Lecture 4

Volume of hydration products, Examples

Example1:

Find the volume of the hydration products for a reaction between 100 g of cement with 42 g of water. Assume that the reaction occurred in a sailed container.

Solution:
w/c ≥ 0.42 then, no unhydrated cement will appear after reaction
$\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{c}}+0.23 \mathrm{C}-0.254 \times 0.23 \mathrm{C}$
$\mathrm{V}_{\mathrm{s}}=100 / 3.15+0.23 \times 100-0.254 \times 0.23 \times 100$
$=48.9 \mathrm{ml}$
$\mathrm{W}_{\mathrm{g}}=0.28\left(\mathrm{~V}_{\mathrm{s}}+\mathrm{W}_{\mathrm{g}}\right)$
$\mathrm{W}_{\mathrm{g}}=0.28\left(48.9+\mathrm{W}_{\mathrm{g}}\right)$
$\mathrm{W}_{\mathrm{g}}=19 \mathrm{ml}$
Volume of hydrated cement $=19+48.9=67.9 \mathrm{ml}$
Volume of voids $=67.9-(31.8+42)=5.9 \mathrm{ml}$
Volume of fully voids with water $=(19+0.23 \times 100)-42=0 \mathrm{ml}($ why $)$
Volume of empty voids $=5.9 \mathrm{ml}$

Example 2: Find the volume of hydration products for a reaction of 100 g of cement with $\mathbf{3 0 g}$ of water. Assume that the reaction occurred in a sailed container.

Solution:
$\mathrm{w} / \mathrm{c} \leq 0.42$ then, unhydrated cement will appear after reaction) a part of cement will react $=\mathrm{x}$)
$V_{s}=x / 3.15+0.23 x-0.254 \times 0.23 x$
Vs $=0.489 \mathrm{x} \mathrm{ml}$
$\mathrm{W}_{\mathrm{g}}=0.28\left(0.489 \mathrm{x}+\mathrm{W}_{\mathrm{g}}\right)$ Eq 1
$\mathrm{W}_{\text {total }}=\mathrm{W}_{\mathrm{g}}+$ combined water (0.23 C)
$40=\mathrm{W}_{\mathrm{g}}+0.23 \mathrm{x}$
Solve the two eqs.
$\mathrm{x}=71.5 \mathrm{~g}=71.5 / 3.15=22.7 \mathrm{ml} \ldots \ldots$. Specific gravity of $\mathrm{C}=3.15$
$\mathrm{W}_{\mathrm{g}}=13.5 \mathrm{~g}=13.5 \mathrm{ml}$
Volume of hydrated cement $=13.5+71.5 \times 0.489=48.5 \mathrm{ml}$
Volume of unhydrated cement $=100 / 3.15-22.7=9.1 \mathrm{ml}$
Volume of voids $=(100 / 3.15+30)-(48.5+9.1)=4.2$ (they will be empty for sure because insufficient water is used)

Properties of Concrete
$2^{\text {nd }}$ Year
Mahmoud Khashaa Mohammed

Example 3: For 50 \% degree of hydration, find the volume of hydration products for a reaction of 126 g of cement with $w / \mathrm{c}=\mathbf{0 . 4 7 5}$. Assume that the reaction occurred in a sailed container.

Solution:
$w / c \geq 0.42$ then, no unhydrated cement will appear after reaction. However, there will be unhydrated cement for 50% degree of hydration.
$\mathrm{V}_{\mathrm{s}}=[126 / 3.15+0.23 \times 126-0.254 \times 0.23 * 126] \times 50 \%$
$\mathrm{V}_{\mathrm{s}}=30.8 \mathrm{ml}$
$\mathrm{W}_{\mathrm{g}}=0.28\left(30.8+\mathrm{W}_{\mathrm{g}}\right)$
$\mathrm{W}_{\mathrm{g}}=0.28\left(30.8+\mathrm{W}_{\mathrm{g}}\right)$
$\mathrm{W}_{\mathrm{g}}=12 \mathrm{ml}$
Volume of unhydrated cement $=126 / 3.15 \times 50 \%=20 \mathrm{ml}$
Volume of fully voids $=60-(12+0.23 \times 126 \times 0.5)=33.5 \mathrm{ml}$
Volume of empty voids $=37.5-33.5=4 \mathrm{ml}$

| $(W)=60 \mathrm{ml}$ |
| :---: | :---: | :---: | :---: |

After knowing the structure of a hydrated cement paste:

Properties of Concrete
$2^{\text {nd }}$ Year
Mahmoud Khashaa Mohammed
What are the ideas in your mind to develop the concrete?
How we can benefit from this information for the real concrete work?

