
Some Observations on Arithmetic Addition 
in GF (2n )  

We know that the polynomial coefficients in GF (2n ) must obey 
the arithmetic rules that apply to GF (2) (which is the same as Z2, 
the set of remainders modulo 2).  

 And we know that the operation of addition in GF (2) is like the 
logical XOR operation.  

 Therefore, adding the bit patterns in GF (2n) simply amounts to 
taking the bitwise XOR of the bit patterns.  

 The examples in the next page hold in GF (28). The last two 
examples of them illustrate that subtracting is the same as adding 
in GF (28). That is because each "number" is its own additive 
inverse in GF (28). In other words, for every  x  GF (28),  we have  
x = x .  Yet another way of saying the same thing is that for every  
x  GF (28), we have    x + x = 0 .  
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Examples on Arithmetic Addition in GF (2n )  
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Some Observations on Arithmetic  
Multiplication in GF (2n)                      (1) 

Just as it is convenient to use the simple binary 
arithmetic (in the form of XOR operations) for additions 
in GF (2n ), could we do the same for multiplications?  

Recall, that we can of course multiply the bit patterns of 
GF (2n ) by going back to the modulo polynomial 
arithmetic and using the multiplications operations 
defined in GF (2) for the coefficients. (Recall that in      
GF (2), multiplication is the same as logical AND.)  

But it would be nice if we could directly multiply the bit 
patterns of GF (2n ) without having to think about the 
underlying polynomials directly.  
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Some Observations on Arithmetic  
Multiplication in GF (2n)                     (2) 

 It turns out that we can indeed do so, but the technique is 
specific to the order of the finite field being used. The order 
of a finite field refers to the number of elements in the field. 
So the order of GF (2n ) is 2n .  

More particularly, the bitwise operations needed for directly 
multiplying two bit patters in GF (2n) are specific to the 
irreducible polynomial that defines a given GF (2n).  

On the next slide, we will focus specifically on the GF (28) 
finite field that is used in AES and show multiplications can 
be carried out directly in this field by using bitwise 
operations.  
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Direct Bitwise Operations for Multiplications 
in GF (28 )                       (1) 

 Let's consider the finite field GF (28) that is used in AES. This field 
is derived using the following irreducible polynomial of degree 8:  

                   m (x) = x 8 + x 4 + x 3 + x + 1  

 Now let's see how we can carry out multiplications with direct 
bitwise operations in this GF (28).  

 We first take note of the following equality in GF (28):  

                  x 8 mod m (x ) = x 4 + x 3 + x + 1  

The result follows immediately by a long division of  x 8   by              
x 8 + x 4 + x 3 + x + 1. Obviously, the first term of the quotient will 
be 1. Multiplying the divisor by the quotient yields                            
x 8 + x 4 + x 3 + x + 1 . When this is subtracted from the dividend x 8, 
we get x 4  x 3  x  1, which is the same as the result shown 
above. 
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Direct Bitwise Operations for Multiplications 
in GF (28 )                 (2) 

 Now let's consider the general problem of multiplying a general 
polynomial f (x)  in GF (28) by just x . Let's represent f (x)  by  

      f (x) = b7 x
7 + b6 x

6 + b5 x
5 + b4 x

4 + b3 x
3 + b2 x

2 + b1 x + b0  

     Therefore, this  f (x)  stands for the bit pattern  b7b6b5b4b3b2b1b0 .  

 Obviously,  

 f (x)× x = b7 x
8 + b6 x

7 + b5 x
6 + b4 x

5 + b3 x
4 + b2 x

3 + b1 x
2 + b0 x  

But now recall that we must take the modulo of this polynomial 
with respect to m (x) = x 8 + x 4 + x 3 + x + 1 . What that yields 
depends on whether or not the bit b7 is set.  

 If the bit b7  of f (x) is equals 0, then the right hand above is already 
in the set of polynomials in GF (28) and nothing further needs to be 
done. In this case, the output bit pattern is   b6b5b4b3b2b1b00 . 
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Direct Bitwise Operations for Multiplications 
in GF (28 )                 (3) 

 However, if  b7  equals 1, we need to divide the polynomial we 
have for  f (x) × x   by the modulus polynomial  m (x)  and keep 
just the remainder. Therefore, when b7 = 1, we can write  

 

 

 

 

 

 

 

where, in the last expression shown, we have used the fact that the 
addition in GF (28) corresponds to the logical XOR {⊗ } operation 
for the bit patterns involved. 
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Summary of How a Multiplication is Carried 
Out in GF (28)                         (1) 

 Let's say you want to multiply two bit patterns  B 1  and  B 2 , 
each  8 bits long.  

 If  B 2  is the bit pattern   00000001 , then obviously nothing 
needs to be done. The result is  B 1  itself.  

 If  B 2  is the bit pattern  00000010 , then we are multiplying  
B 1  by  x . Now the answer depends on the value of the most 
significant bit in   B 1  . If  B 1's  MSB is 0, the result is obtained 
by shifting the B 1  bit pattern to the left by one bit and 
inserting a  0  bit from the right.  

 If  B 1's  MSB is  1, first we again shift the  B 1  bit pattern to 
the left as above. Next, we take the XOR of the shifted 
pattern with the bit pattern   00011011    for the final 
answer.  
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Summary of How a Multiplication is Carried 
Out in GF (28)                         (2) 

If  B 2  is the bit pattern  00000100 , then we are 
multiplying  B 1  by   x 2 . This amounts to first multiplying  
B 1  by  x , and then multiplying the result again by  x . So 
it amounts to two applications of the logic in the 
previous two steps.  

In general, if  B 2  consists of a single bit in the   j th    
position from the right (using the  0  index for the right-
most position), we need   j   applications of the logic laid 
out above for multiplying with   x .  

Even more generally, when  B 2  consists of an arbitrary 
bit pattern, we consider the bit pattern to be a sum of 
bit patterns each containing only single bit.  
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Summary of How a Multiplication is Carried 
Out in GF (28)                         (3) 

For example, if   B 2   is   10000011,  we can write  

      B 1 × 10000011  

  = B 1 × (00000001 + 00000010 + 10000000)  

  = (B 1 × 00000001) + (B 1 × 00000010) + (B 1 × 10000000)  

  = (B 1 × 00000001) ⊗ (B 1 × 00000010) ⊗ (B 1 × 10000000)  

Each of the three multiplications shown in the final 
expression involves multiplying  B 1  with a single power 
of   x . That we can easily do with the logic already 
explained.  
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Finding Multiplicative Inverses in GF (2n)        (1) 

 So far we have talked about efficient bitwise operations for 
implementing the addition, the subtraction, and the 
multiplication operations for the bit patterns corresponding to 
the elements of     GF (2n ).  

 But what about division? Can division be carried out directly on 
the bit patterns?  

 In general, you can use the Extended Euclid Algorithm for finding 
the multiplicative inverse (MI) of a polynomial in GF (2n).  

 If you have fixed the value of  n   for a particular GF (2n) field (and 
if  n   is not too large), you can pre-compute the multiplicative 
inverses for all the elements of GF (2n) and store them away. 
(Recall that the MI of a bit pattern  A   in GF (2n)  is a bit pattern  B   
so that    A × B = 1 .  

  For example, in GF (28), the MI of a bit pattern  A   is the bit 
pattern  B    so that    A × B = 000000001 .  
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Finding Multiplicative Inverses in GF (2n)         (2) 
 The table below shows the multiplicative inverses for the bit 

patterns of GF (23). Also shown are the additive inverses. But note 
that every element  x   is its own additive inverse. Also note that the 
additive identity element is not expected to possess a multiplicative 
inverse. 
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Finally . . . 

 Acknowledgment: These lecture notes are based on 
the textbook by William Stallings and notes prepared 
by Avinash Kak, Purdue University. My sincere thanks 
are devoted to them and to all other people who 
offered the material on the web.     

 

  Students are advised to study and solve the problems 
and answer the questions in Assignment-A3. 
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