e^{x y z}(3)+x z e^{x y z}(3)+x y e^{x y z}(2 u v) \\
& =e^{x y z}(3 y z+3 x z+2 x y u v) \\
\frac{\partial w}{\partial v} & =y z e^{x y z}(1)+x y z e^{x y z}(-1)+x y e^{x y z}\left(u^{2}\right) \\
& =e^{x y z}\left(y z-x z+x y u^{2}\right)
\end{aligned}
$$

2.7 Direction derivatives and the gradient

2.7.1 Direction Derivatives

Directional derivatives allow as to compute the rates of change of a function with respect to distance in any direction

Duf: direction derivatives of f in the direction of u

Geometrically :

$\operatorname{Duf}\left(\mathrm{x}_{\mathrm{O}}, \mathrm{y}_{0}\right)$ is the slope of the surface $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ in the direction of u at the point $\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{\mathrm{o}}, \mathrm{f}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{\mathrm{o}}\right)\right)$

Analytically :

Duf $\left(x_{0}, y_{0}\right)$ represents the instantaneous rate of change of $f(x, y)$ with respect to distance in the direction of u at the point $\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{\mathrm{o}}\right)$

Slope in u direction $=$ rate of z with respect to the distance from $\left(\mathrm{x}_{\mathrm{O}}, \mathrm{y}_{0}\right)$

Theorem :
a) If $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$, and if $u=u_{1} i+u_{2} j$ is a unit vector then :

$$
\operatorname{Duf}\left(x_{0,} y_{O}\right)=f x\left(x_{0,} y_{O}\right) u_{1}+f y\left(x_{O,} y_{0}\right) u_{2}
$$

b) If $f(x, y, z)$ is differentiable at $\left(\mathrm{x}_{\mathrm{O}}, \mathrm{y}_{\mathrm{O}}, \mathrm{z}_{\mathrm{O}}\right)$, and if $\mathrm{u}=\mathrm{u}_{1} \mathrm{i}+\mathrm{u}_{2} \mathrm{j}+\mathrm{u}_{3} \mathrm{k}$ is a unite vector, then

$$
\operatorname{Duf}\left(x_{O,}, y_{O}, z_{O}\right)=f x\left(x_{O,} y_{O}, z_{O}\right) u_{1}+f y\left(x_{O,}, y_{O}, z_{O}\right) u_{2}+f z\left(x_{O,} y_{O,}, z_{O}\right) u_{3}
$$

Example : let $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{xy}$ and find $\operatorname{Duf}(1,2)$, where $\mathrm{u}=\frac{\sqrt{3}}{2} i+\frac{1}{2} j$
Solution :

$$
\begin{gathered}
f x=y=2, \quad f y=x=1, \quad u=\frac{\sqrt{3}}{2} i+\frac{1}{2} j \\
\operatorname{Duf}(1,2)=2\left(\frac{\sqrt{3}}{2}\right)+1\left(\frac{1}{2}\right)=\sqrt{3}+\frac{1}{2} \approx 2.23
\end{gathered}
$$

We conclude that if we move a small distance from the point $(1,2)$ in the direction of u , the function $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{xy}$ will increase by about 2.23 times the distance moved .

Example :find the directional derivative of $\mathrm{f}(\mathrm{x}, \mathrm{y})=e^{x y}$ at $(-2,0)$ in the direction of the unit vector that makes an angle of $\pi / 3$ with the positive x -axis

Solution : the partial derivatives of f are

$$
f x(x, y)=y e^{x y}, \quad f y(x, y)=x e^{x y}
$$

$$
f x(-2,0)=0, \quad f y(-2,0)=-2
$$

$$
u=\cos \left(\frac{\pi}{3}\right) i+\sin \left(\frac{\pi}{3}\right) j=\frac{1}{2} i+\frac{\sqrt{3}}{2} j
$$

$$
\operatorname{Duf}(-2,0)=f x(-2,0) \cos \left(\frac{\pi}{3}\right)+f y(-2,0) \sin \left(\frac{\pi}{3}\right)
$$

$$
=0\left(\frac{1}{2}\right)+(-2)\left(\frac{\sqrt{3}}{2}\right)=-\sqrt{3}
$$

Example : find Duf for $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=x^{2} y-y z^{3}+z$ at the point $(1,-2,0)$ in the direction of the vector $\quad a=2 i+j-2 k$

Solution :

$f x(x, y, z)=z x y, \quad f y(x, y, z)=x^{2}-z^{3}, \quad f z(x, y, z)=-3 y z^{2}+1$
$f x(1,-2,0)=-4, \quad f y(1,-2,0)=1, \quad f z(1,-2,0)=1$
$u=\frac{a}{|a|}=\frac{1}{\sqrt{9}}(2 i+j-2 k)=\frac{2}{3} i+\frac{1}{3} j-\frac{2}{3} k$
$\operatorname{Duf}(1,-2,0)=(-4)\left(\frac{2}{3}\right)+\frac{1}{3}-\frac{2}{3}=-3$

