Bioinformatics II: Distance based method to build a phylogenetic tree

Dr Manaf A Guma University Of Anbar- college of applied sciences-Heet. Department of chemistry

1

What are the common Methods to build a phylogenetic tree?

- 1. Distance-based measures: (UPGMA and NJ methods)
- 2. Character Based Methods: (Parsimony: straightforward method and Maximum likelihood). They are statistical measures.
- Additional Method (Quartets Based and Disc Covering) (we are NOT going to study).

Distance-based measures

- How do Distance-based measures work?
- Only pairwise distance between the sequences are considered.
- If the sequences are long, we care only about the tree structure but not the ancestor sequences.
- The sequences can be computed by methods based on sequences alignment such as UPGMA (do you remember !)
- The (**unweighted pair group method with arithmetic mean**) is a simple methods based on collecting a hierarchical clustering of data.

What does unweighted term indicate?

- It indicates that that all distances contribute equally to each average that is computed and does not refer to the math by which it is achieved.
- What does it reflect?
- The UPGMA algorithm constructs a rooted tree dendrogram which is a tree diagram, especially one showing classification relationships that reflects the structure present in a pairwise similarity or dis—similarity matrix.

What does the UPGMA algorithm produce?

- The UPGMA algorithm produces rooted dendrograms and requires a constant-rate assumption that is, it assumes an ultrametric tree in which the distances from the root to every branch tip are equal.
- When the tips are molecular data (*i.e.*, <u>DNA</u>, <u>RNA</u> and <u>protein</u>) sampled at the same time.
- It show the differences between the estimated distances and the real distances in an evolutionary tree.

7

Solve out the following estimated (experimental) matrix using UPGMA

- We will follow specific steps to calculate the real matrix.
- These steps represents the UPGMA.
- The goal is to find the difference between the estimated (experimental) matrix and the calculated matrix.
- Note: this is can be applied for too many species but we will need a to use computerized software to solve it out.

Step 1

- To find the difference between the estimated (experimental) tree and the real tree we will work out on the following estimated matrix M:
- Choose the species that have the smallest distances.
- Here: A and C (0.35)
- Draw a node in the middle of the distances AC/2=0.35/2=0.175.

	Α	B	С] 0.175 A
В	0.4			
С	0.35	0.45		c
D	0.6	0.7	0.55	0.175

9

Step 2								
• Now, we are going to use AC as a 1 matrix .								
• Then we will have a distance between A-C and B	:							
• $(AB+BC)/2 = 0.4+0.55/2 = 0.425$	_	A-C	B					
(ADTDC)/2= 0.4T0.55/2= 0.425	B	0.425	07	_				
• (AD+CD)/2= 0.6+0.55/2= 0.575	D	0.575	0.7					
• Thus, from the new M, the smallest distance between the node A-C and B								
=0.5425 which allow a new node between A-C-B		0.175	Α					
• The length of the branch between $A_{-}C$ and B_{-} mid of the distance								
		0.175	C					
• AC-B/2= $0.425/2= 0.212$ therefore the tree will be	e				в			
				0.212	2			

11

Step 4

- So, the calculated matrix (which represents the distance of the evolutionary tree)by UPGMA is not equal to the estimated Matrix which as follow:
- so, the UPGMA fails to achieve the (experimental) results.

Calculated M

 A
 B
 C

 B
 0.425

 C
 0.175
 0.425

 D
 0.617
 0.617

Estimated (experimental) M

	Α	В	С
В	0.4		
С	0.35	0.45	
D	0.6	0.7	0.55

12

Neighbor joining NJ ?

- It is another method to draw a phylogenetic tree.
- It considers the distances matrices to calculate the divergence the instead of Molecular clock.
- It is presented as as star *. (see the figure).
- Each pairwise is calculated and evaluated if it can be joined or not.
- The length of each branch is calculated.
- The smallest pairwise value is the nearest neighbor.

14