
Some Observations on Arithmetic Addition
in GF (2n)

We know that the polynomial coefficients in GF (2n) must obey
the arithmetic rules that apply to GF (2) (which is the same as Z2,
the set of remainders modulo 2).

 And we know that the operation of addition in GF (2) is like the
logical XOR operation.

 Therefore, adding the bit patterns in GF (2n) simply amounts to
taking the bitwise XOR of the bit patterns.

 The examples in the next page hold in GF (28). The last two
examples of them illustrate that subtracting is the same as adding
in GF (28). That is because each "number" is its own additive
inverse in GF (28). In other words, for every x GF (28), we have
x = x . Yet another way of saying the same thing is that for every
x GF (28), we have x + x = 0 .

 IS Security Sufyan Al-Janabi 2017 13

Examples on Arithmetic Addition in GF (2n)

IS Security Sufyan Al-Janabi 2017 14

Some Observations on Arithmetic
Multiplication in GF (2n) (1)

Just as it is convenient to use the simple binary
arithmetic (in the form of XOR operations) for additions
in GF (2n), could we do the same for multiplications?

Recall, that we can of course multiply the bit patterns of
GF (2n) by going back to the modulo polynomial
arithmetic and using the multiplications operations
defined in GF (2) for the coefficients. (Recall that in
GF (2), multiplication is the same as logical AND.)

But it would be nice if we could directly multiply the bit
patterns of GF (2n) without having to think about the
underlying polynomials directly.

 IS Security Sufyan Al-Janabi 2017 15

Some Observations on Arithmetic
Multiplication in GF (2n) (2)

 It turns out that we can indeed do so, but the technique is
specific to the order of the finite field being used. The order
of a finite field refers to the number of elements in the field.
So the order of GF (2n) is 2n .

More particularly, the bitwise operations needed for directly
multiplying two bit patters in GF (2n) are specific to the
irreducible polynomial that defines a given GF (2n).

On the next slide, we will focus specifically on the GF (28)
finite field that is used in AES and show multiplications can
be carried out directly in this field by using bitwise
operations.

 IS Security Sufyan Al-Janabi 2017 16

Direct Bitwise Operations for Multiplications
in GF (28) (1)

 Let's consider the finite field GF (28) that is used in AES. This field
is derived using the following irreducible polynomial of degree 8:

 m (x) = x 8 + x 4 + x 3 + x + 1

 Now let's see how we can carry out multiplications with direct
bitwise operations in this GF (28).

 We first take note of the following equality in GF (28):

 x 8 mod m (x) = x 4 + x 3 + x + 1

The result follows immediately by a long division of x 8 by
x 8 + x 4 + x 3 + x + 1. Obviously, the first term of the quotient will
be 1. Multiplying the divisor by the quotient yields
x 8 + x 4 + x 3 + x + 1 . When this is subtracted from the dividend x 8,
we get x 4 x 3 x 1, which is the same as the result shown
above.

IS Security Sufyan Al-Janabi 2017 17

Direct Bitwise Operations for Multiplications
in GF (28) (2)

 Now let's consider the general problem of multiplying a general
polynomial f (x) in GF (28) by just x . Let's represent f (x) by

 f (x) = b7 x
7 + b6 x

6 + b5 x
5 + b4 x

4 + b3 x
3 + b2 x

2 + b1 x + b0

 Therefore, this f (x) stands for the bit pattern b7b6b5b4b3b2b1b0 .

 Obviously,

 f (x)× x = b7 x
8 + b6 x

7 + b5 x
6 + b4 x

5 + b3 x
4 + b2 x

3 + b1 x
2 + b0 x

But now recall that we must take the modulo of this polynomial
with respect to m (x) = x 8 + x 4 + x 3 + x + 1 . What that yields
depends on whether or not the bit b7 is set.

 If the bit b7 of f (x) is equals 0, then the right hand above is already
in the set of polynomials in GF (28) and nothing further needs to be
done. In this case, the output bit pattern is b6b5b4b3b2b1b00 .

IS Security Sufyan Al-Janabi 2017 18

Direct Bitwise Operations for Multiplications
in GF (28) (3)

 However, if b7 equals 1, we need to divide the polynomial we
have for f (x) × x by the modulus polynomial m (x) and keep
just the remainder. Therefore, when b7 = 1, we can write

where, in the last expression shown, we have used the fact that the
addition in GF (28) corresponds to the logical XOR {⊗ } operation
for the bit patterns involved.

IS Security Sufyan Al-Janabi 2017 19

Summary of How a Multiplication is Carried
Out in GF (28) (1)

 Let's say you want to multiply two bit patterns B 1 and B 2 ,
each 8 bits long.

 If B 2 is the bit pattern 00000001 , then obviously nothing
needs to be done. The result is B 1 itself.

 If B 2 is the bit pattern 00000010 , then we are multiplying
B 1 by x . Now the answer depends on the value of the most
significant bit in B 1 . If B 1's MSB is 0, the result is obtained
by shifting the B 1 bit pattern to the left by one bit and
inserting a 0 bit from the right.

 If B 1's MSB is 1, first we again shift the B 1 bit pattern to
the left as above. Next, we take the XOR of the shifted
pattern with the bit pattern 00011011 for the final
answer.

IS Security Sufyan Al-Janabi 2017 20

Summary of How a Multiplication is Carried
Out in GF (28) (2)

If B 2 is the bit pattern 00000100 , then we are
multiplying B 1 by x 2 . This amounts to first multiplying
B 1 by x , and then multiplying the result again by x . So
it amounts to two applications of the logic in the
previous two steps.

In general, if B 2 consists of a single bit in the j th
position from the right (using the 0 index for the right-
most position), we need j applications of the logic laid
out above for multiplying with x .

Even more generally, when B 2 consists of an arbitrary
bit pattern, we consider the bit pattern to be a sum of
bit patterns each containing only single bit.

IS Security Sufyan Al-Janabi 2017 21

Summary of How a Multiplication is Carried
Out in GF (28) (3)

For example, if B 2 is 10000011, we can write

 B 1 × 10000011

 = B 1 × (00000001 + 00000010 + 10000000)

 = (B 1 × 00000001) + (B 1 × 00000010) + (B 1 × 10000000)

 = (B 1 × 00000001) ⊗ (B 1 × 00000010) ⊗ (B 1 × 10000000)

Each of the three multiplications shown in the final
expression involves multiplying B 1 with a single power
of x . That we can easily do with the logic already
explained.

IS Security Sufyan Al-Janabi 2017 22

Finding Multiplicative Inverses in GF (2n) (1)

 So far we have talked about efficient bitwise operations for
implementing the addition, the subtraction, and the
multiplication operations for the bit patterns corresponding to
the elements of GF (2n).

 But what about division? Can division be carried out directly on
the bit patterns?

 In general, you can use the Extended Euclid Algorithm for finding
the multiplicative inverse (MI) of a polynomial in GF (2n).

 If you have fixed the value of n for a particular GF (2n) field (and
if n is not too large), you can pre-compute the multiplicative
inverses for all the elements of GF (2n) and store them away.
(Recall that the MI of a bit pattern A in GF (2n) is a bit pattern B
so that A × B = 1 .

 For example, in GF (28), the MI of a bit pattern A is the bit
pattern B so that A × B = 000000001 .

IS Security Sufyan Al-Janabi 2017 23

Finding Multiplicative Inverses in GF (2n) (2)
 The table below shows the multiplicative inverses for the bit

patterns of GF (23). Also shown are the additive inverses. But note
that every element x is its own additive inverse. Also note that the
additive identity element is not expected to possess a multiplicative
inverse.

IS Security Sufyan Al-Janabi 2017 24

Finally . . .

 Acknowledgment: These lecture notes are based on
the textbook by William Stallings and notes prepared
by Avinash Kak, Purdue University. My sincere thanks
are devoted to them and to all other people who
offered the material on the web.

 Students are advised to study and solve the problems
and answer the questions in Assignment-A3.

IS Security Sufyan Al-Janabi 2017 25

