Example : evaluate $\iint_{R} x y d A$, over the region R enclosed between $\mathrm{y}=\frac{1}{2} \mathrm{x} \quad$, $\mathrm{y}=\sqrt{x}, \quad \mathrm{x}=2$, and $\mathrm{x}=4$.

Solution :

$$
x=2 \quad x=4
$$

Example : evaluate $\iint_{R}\left(2 x-y^{2)} d A\right.$, over the triangular region R enclosed between the lines $\mathrm{y}=-\mathrm{x}+1, \mathrm{y}=\mathrm{x}+1$ and $\mathrm{y}=3$

Solution :

$$
\begin{aligned}
\mathrm{V} & =\int_{c}^{d} \int_{h_{1(y)}}^{h_{2(y)}} f(x, y) d x d y \quad \text { Type II } \\
\mathrm{V} & =\int_{1}^{3} \int_{1-y}^{y-1}\left(2 x-y^{2)} d x d y\right. \\
& \left.=\int_{1}^{3} \frac{2 x^{2}}{2}-y^{2} x\right]_{x=1-y}^{y-1} d y \\
& \left.=\int_{1}^{3}\left[\left\{(y-1)^{2}-y^{3}+y^{2}\right)\right\}-\left\{(1-y)^{2}-y^{2}+y^{3}\right\}\right] d y \\
& =\int_{1}^{3}-2\left(y^{3}-y^{2)} d y\right. \\
& \left.=-2 \frac{y^{4}}{4}+2 \frac{y^{3}}{3}\right]_{1}^{3} \\
& =\left(-\frac{81}{2}+\frac{54}{3}\right)-\left(\frac{-1}{2}+\frac{2}{3}\right) \\
& =\frac{-68}{3}
\end{aligned}
$$

3.2.4 Double Integrals in Polar Coordinate

In this section we will study double integrals in which the integrand and the region of integration are expressed in polar coordinates

* Simple polar Region

A simple polar region in polar coordinates system is a region that is enclosed between two rays $\theta=\alpha$ and $\theta=\beta$,and two continuous polar curves $r=r_{1}(\theta)$ and $r=r_{2}(\theta)$, where the equations of the rays and polar curves satisfy the following condition :

Evaluation polar Double integrals

If R is a simple polar region whose boundaries are the rays $\theta=\alpha$ and $\theta=\beta$ and the curves $\mathrm{r}=\mathrm{r}_{1}(\theta)$ and $\mathrm{r}=\mathrm{r}_{2}(\theta)$, and if $f(r, \theta)$ is continuous on R , then

$$
\mathrm{V}=\iint_{R} f(r, \theta) d A=\int_{\alpha}^{\beta} \int_{r_{1(\theta)}}^{r_{2(\theta)}} f(r, \theta) r d r d \theta, d A=r d r d \theta
$$

a

b

Example : Evaluate $\iint_{R} \sin \theta d A$ where R is the region in the first quadrant that is outside the circle $\mathrm{r}=2$ and inside the cardioid $r=2(1+\cos \theta)$.

Solution :

$\left.=\int_{0}^{\pi / 2} \frac{1}{2} r^{2}(\sin \theta)\right]_{r=2}^{2(1+\cos \theta)} d \theta=\int_{0}^{\frac{\pi}{2}}\left[2(1+\cos \theta)^{2} \sin \theta-2 \sin \theta\right] d \theta$
$=2 \int_{0}^{\pi / 2}\left[(1+\cos \theta)^{2} \sin \theta-\sin \theta\right] d \theta=2\left[-\frac{1}{3}(1+\cos \theta)^{3}+\cos \theta\right]_{\theta=0}^{\pi / 2}$
$=2\left[-\frac{1}{3}-\left(-\frac{8}{3}+1\right)\right]=2\left(-\frac{1}{3}+\frac{5}{3}\right)=\frac{8}{3}$
Example :the sphere of radius (a) centered at the origin is expressed in rectangular coordinates as $x^{2}+y^{2}+z^{2}=a^{2}$, and its equation in cylindrical coordinates is $r^{2}+z^{2}=a^{2}$. Use this equation and a polar integral to find the volume of the sphere

Solution :

$$
\begin{aligned}
& v=2 \iint_{R}\left(\sqrt{a^{2}-r^{2}} \mathrm{~d} \theta=\int_{0}^{2 \pi} \int_{0}^{a} \sqrt{a^{2}-r^{2}}(2 r) d r d \theta\right. \\
& \left.=\int_{0}^{2 \pi}\left[-\frac{2}{3}\left(a^{2-} r^{2}\right)^{3 / 2}\right]_{r=0}^{a} d \theta=\int_{0}^{2 \pi} \frac{2}{3} a^{3} d \theta=\frac{2}{3} a^{3} \theta\right]_{\theta=0}^{2 \pi}=\frac{2}{3} a^{3} 2 \pi \\
& v=\frac{4}{3} \pi a^{3}
\end{aligned}
$$

