University of Anbar
 Logic Design

College of Computer Science
 Department of Information System
and Information Technology
 Muntaser Abdulwahed Salman

4.5 Adder-Subtractor Combination

It turns out that instead of having to build a separate adder and subtractor units, we can modify the ripple-carry adder (or the carry-lookahead adder) slightly to perform both operations. The modified circuit performs subtraction by adding the negated value of the second operand. In other words, instead of performing the subtraction A – B, the addition operation A + (– B) is performed. Recall that in two’s complement representation, to negate a value involves inverting all the bits from 0 to 1 or vice versa, and then adding a 1. Hence, we need to modify the adder circuit so that we can selectively do either one of two things: 1) flip the bits of the B operand, and then add an extra 1 for the subtraction operation, or 2) not flip the

bits, and not add an extra 1 for the addition operation.

For this adder-subtractor combination circuit, in addition to the two input operands A and B, a select signal S is needed to select which operation to perform. The assignment of the two operations to the select signal S is shown in Figure 4.8 (a). When S = 0, we want to perform an addition, and when S = 1, we want to perform a subtraction. When S = 0, B does not need to be modified, and like the adder circuit from Section 4.2.2, the initial carry-in signal c0 needs to be set to a 0. On the other hand, when S = 1, we need to invert the bits in B and add a 1. The addition of a 1 is accomplished by setting the initial carry-in signal c0 to a 1. Two circuits are needed for handling the above situations: one for inverting the bits in B, and one for setting c0. Both of these circuits are dependent on S.

[image: image1.png]RN
R 2 ST
(a)
(b)
whoa b a b 0
\] b {
"
g o
c Oveny “
e P P e A e
Stgned o “1
T T 71 T
5 f 5 fi #

© @

The truth table for these two circuits is shown in Figure 4.8 (b). The input variable bi is the ith bit of the B operand. The output variable yi is the output from the circuit that either inverts or not inverts the bits in B. From this truth table, we can conclude that the circuit for yi is just a 2-input XOR gate, while the circuit for c0 is just a direct connection from S. Putting everything together, we obtain the adder-subtractor combination circuit for four bits as shown in Figure 4.8 (c). The logic symbol for the circuit is shown in Figure 4.8 (d).

Figure 4.8. Adder-subtractor combination: (a) operation table; (b) truth table for yi and c0; (c) circuit; (d) logic symbol.

Notice the adder-subtractor circuit in Figure 4.8 (c) has two different overflow signals, Unsigned_Overflow and Signed_Overflow. This is because the circuit can deal with both signed and unsigned numbers. When working with unsigned numbers only, the output signal Unsigned_Overflow is sufficient to determine whether there is an overflow or not. However, for signed numbers, we need to perform the XOR of Unsigned_Overflow with c3 producing the Signed_Overflow signal in order to determine whether there is an overflow or not. For example, the valid range for a 4-bit signed number goes from –23 to 23–1, i.e., from – 8 to 7. Adding the two signed numbers 4 + 5 = 9 should result in a signed number overflow since 9 is outside the range. However, the valid range for a 4-bit unsigned number goes from 0 to 24–1, i.e., 0 to 15. If we treat the two numbers 4 and 5 as unsigned numbers, then the result of adding these two unsigned numbers, 9, is inside the range. So when adding the Chapter 4 Combinational Components Page 12 of 46 two numbers 4 and 5, the Unsigned_Overflow signal should be de-asserted, while the Signed_Overflow signal should be asserted. Performing the addition of 4 + 5 in binary as shown below

[image: image2.png]Unsigned_+_ 0%l 0 1
Overflow™Sg % o 1
oxoR1-)

Signed
overflow

we get 0100 + 0101 = 1001, which produces a 0 for the Unsigned_Overflow signal. However, the addition produces a 1 for c3, and XORing these two values, 0 for Unsigned_Overflow and 1 for c3, results in a 1 for the Signed_Overflow signal.

[image: image3.png]Unsigned
Overflov T T o T

I1XOR1-p
Signed

Overflow

In another example, adding the two 4-bit signed numbers – 4 + (– 3) = – 7 should not result in a signed overflow. Performing the arithmetic in binary, –4 = 1100 and –3 = 1101, as shown below

we get 1100 + 1101 = 11001, which produces a 1 for both Unsigned_Overflow and c3. XORing these two values together gives a 0 for the Signed_Overflow signal. On the other hand, if we treat the two binary numbers, 1100 and 1101, as unsigned numbers, then we are adding 12 + 13 = 25. 25 is outside the unsigned number range, and so the Unsigned_Overflow signal should be asserted.
1
3
‏21‏/11‏/2019

