
Lecture A3: 

 Finite Fields of the 
Form GF(2n)  

4th Year Course- CCSIT, UoA 
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Lecture goals 

To review finite fields of the form GF (2n)  

 

To show how arithmetic operations can be carried 
out by directly operating on the bit patterns for the 
elements of GF (2n)  
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Consider Again the Polynomials Over GF (2)  

 Here are some examples:  

 

 

 

 

 We could also shown polynomials with negative coefficients, but 
recall that in GF (2), 1 is the same as +1.  

 Obviously, the number of such polynomials is infinite.  

 The polynomials can be subject to the algebraic operations of 
addition and multiplication in which the coefficients are added 
and multiplied according to the rules that apply to GF (2).  

 As stated in the previous lecture, the set of such polynomials 
forms a ring, called the polynomial ring.  
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Modular Polynomial Arithmetic     (1) 

 Let's now add one more twist to the algebraic operations 
we carry out on all the polynomials over GF (2):  

We will first choose a particular irreducible polynomial, as 
for example                x 3 + x + 1  
(By the way there exist only two irreducible polynomials of 
degree 3 over GF (2). The other is x 3 + x 2 + 1.)  

We will now consider all polynomials defined over GF (2) 
modulo the irreducible polynomial x 3 + x + 1.  

 In particular, when an algebraic operation (we are 
obviously  talking about polynomial multiplication) results 
in a polynomial whose degree equals or exceeds that of 
the irreducible polynomial, we will take for our result the 
remainder modulo the irreducible polynomial. 
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Modular Polynomial Arithmetic     (2) 
 For example,  

 

 

 

 

 

 Recall that 1 + 1 = 0  in GF (2). This is what we used in getting to 
the second expression on the right hand side.  

 For the division by the modulus in the above example, we used 
the result 

 

 

 Obviously, for the division on the left hand side, our first quotient 
term is x. Multiplying the divisor by x  yields x 4 + x 2 + x  that 
when subtracted from the dividend gives us  x 3  x 2 + 1. This 
dictates that the next term of the quotient be 1, and so on.  
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How Large is the Set of Polynomials When  
Multiplications are Carried Out Modulo x 3 + x + 1  

With multiplications modulo x 3 + x + 1, we have only the following 
eight polynomials in the set of polynomials over GF (2):  
 
 
 
 
 

We will refer to this set as GF (23) where the power of 2 is the 
degree of the modulus polynomial.  

 Our conceptualization of GF (23) is analogous to our 
conceptualization of the set Z8. The eight elements of Z8 are to be 
thought of as integers modulo 8. So, basically, Z8 maps all integers 
to the eight in the set Z8. Similarly, GF (23) maps all of the 
polynomials over GF (2) to the eight polynomials shown above.  

 But note the crucial difference between GF (23) and Z8: GF (23) is a 
field, whereas Z8 is NOT.  
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How Do We Know That GF (23) is a Finite Field?         (1) 

We do know that GF (23) is an abelian group because of 
the operation of polynomial addition satisfies all of the 
requirements on a group operator and because 
polynomial addition is commutative.  

GF (23) is also a commutative ring because polynomial 
multiplication distributes over polynomial addition (and 
because polynomial multiplication meets all the other 
stipulations on the ring operator: closedness, associativity, 
commutativity).  

GF (23) is an integral domain because of the fact that the 
set contains the multiplicative identity element  1  and 
because if for  a  GF (23) and  b  GF (23) we have  

           a × b = 0 mod (x 3 + x + 1)  
     then either  a = 0  or  b = 0.  

 
IS Security   Sufyan Al-Janabi  2017 7 



How Do We Know That GF (23) is a Finite Field?          (2) 

GF (23) is a finite field because it is a finite set and because it 
contains a unique multiplicative inverse for every non-zero 
element.  

GF (23) contains a unique multiplicative inverse for every 
non- zero element for the same reason that Z7 contains a 
unique multiplicative inverse for every non-zero integer in 
the set. (For a counterexample, recall that Z8 does not 
possess multiplicative inverses for 2, 4, and 6.)  

 In other words, for every non-zero element a  GF (23) there 
is always a unique element b  GF (23) such that  a × b = 1.  

This follows from the fact if you multiply a non-zero element  
a  with each of the eight elements of GF (23), the result will 
the eight distinct elements of GF (23).  
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How Do We Know That GF (23) is a Finite Field?         (3) 

Obviously, the results of such multiplications must equal 1 
for exactly one of the non- zero element of GF (23). So if  a × 
b = 1, then b  must be the multiplicative inverse for  a.  

The same thing happens in Z7. If you multiply a non-zero 
element  a  of this set with each of the seven elements of Z7, 
you will get seven distinct answers. The answer must 
therefore equal  1  for at least one such multiplication. When 
the answer is 1, you have your multiplicative inverse for  a.  

 For a counterexample, this is not what happens in Z8. When 
you multiply 2 with every element of Z8, you do not get eight 
distinct answers. (Multiplying 2 with every element of Z8 
yields {0, 2, 4, 6, 0, 2, 4, 6} that has only four distinct 
elements).  

 The upshot is that GF (23) is a finite field.  
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GF (2n) is a Finite Field for Every n  

 None of the arguments on the previous three pages is 
limited by the value 3 for the power of 2. That means that 
GF (2n ) is a finite field for every n.  

 To find all the polynomials in GF (2n ), we obviously need 
an irreducible polynomial of degree n.  

 AES arithmetic is based on GF (28). It uses the following 
irreducible polynomial  

               x 8 + x 4 + x 3 + x + 1  
 The finite field GF (28) used by AES obviously contains 256 

distinct polynomials over GF (2).  

 In general, GF (p n ) is a finite field for any prime p. The 
elements of GF (p n ) are polynomials over GF (p) (which is 
the same as the set of residues Zp). 
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Representing the Individual Polynomials in GF (2n) 
by Binary Code Words                         (1) 

Recall the eight polynomials in GF (23) when the 
modulus polynomial is x 3 + x + 1 (See the next page).  

We now claim that there is nothing sacred about the 
variable  x   in such polynomials.  

We can think of  x i  as being merely a place-holder for a 
bit.  

That is, we can think of the polynomials as bit strings 
corresponding to the coefficients that can only be  0 or 
1, each power of  x  representing a specific position in a 
bit string.  

  So the 23 polynomials of GF (23) can therefore be 
represented by the bit strings shown in the next page. 
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Representing the Individual Polynomials in   GF (2n) 
by Binary Code Words                    (2) 

 
 
 
 
 
 
 
 

 If we wish, we can give a decimal representation to each of the 
above bit patterns. The decimal values between 0 and 7, both 
limits inclusive, would have to obey the addition and 
multiplication rules corresponding to the underlying finite field.  

 Exactly the same approach can be used to come up with  2n  bit 
patterns, each pattern consisting of  n  bits, for a set of integers 
that would constitute a finite field, provided we have available to 
us an irreducible polynomial of degree  n .  
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