2.7.2 The Gradient

In the form of dot product

$$
\begin{aligned}
\operatorname{Duf}\left(x_{0}, y_{0}\right) & =\left(f x\left(x_{0}, y_{0}\right) i+f y\left(x_{0}, y_{0}\right) j\right) \cdot\left(u_{1} i+u_{2} j\right) \\
& =\left(f x\left(x_{0}, y_{0}\right) i+f y\left(x_{0}, y_{0}\right) j\right)
\end{aligned}
$$

Similarly

$$
\operatorname{Duf}\left(\left(x_{0}, y_{0}, z_{0}\right)=\left(f x\left(x_{0}, y_{0}, z_{0}\right) i+f y\left(x_{0}, y_{0}, z_{0}\right) j\right)+f z\left(x_{0}, y_{0}, z_{0}\right) k\right) \cdot u
$$

- If f is a function of x and y , then the gradient of f is

$$
\nabla f(x, y)=f x(x, y) i+f y(x, y) j
$$

- If f is a function of x, y and z , then the gradient of f is $\nabla f(x, y, z)=f x(x, y, z) i+f y(x, y, z) j+f z(x, y, z) k$
\therefore

$$
\operatorname{Duf}\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot u
$$

$$
\operatorname{Duf}\left(x_{0}, y_{0}, z_{0}\right)=\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot u
$$

Example : previous example
$f(x, y, z)=x^{2} y-y z^{3}+z, \quad$ the point $(1,-2,0), \quad u=\frac{2}{3} i+\frac{1}{3} j-\frac{2}{3} k$

Solution :

$$
\begin{aligned}
f x(1,-2,0) & =-4, \quad f y(1,-2,0)=1, f z(1,-2,0)=1 \\
\operatorname{Duf}(1,-2,0) & =\nabla f(1,-2,0) \cdot u=(-4 i+j+k) \cdot\left(\frac{2}{3} i+\frac{1}{2} j-\frac{2}{3} k\right) \\
& =(-4)\left(\frac{2}{3}\right)+\frac{1}{3}-\frac{2}{3}=-3
\end{aligned}
$$

2.7.2.1 Properties of the gradient

$D u f(x, y)=\nabla f(x, y) . u=|\nabla f(x, y)||u| \cos \theta=|\nabla f(x, y)| \cos \theta$
Where θ is the angle between $\nabla f(x, y)$ and u

- Where $\theta=0$ the maximum value of $\operatorname{Duf}(\mathrm{x}, \mathrm{y})$ is $|\nabla f(x, y)|$, this means that the surface $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ has its maximum slop at point (x, y) in the direction of the gradient
- When $\theta=\pi$ the minimum value of $\operatorname{Duf}(x, y)$ is $-|\nabla f(x, y)|$, this means that the surface $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ has its minimum slop of a point (x, y) in the direction that is opposite to the gradient

Example : let $f(x, y)=x^{2} e^{y}$. find the maximum value of a direction derivative at (2,0) and find the unite vector in the direction in which the maximum value occurs.

Solution :

$\nabla f\left(x, y f x(x, y) i+f y(x, y) j=2 x e^{y} i+x^{2} e^{y} j\right.$
$\nabla f(-2,0)=-4 i+4 j \quad$ maximum value $\theta=0$

$$
\operatorname{Du} f(-2,0)=|\nabla f(-2,0)|=\sqrt{(-4)^{2}+4^{2}}=\sqrt{3} 2=4 \sqrt{2}
$$

$$
u=\frac{\nabla f(-2,0)}{|\nabla f(-2,0)|}=\frac{1}{4 \sqrt{2}}(-4 i, 4 j)=-\frac{1}{\sqrt{2}} i+\frac{1}{\sqrt{2}} j
$$

2.8 Tangent Planes and Normal Lines

If $f(x, y)$ is differentiable at the point $\left(x_{0}, y_{0}\right)$, then the tangent plane to the surface $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ at the point $\mathrm{P}_{\mathrm{o}}(\mathrm{xO}, \mathrm{yO}), \mathrm{f}(\mathrm{xO}, \mathrm{yO})$ is the plane

$$
z=f\left(x_{0}, y_{0}\right)+f x\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f y\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

The line through the point P_{o} perpendicular to the tangent plane is normal to the surface $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ at P_{o} this normal line can be expressed as :
$x=x_{0}+f\left(x_{0}, y_{0}\right) t, y=y_{0}+f y\left(x_{0}, y_{0}\right) t, z=f x\left(x_{0}, y_{0}\right)-t$

Example : find an equation for the tangent plane and parametric equations for the normal line to the surface $z=x^{2} y$ at the point $(2,1,4)$

Solution :

$f x(x, y)=2 x y, f y(x, y)=x^{2}$
$f x(2,1)=4, \quad f y(2,1)=4$
The tangent plane has equation
$z=4+4(x-2)+4(y-1)=4 x+4 y-8$
The normal line has parametric equations
$x=2+4 t, \quad y=1+4 t, \quad z=4-t$

2.9 Maximum and Minimum of Function of two Variables

A function f of two variables is said to have a relative maximum at point $\left(x_{0}, y_{0}\right)$ if $f\left(x_{0}, y_{o}\right) \geq f(x, y)$ for all points (x, y) that lie inside the point (x_{o}, y_{o})

A function f of two variables is said to have a relative minimum at point $\left(x_{0}, y_{0}\right)$ if $f\left(x_{o}, y_{0}\right) \leq f(x, y)$ for all points (x, y) that lie inside the points $\left(x_{0}, y_{o}\right)$

If f has a relative maximum or a relative minimum at $\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{\mathrm{o}}\right)$, then we say that f has a relative extremum at $\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{0}\right)$

2.9.1 The Second Partials Test

- for any $\mathrm{f}(\mathrm{x}, \mathrm{y})$ by putting $f x=f y=0\left[\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=0\right]$

We can be find the critical point $\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{\mathrm{o}}\right)$

- Let $D=f_{x x}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{0}\right) f_{y y}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{0}\right)-f_{x y}^{2}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{\mathrm{o}}\right)$
a) If $\mathrm{D}>0$ and $f_{x x}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)>0$, then f has a relative minimum at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$
b) If $\mathrm{D}>0$ and $f_{x x}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{0}\right)<0$, then f has a relative maximum at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$
c) If $\mathrm{D}<0$, then f has a saddle point at $\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{\mathrm{o}}\right)$
d) If $\mathrm{D}=0$, then no conclusion can be drawn

Example : locate all relative extrema and saddle points of $f(x, y)=z=3 x^{2}-2 x y+y^{2}-8 y$

Solution :

$f x(x, y)=6 x-2 y$ and $f y(x, y)=-2 x+2 y-8$
The critical points of f satisfy the equations

$\mathrm{x}=2, \mathrm{y}=6$, so $(2,6)$ is the only critical point $\left(x_{0}, y_{0}\right)$
$f_{x x}(x, y)=6, \quad f_{y y}(x, y)=2, f_{x y}(x, y)=-2$
At the critical point $\left(x_{0,} y_{0}\right)=(2,6)$
$D=f_{x x}(2,6) f_{y y}(2,6)-f_{x y}^{2}(2,6)=(6)(2)-(-2)^{2}=8>0$
And

$$
f_{x x}(2,6)=6>0
$$

f has a relative minimum at critical point $(2,6)$

Related Rates Problem

Example : at what rate the volume of a box changing if its length 8 ft and increasing at $3 \mathrm{ft} / \mathrm{s}$, its width is 6 ft and increasing at $2 \mathrm{ft} / \mathrm{s}$, and its heigh is 4 ft and increasing at $1 \mathrm{ft} / \mathrm{s}$?

Solution :

let x, y and z length, width and height of a box, respectively let t time in seconds
$\frac{d x}{d t}=3, \quad \frac{d y}{d t}=2, \quad$ and $\frac{d z}{d t}=1$
$X=8, y=6$, and $z=4, v=x y z$
$\frac{d v}{d t}=\frac{\partial v}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial v}{\partial y} \cdot \frac{d y}{d t}+\frac{\partial v}{\partial z} \cdot \frac{d z}{d t}$
$\frac{d v}{d t}=6 * 4 * 3+8 * 4 * 2+8 * 6 * 1=184$
The volume is increasing at a rate of $184 \mathrm{ft}^{3} / \mathrm{s}$

Example : two straight roads intersect at right angles, car A, moving on one of the roads, approaches the intersection at $25 \mathrm{mi} / \mathrm{hr}$ and car B, moving on the other road, approaches the intersection at $30 \mathrm{mi} / \mathrm{hr}$. At what rate is the distance between the car changing when A is 0.3 mile from the intersection and B is 0.4 mile from the intersection

Solution :

$x(t)=$ position of car A
$y(t)=$ position of B
$\mathrm{s}(\mathrm{t})=$ distance between cars
$\mathrm{x}=0.3$ mile, $\mathrm{y}=0.4$ mile $, \quad \frac{d x}{d t}=25 \mathrm{mi} / \mathrm{hr}, \frac{d y}{d t}=30 \mathrm{mi} / \mathrm{hr}$
$\frac{d s}{d t}=?$
$s=\sqrt{x^{2}+y^{2}}$
$\frac{d s}{d t}=\frac{\partial s}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial s}{\partial y} \cdot \frac{d y}{d t}$

$$
\begin{aligned}
& =\frac{1}{2}\left(x^{2}+y^{2}\right)^{\frac{-1}{2}} \cdot 2 x(25)+\frac{1}{2}\left(x^{2}+y^{2}\right)^{\frac{-1}{2}} \cdot 2 y(30) \\
& =39 \mathrm{mi} / \mathrm{hr} \\
& =-39 \mathrm{mi} / \mathrm{hr}
\end{aligned}
$$

1. Let $f(x, y)=3 x^{3} y^{2}$ find:
a) $f x(x, 1)$,
b) fy $(1, y)$,
c) $f x(1,2)$,
d) $f y(1,2)$

Ans.
a) $9 x^{2}$
b) $6 y$
c) 36
d) 12
2. let $f(x, y)=(3 x+2 y)^{1 / 2}$ find :
a) the slope of the surface $z=f(x, y)$ in the x-direction at point $(4,2)$
b) the slope of the surface $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ in the y -direction at point $(4,2)$

Ans. a)3/8, b)1/4
3. let $z=\sin \left(y^{2}-4 x\right)$ find :
a) the rate of change of z with respect to x at the point $(2,1)$ with y held fixed
b) the rate of change of z with respect to y at the point $(2,1)$ with xnheld fixed

Ans. a)-4cos7, b)2cos7
4. use the information in the figure below to find the values of the first -order partial derivatives of f at the point $(1,2)$

Ans.

$$
\begin{gathered}
\frac{\partial z}{\partial x}=f x=-4 \\
\frac{\partial z}{\partial y}=f y=\frac{1}{2}
\end{gathered}
$$

