
Lecture 10:

Access Control II:

Authorization

4th Year Course- CCSIT, UoA

IS Security Sufyan Al-Janabi 2017 1

Aim of Lecture

To study authorization as the part of access
control concerned with restrictions on the
actions of authenticated users.

To explore CAPTCHAs

IS Security Sufyan Al-Janabi 2017 2

IS Security Sufyan Al-Janabi
2017

Authentication vs. Authorization

• Authentication Are you who you say you are?

– Restrictions on who (or what) can access system

• Authorization Are you allowed to do that?

– Restrictions on actions of authenticated users

• In its most basic form, authorization deals with the
situation where we've already authenticated Alice and
we want to enforce restrictions on what she is allowed
to do.

• Note that while authentication is binary (either a user is
authenticated or not), authorization can be a much
more fine grained process

3

Lampson’s Access Control Matrix (1)

• This matrix contains all of the relevant information needed by
an operating system to make decisions about which users are
allowed to do what with the various system resources.

• We'll define a subject as a user of a system (not necessarily a
human user) and an object as a system resource.

• Two fundamental constructs in the field of authorization are
access control lists, or ACLs, and capabilities, or C-lists.

• Both ACLs and C-lists are derived from Lampson's access
control matrix, which has a row for every subject and a column
for every object.

• Sensibly enough, the access allowed by subject S to object O
is stored at the intersection of the row indexed by S and the
column indexed by O.

• An example of an access control matrix appears in the next
slide, where x , r , and w stand for execute, read, and write
privileges, respectively.

IS Security Sufyan Al-Janabi 2017 4

IS Security Sufyan Al-Janabi
2017

Lampson’s Access Control Matrix (2)

rx rx r

rx rx r rw rw

rwx rwx r rw rw

rx rx rw rw rw

OS
Accounting

program
Accounting

data

Insurance
data

Payroll
data

Bob

Alice

Sam

Accounting
program

• Subjects (users) index the rows

• Objects (resources) index the columns

5

IS Security Sufyan Al-Janabi
2017

Performance for authorization operations (1)

 Since all subjects and all objects appear in the access
control matrix, it contains all of the relevant
information on which authorization decisions can be
based. However, there is a practical issue in managing a
large access control matrix.

Access control matrix has all relevant information. But
this could be (e.g.) 100’s of users, 10,000’s of resources.
Then matrix has 1,000,000’s of entries

How to manage such a large matrix?

Note: We need to check this matrix before access to any
resource by any user

How to make this more efficient/practical?

6

IS Security Sufyan Al-Janabi
2017

Performance for authorization operations (2)

 The solution is that the access control matrix can be
partitioned into more manageable pieces. There are two
obvious ways for this:

1. We could split the matrix into its columns and store each
column with its corresponding object. Then, whenever an
object is accessed, its column of the access control matrix
would be consulted to see whether the operation is
allowed. These columns are known as access control lists,
or ACLs.

2. We could store the access control matrix by row, where
each row is stored with its corresponding subject.. This
approach is know as capabilities, or C-lists.

7

IS Security Sufyan Al-Janabi
2017

Access Control Lists (ACLs)

• ACL: store access control matrix by column

• Example: ACL for insurance data is in blue

rx rx r

rx rx r rw rw

rwx rwx r rw rw

rx rx rw rw rw

OS
Accounting

program
Accounting

data

Insurance
data

Payroll
data

Bob

Alice

Sam

Accounting
program

8

IS Security Sufyan Al-Janabi
2017

Capabilities (or C-Lists)

• Store access control matrix by row

• Example: Capability for Alice is in red

rx rx r

rx rx r rw rw

rwx rwx r rw rw

rx rx rw rw rw

OS
Accounting

program
Accounting

data

Insurance
data

Payroll
data

Bob

Alice

Sam

Accounting
program

9

IS Security Sufyan Al-Janabi
2017

ACLs vs. Capabilities (1)

 Note that arrows point in opposite directions…
 with capabilities, the association between users and files is built

into the system,
 while for an ACL-based system, a separate method for associating

users to files is required

Access Control List Capability

file1

file2

file3

file1

file2

file3

r

r

Alice

Bob

Fred

w
r

rw
r
r

Alice

Bob

Fred

r
w
rw

r
r

r

r

10

ACLs vs. Capabilities (2)

 Capabilities have several security advantages over ACLs
and, for this reason.

 One potential security advantage of capabilities over
ACLs is the so called confused deputy problem. To
illustrate this problem, consider:

1. A system with two resources, a compiler and a file
named BILL that contains critical billing information,
and one user, Alice.

2. The compiler can write to any file.

3. Alice can invoke the compiler and she can provide a
filename where debugging information will be written.

4. However, Alice is not allowed to write to the file BILL,
since she might corrupt the billing information.

IS Security Sufyan Al-Janabi 2017 11

IS Security Sufyan Al-Janabi
2017

Confused Deputy

• Two resources:
Compiler and BILL file
(billing info)

• One user: Alica

• Compiler can write file
BILL

• Alice can invoke
compiler with a debug
filename

• Alice not allowed to
write to BILL

 Access control matrix

x

rx rw

Compiler BILL

Alice

Compiler

12

IS Security Sufyan Al-Janabi
2017

ACL’s and Confused Deputy

• Compiler is deputy acting on behalf of Alice

• Compiler is confused: Alice is not allowed to write
BILL

• Compiler has confused its rights with Alice’s

Alice BILL

Compiler

13

