أمثلة لإيجاد العامل الوزني:

المادة المطلوبة	المادة الموزونة	العامل الوزني
SO ₃	BaSO ₄	$SO_3(M.wt)$
		BaSO ₄ (M.wt)
Fe ₃ O ₄	Fe ₂ O ₃	$2Fe_3O_4(M.wt)$
		$3\text{Fe}_2\text{O}_3(\text{M.wt})$
P ₂ O ₅	$Mg_2P_2O_7$	$\underline{P_2O_5(M.wt)}$
		$Mg_2P_2O_7(M.wt)$

المادة المطلوبة $\% = \frac{0}{9} = \frac{100 \, \text{K}}{100 \, \text{K}}$ المعامل الوزني $\frac{100 \, \text{K}}{100 \, \text{K}}$ المعامل الوزني $\frac{100 \, \text{K}}{100 \, \text{K}}$

أمثلة:

(1) في تجربة لتحليل المنجنيز (Mn) لحساب نسبة معدن المنجنيز تم تحويله بعملية الترسيب الى فوق أكسيد المنجنيز Mn_3O_4 وتم وزنه فاءذا كان 3.04 جم من Mn_3O_4 .

 Mn_2O_3 النسبة المئوية لأكسيد المنجنيز

احسب النسبة المئوية للمنجنيز في العينة % Mn

الحل:

 $= Mn_2O_3$ احسب النسبة المئوية لأكسيد المنجنيز

وزن الراسب(جم) x المعامل الوزني x 100 وزن العينة (جم)

 $\frac{100 \times 3Mn_2O_3/2Mn_3O_4 \times 0.252}{3.04}$ $8.58 = \frac{0.252 \times (3\times157.9)/(2\times228.8)}{3.04}$

احسب النسبة المئوية للمنجنيز في العينة % Mn

وزن الراسب (جم) x المعامل الوزني x (وزن الراسب ورزن العينة (جم) وزن العينة (جم) 0.252x (3Mn/Mn3O4)x 100

3.04

0.252 x (3x54.94/228.8) x 100

3.04

5.97 =

(2) تم تحليل خام الحديد باذابة عينة تزن (1.1324جم) في حمض HCl مركز وتم تخفيفه بالماء المقطر وتم ترسيب الحديد الثلاثي على شكل ${\rm Fe_2O_3.H_2O}$ باضافة الأمونيا وبعد الترشيح والغسيل تم تجفيف الراسب في درجة حرارة عالية ونتج راسب نفي وزنه ${\rm 0.5394}$ جم من أكسيد الحديديك ${\rm Fe_2O_3}$ (${\rm M..wt}$ =159.69)

: احسب (Fe = 55.85)

النسبة المئوية للحديد في العينة

النسبة المئوية لأكسيد الحديد Fe_3O_4 في العينة

الحل:

النسبة المئوية للحديد في العينة = وزن الراسب (جم) x المعامل الوزني x النسبة المئوية للحديد في العينة = وزن العينة (جم)

 $= 0.5394 \text{ g x Fe}_{2}O_{3}x (2\text{Fe}/\text{Fe}_{2}O_{3})(\text{Fe}/\text{Fe}_{2}O_{3})x 100$ 1.1324

 $33.32 \% = \underline{0.5349 \times (2x55.85)/159.69 \times 100}$ 1.1324

=النسبة المئوية لأكسيد الحديد $\mathrm{Fe_3O_4}$ في العينة

 $100 \; \mathrm{x}$ وزن الراسب (جم) x المعامل الوزني

وزن العينة (جم) $46.04 \%5 = 0.5349 \times (2Fe_3O_4/3Fe_2O_3) \times 100$ 1.1324

(3) يمكن تقدير كمية الكلوريد (المكون) في عينة لكلوريد الصوديوم بعد ترسيبه على هيئة كلوريد فضة (الراسب) كالتالي:

معامل التحليل الوزني للكلوريد= <u>الوزن الذري للكلوريد</u> وزن الجزيء

معامل التحليل الوزني للكلوريد = الوزن الذري للكلوريد $\frac{C_{1}}{C_{1}}$ وزن كلوريد الفضة وزن الكلوريد = معامل التحليل الوزني \times وزن كلوريد الفضة