Lecture A3:
 Finite Fields of the Form GF(2 $\mathbf{2}^{\text {n }}$)

$4^{\text {th }}$ Year Course- CCSIT, UoA

Lecture goals

\square To review finite fields of the form GF (2n)
\square To show how arithmetic operations can be carried out by directly operating on the bit patterns for the elements of GF (2^{n})

Consider Again the Polynomials Over GF (2)

- Here are some examples:


```
x
1
x
x}1000
```

- We could also shown polynomials with negative coefficients, but recall that in $G F(2),-1$ is the same as +1 .
- Obviously, the number of such polynomials is infinite.
- The polynomials can be subject to the algebraic operations of addition and multiplication in which the coefficients are added and multiplied according to the rules that apply to GF (2).
- As stated in the previous lecture, the set of such polynomials forms a ring, called the polynomial ring.

Modular Polynomial Arithmetic (1)

$>$ Let's now add one more twist to the algebraic operations we carry out on all the polynomials over GF (2):
$>$ We will first choose a particular irreducible polynomial, as for example $\quad x^{3}+x+1$
(By the way there exist only two irreducible polynomials of degree 3 over GF (2). The other is $x^{3}+x^{2}+1$.)
$>$ We will now consider all polynomials defined over GF (2) modulo the irreducible polynomial $x^{3}+x+1$.
$>$ In particular, when an algebraic operation (we are obviously talking about polynomial multiplication) results in a polynomial whose degree equals or exceeds that of the irreducible polynomial, we will take for our result the remainder modulo the irreducible polynomial.

Modular Polynomial Arithmetic

$>$ For example,

$$
\begin{aligned}
& \left(x^{2}+x+1\right) \times\left(x^{2}+1\right) \bmod \left(x^{3}+x+1\right) \\
& \quad=\left(x^{4}+x^{3}+x^{2}\right)+\left(x^{2}+x+1\right) \bmod \left(x^{3}+x+1\right) \\
& =\left(x^{4}+x^{3}+x+1\right) \bmod \left(x^{3}+x+1\right) \\
& =-x^{2}-x \\
& =x^{2}+x
\end{aligned}
$$

$>$ Recall that $1+1=0$ in GF (2). This is what we used in getting to the second expression on the right hand side.
$>$ For the division by the modulus in the above example, we used the result

$$
\frac{\left(x^{4}+x^{3}+x+1\right)}{\left(x^{3}+x+1\right)}=x+1+\frac{-x^{2}-x}{x^{3}+x+1}
$$

$>$ Obviously, for the division on the left hand side, our first quotient term is x. Multiplying the divisor by x yields $x^{4}+x^{2}+x$ that when subtracted from the dividend gives us $x^{3}-x^{2}+1$. This dictates that the next term of the quotient be 1 , and so on.

How Large is the Set of Polynomials When Multiplications are Carried Out Modulo $x^{3}+x+1$

\square With multiplications modulo $x^{3}+x+1$, we have only the following eight polynomials in the set of polynomials over GF (2):

We will refer to this set as GF $\left(2^{3}\right)$ where the power of 2 is the degree of the modulus polynomial.
Our conceptualization of GF $\left(2^{3}\right)$ is analogous to our conceptualization of the set Z_{8}. The eight elements of Z_{8} are to be thought of as integers modulo 8. So, basically, Z_{8} maps all integers to the eight in the set Z_{8}. Similarly, $G F\left(2^{3}\right)$ maps all of the polynomials over $G F(2)$ to the eight polynomials shown above.
But note the crucial difference between $\operatorname{GF}\left(2^{3}\right)$ and $Z_{8}: G F\left(2^{3}\right)$ is a field, whereas Z_{8} is NOT.

* We do know that $G F\left(2^{3}\right)$ is an abelian group because of the operation of polynomial addition satisfies all of the requirements on a group operator and because polynomial addition is commutative.
* GF $\left(2^{3}\right)$ is also a commutative ring because polynomial multiplication distributes over polynomial addition (and because polynomial multiplication meets all the other stipulations on the ring operator: closedness, associativity, commutativity).
GF $\left(2^{3}\right)$ is an integral domain because of the fact that the set contains the multiplicative identity element 1 and because if for $a \in G F\left(2^{3}\right)$ and $b \in G F\left(2^{3}\right)$ we have

$$
a \times b=0 \bmod \left(x^{3}+x+1\right)
$$

then either $a=0$ or $b=0$.

* $G F\left(2^{3}\right)$ is a finite field because it is a finite set and because it contains a unique multiplicative inverse for every non-zero element.
*GF $\left(2^{3}\right)$ contains a unique multiplicative inverse for every non- zero element for the same reason that Z_{7} contains a unique multiplicative inverse for every non-zero integer in the set. (For a counterexample, recall that Z_{8} does not possess multiplicative inverses for 2,4 , and 6 .)
* In other words, for every non-zero element $a \in G F\left(2^{3}\right)$ there is always a unique element $b \in G F\left(2^{3}\right)$ such that $a \times b=1$.
This follows from the fact if you multiply a non-zero element a with each of the eight elements of $G F\left(2^{3}\right)$, the result will the eight distinct elements of $G F\left(2^{3}\right)$.

How Do We Know That $G F\left(2^{3}\right)$ is a Finite Field?

Obviously, the results of such multiplications must equal 1 for exactly one of the non- zero element of $\operatorname{GF}\left(2^{3}\right)$. So if $a \times$ $b=1$, then b must be the multiplicative inverse for a.

* The same thing happens in Z_{7}. If you multiply a non-zero element a of this set with each of the seven elements of Z_{7}, you will get seven distinct answers. The answer must therefore equal 1 for at least one such multiplication. When the answer is 1 , you have your multiplicative inverse for a.
For a counterexample, this is not what happens in Z_{8}. When you multiply 2 with every element of Z_{8}, you do not get eight distinct answers. (Multiplying 2 with every element of Z_{8} yields $\{0,2,4,6,0,2,4,6\}$ that has only four distinct elements).

The upshot is that $G F\left(2^{3}\right)$ is a finite field.

$G F\left(2^{n}\right)$ is a Finite Field for Every n

$>$ None of the arguments on the previous three pages is limited by the value 3 for the power of 2 . That means that $G F\left(2^{n}\right)$ is a finite field for every n.
$>$ To find all the polynomials in GF $\left(2^{n}\right)$, we obviously need an irreducible polynomial of degree n.
$>$ AES arithmetic is based on GF $\left(2^{8}\right)$. It uses the following irreducible polynomial

$$
x^{8}+x^{4}+x^{3}+x+1
$$

$>$ The finite field $G F\left(2^{8}\right)$ used by AES obviously contains 256 distinct polynomials over GF (2).
$>$ In general, $G F\left(p^{n}\right)$ is a finite field for any prime p. The elements of $G F\left(p^{n}\right)$ are polynomials over $G F(p)$ (which is the same as the set of residues Z_{p}).

Representing the Individual Polynomials in $G F\left(2^{n}\right)$ by Binary Code Words

\square Recall the eight polynomials in $G F\left(2^{3}\right)$ when the modulus polynomial is $x^{3}+x+1$ (See the next page).
\square We now claim that there is nothing sacred about the variable x in such polynomials.
\square We can think of x^{i} as being merely a place-holder for a bit.
\square That is, we can think of the polynomials as bit strings corresponding to the coefficients that can only be 0 or 1 , each power of x representing a specific position in a bit string.
\square So the 2^{3} polynomials of $G F\left(2^{3}\right)$ can therefore be represented by the bit strings shown in the next page.

Representing the Individual Polynomials in $G F\left(2^{n}\right)$ by Binary Code Words

0	\Rightarrow	000
1	\Rightarrow	001
x	\Rightarrow	010
$x+1$	\Rightarrow	011
x^{2}	\Rightarrow	100
$x^{2}+1$	\Rightarrow	101
$x^{2}+x$	\Rightarrow	110
$x^{2}+x+1$		111

\square If we wish, we can give a decimal representation to each of the above bit patterns. The decimal values between 0 and 7, both limits inclusive, would have to obey the addition and multiplication rules corresponding to the underlying finite field.
\square Exactly the same approach can be used to come up with 2^{n} bit patterns, each pattern consisting of n bits, for a set of integers that would constitute a finite field, provided we have available to us an irreducible polynomial of degree n.

