
The Shift Rows Step (1)
 This is where the matrix representation of the state array

becomes important.

 The ShiftRows transformation consists of (i) not shifting the
first row of the state array at all; (ii) circularly shifting the
second row by one byte to the left; (iii) circularly shifting the
third row by two bytes to the left; and (iv) circularly shifting
the last row by three bytes to the left.

 This operation on the state array can be represented by

IS Security Sufyan Al-Janabi 2017 18

The Shift Rows Step (2)
 Recall again that the input block is written column-wise. That

is the first four bytes of the input block fill the first column of
the state array, the next four bytes the second column, etc. As
a result, shifting the rows in the manner indicated scrambles
up the byte order of the input block.

 For decryption, the corresponding step shifts the rows in
exactly the opposite fashion. The first row is left unchanged,
the second row is shifted to the right by one byte, the third
row to the right by two bytes, and the last row to the right by
three bytes, all shifts being circular.

IS Security Sufyan Al-Janabi 2017 19

The Mix Columns Step (1)

 This step replaces each byte of a column by a function of all
the bytes in the same column.

 More precisely, each byte in a column is replaced by two
times the value of that byte, plus three times the next byte,
plus the byte that comes next, plus the byte that comes
next. The word 'next' means the byte in the row below; the
meaning of 'next' is circular in the same column.

 For the bytes in the first row of the state array, this
operation can be stated as

 For the bytes in the second row of the state array, this
operation can be stated as

IS Security Sufyan Al-Janabi 2017 20

The Mix Columns Step (2)

 For the bytes in the third row of the state array, this operation can
be stated as

 And, for the bytes in the fourth row of the state array, this
operation can be stated as

 More compactly, the column operations can be shown as

where, on the left hand side, when a row of the leftmost matrix
multiples a column of the state array matrix, additions involved
are meant to be XOR operations.

IS Security Sufyan Al-Janabi 2017 21

The Mix Columns Step (3)

 The corresponding transformation during decryption is
given by

IS Security Sufyan Al-Janabi 2017 22

Adding the Round Key (1)
 The 128 bits of the state array are bitwise XOR'ed with the 128

bits of the round key.
 The AES Key Expansion algorithm is used to derive the 128-bit

round key from the original 128-bit encryption key.
 In the same manner as the 128-bit input block is arranged in

the form of a state array, the algorithm first arranges the 16
bytes of the encryption key in the form of a 4 × 4 array of bytes

 The first four bytes of the encryption key constitute the word
w0, the next four bytes the word w1, and so on.

 The algorithm subsequently expands the words [w0, w1, w2, w3]
into a 44-word key schedule that can be labeled

 w0, w1, w2, w3,, w43
 IS Security Sufyan Al-Janabi 2017 23

Adding the Round Key (2)
Of these, the words [w0, w1, w2, w3] are bitwise XOR'ed with

the input block before the round-based processing begins.
 The remaining 40 words of the key schedule are used four

words at a time in each of the 10 rounds.
 The above two statements are also true for decryption. The

first four words of the key schedule are bitwise XOR'ed with
the 128- bit ciphertext block before any round-based
processing begins. Subsequently, each of the four words in the
remaining 40 words of the key schedule are used in each of the
ten rounds of processing.

Now comes the difficult part: How does the Key Expansion
Algorithm expand four words w0, w1, w2, w3 into the 44
words w0, w1, w2, w3, w4, w5,, w43 ?

 The key expansion will be explained with the help of the figure
in the next slide. But first note that the key expansion takes
place on a four-word to four-word basis, in the sense that each
grouping of four words decides what the next grouping of four
words will be.

IS Security Sufyan Al-Janabi 2017 24

IS Security Sufyan Al-Janabi 2017 25

The Algorithmic Steps in Going from a 4-Word Round
Key to the Next 4-Word Round Key (1)

 Let's say that we have the four words of the round key:

 wi wi+1 wi+2 wi+3

Assuming that i is a multiple of 4, these will serve as the round
key for the (i/4)th round. For example, w4, w5, w6, w7 is the
round key for round 1, the sequence of words w8, w9, w10, w11
the round key for round 2, and so on.

 Now we need to determine the words wi+4 wi+5 wi+6 wi+7 from
the words wi wi+1 wi+2 wi+3.

 From the previous figure, we write

 wi+5 = wi+4 ⊗ wi+1

 wi+6 = wi+5 ⊗ wi+2

 wi+7 = wi+6 ⊗ wi+3

Note that except for the first word in a new 4-word grouping, each
word is an XOR of the previous word and the corresponding word
in the previous 4-word grouping.

IS Security Sufyan Al-Janabi 2017 26

The Algorithmic Steps in Going from a 4-Word Round
Key to the Next 4-Word Round Key (2)

 So now we only need to figure out wi+4. This is the beginning word
of each 4-word grouping in the key expansion. The beginning word
of each round key is obtained by:

 wi+4 = wi ⊗ g (wi+3)
 That is, the first word of the new 4-word grouping is to be

obtained by XOR'ing the first word of the last grouping with what is
returned by applying a function g () to the last word of the
previous 4-word grouping.

 The function g () consists of the following three steps:
1. Perform a one-byte left circular rotation on the argument 4-byte

word.
2. Perform a byte substitution for each byte of the word returned by

the previous step by using the same 16 × 16 lookup table as used in
the SubBytes step of the round.

3. XOR the bytes obtained from the previous step with what is known
as a round constant. The round constant is a word whose three
rightmost bytes are always zero. Therefore, XOR'ing with the round
constant amounts to XOR'ing with just its leftmost byte.

IS Security Sufyan Al-Janabi 2017 27

The Algorithmic Steps in Going from a 4-Word Round
Key to the Next 4-Word Round Key (3)

 The round constant for the ith round is denoted Rcon[i].
Since, by specification, the three rightmost bytes of the round
constant are zero, we can write it as shown below. The left
hand side of the equation below stands for the round constant
to be used in the ith round. The right hand side of the
equation says that the rightmost three bytes of the round
constant are zero.

 Rcon[i] = (RC [i], 0 , 0 , 0)
 The only non-zero byte in the round constants, RC [i], obeys

the following recursion:
 RC [1] = 1
 RC [j] = 2 × RC [j 1]
 The addition of the round constants is for the purpose of

destroying any symmetries that may have been introduced by
the other steps in the key expansion algorithm.

IS Security Sufyan Al-Janabi 2017 28

Final notes on the AES Key Expansion Algorithm

 In the AES Key Expansion Algorithm, if you change one bit of the
encryption key, it will affect the round key for several rounds.

 The key expansion algorithm ensures that AES has no weak keys.
A weak key is a key that reduces the security of a cipher in a
predictable manner.

 For example, DES is known to have weak keys. Weak keys of DES
are those that produce identical round keys for each of the 16
rounds. An example of DES weak key is when it consists of
alternating ones and zeros. This sort of a weak key in DES causes
all the round keys to become identical, which, in turn, causes the
encryption to become self-inverting. That is, plain text encrypted
and then encrypted again will lead back to the same plain text.

 (Since the small number of weak keys of DES are easily
recognized, it is not considered to be a problem with that cipher.)

IS Security Sufyan Al-Janabi 2017 29

Finally . . .

 Acknowledgment: These lecture notes are based on
the textbook by William Stallings and notes prepared
by Avinash Kak, Purdue University. My sincere thanks
are devoted to them and to all other people who
offered the material on the web.

 Students are advised to study and solve the problems
and answer the questions in Assignment-A4.

IS Security Sufyan Al-Janabi 2017 30

