
Example : evaluate   ∬      
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 Example : evaluate ∬ (     )  
 

 , over the triangular region R enclosed 

between the lines  y= -x+1 , y = x+1  and y = 3  

Solution :  
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3.2.4 Double Integrals in Polar Coordinate 

   In this section we will study double integrals in which the integrand and the region 

of integration are expressed in polar coordinates  

 Simple polar Region 

A simple polar region in polar coordinates system is a region that is enclosed 

between two rays              ,and two continuous polar curves             

r = r1( ) and  r = r2( ) , where the equations of the rays and  polar curves  

satisfy the following condition : 

 

 

 

 

 

 

 

 

 

 

 

 Evaluation polar Double integrals 

If   R  is a simple polar region whose boundaries are the rays               

and the curves  r = r1 ( ) and r = r2 ( ), and if   (   ) is continuous on R , then  
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Example : Evaluate ∬        
 

 where R is the region in the first quadrant that is 

outside the circle r=2 and inside the cardioid     (      ). 

Solution :  
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Example :the sphere of radius (a) centered at the origin is expressed in rectangular 

coordinates as                  and its equation in cylindrical coordinates is 

         . Use this equation and a polar integral to find the volume of the sphere  

Solution : 
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