Example : evaluate [ fR xydA, over the region R enclosed between y= %x :
y=+/x, x=2, andx =4.

Solution :

=2 X = z

<% Z=xy
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Example : evaluate [f, (2x—y*dA , over the triangular region R enclosed
between the lines y=-x+1,y=x+1 andy =3

Solution :
y Z
(-2,3) (2.3)
y=3 Z= 2%-y?
= 2X-y
y=-Xx+1
(x=1-y)
(0,1)
X

y=1 ’ (2,3)
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3.2.4 Double Integrals in Polar Coordinate

In this section we will study double integrals in which the integrand and the region
of integration are expressed in polar coordinates

s Simple polar Region
A simple polar region in polar coordinates system is a region that is enclosed
between two rays 6 = a and 6 = ,and two continuous polar curves

r =ry (@) and r =r,(0) , where the equations of the rays and polar curves
satisfy the following condition :

iNB—a<2m 0= r(6) < r,(6)

r=ry(0) p=a=2n

¢ Evaluation polar Double integrals
If R isasimple polar region whose boundaries are the rays 8 =x and 6 = [
and the curves r=ry (@ andr=r, (), and if f(r, 8) is continuous on R, then

V= [f, £(r0)da = [} [7*© f(r,6)rdrdo , dA = rdrdo




Example : Evaluate [f, sinf8dA where R is the region in the first quadrant that is
outside the circle r=2 and inside the cardioid r = 2(1 + cos 9).

T
- 0=—
Solution : 2| - 2(1 + cos )
M |
r=2
JI, sin6dA = [> f22(1+cos 9 (sin )rdrdo , dA = rdrd@
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Example :the sphere of radius (a) centered at the origin is expressed in rectangular

coordinates as  x% + y% + z? = a?, and its equation in cylindrical coordinates is
r% + z? = a? . Use this equation and a polar integral to find the volume of the sphere

Solution :
Z=va? —r?

=

v=2[f, (Va? —1? d0=f02n foa\/az — 12 (2r)drd6

2m. 2, 5 5.3 2m 2 2 2
=/, 7r[—g(a2 r2)/2]9_, do = f0n§a3d9 = §a39]§’§0 = §a327r

4
v =-ma3
3



