Autonomic pharmacology Cholinergic pharmacology

Dr. Younus.h.johan College of pharmacy University of anbar

- <u>Sources</u>
- Lippincott Illustrated Reviews: Pharmacology 7th Edition
- Katzung ; Basic & Clinical Pharmacology 14th Edition
- Bennett & Brown ; Clinical pharmacology 11th edition
- Essentials of Medical Pharmacology; Lafi 09

Cholinergic pharmacology

ANS – Parasympathetic & Sympathetic Basics

Parasympathetic - "CHOLinergic"

Craniosacral, cGMP

= MUSCARINIC - Most

= NICOTINIC: Located at NMJ and Ganglia

Cholinergic Agents

- Also called cholinomimetics , cholinergic stimulants, cholinergic agonists
- Drugs that stimulate the parasympathetic nervous system (PSNS)
- Mimic the effects of the PSNS neurotransmitter
- Acetylcholine (ACh)

Cholinergic Receptors

Two types, determined by:

- Location
- Action once stimulated

Nicotinic receptors and Muscarinic receptors

Nicotinic Receptors

- Located in the ganglia of both the PSNS and SNS
- At the skeletal muscle NMJ
- Named "nicotinic" because can be stimulated by the alkaloid nicotine

Nicotinic receptors distribution and effects

Receptor subtype	Location	Response to receptor activation
Nicotinic _N	All autonomic nervous system ganglia & adrenal medulla	Stimulation of sympathetic and parasympathetic postganglionic nerves & release of adrenaline from adrenal medulla
Nicotinic _M	Neuromuscular junction	Contraction of skeletal muscle

Muscarinic Receptors

- Located postsynaptically:
 - -Smooth muscle
 - Cardiac muscle
 - Glands of parasympathetic fibers
 - Effector organs of cholinergic sympathetic fibers (Sweat gland)
- Named "muscarinic" because can be stimulated by the alkaloid muscarine

Muscarinic Receptor Distribution

Iris/ciliary body Lacrimal gland Salivary glands

Heart

Gallbladder

Stomach

Colon

Bladder (detrusor muscle)

Andersson K-E. Eur Urol. 2002;1(Suppl):23-28.

Muscarinic

All parasympathetic target organ & Sweat glands

EyeContraction of the ciliary muscle focusesfor near vision

Contraction of the iris sphincter causes miosis (decreased pupil diameter)

the ciliary enithelium causes

Cholinergic Receptor

Receptor subtype	Location	Response to receptor activation
Muscarinic	Heart	Decreased rate (Vagal)
	Lung	Contraction of bronchi
		Promotion of secretion
	Bladder	Voiding (Contraction)
	GIT	Salivation (secretion)
		Increased gastric secretion
		Defecation (Contraction)

Receptor subtype	Locatio n	Response to receptor activation
Muscarinic	Sweat gland	Generalized sweating
	Sex organs	Erection
	Blood vessels* *	Vasodilatation
	Endothelium	

Parasympathetic System - Cholinergic

- = MI1 CNS/ENS
- **IM2** Heart

IVI3 - EG MP AC BB

- Increases Exocrine Gland Secretion
- Increases Gut Motility
- Miosis via Pupillary sphincter
- Accommodation via Ciliary
- = Bronchoconstriction
- Bladder constriction

Cholinergics

Antagonists

- Effects seen when the PSNS is stimulated.
- The PSNS is the "rest and digest" system.

- Stimulate intestine and bladder
 Increased gastric secretions
 Increased gastrointestinal motility
 - Increased urinary frequency
- Stimulate pupil
 - Constriction (miosis)
 - Reduced intraocular pressure
- Increased salivation and sweating

- Cardiovascular effects
 - Decreased heart rate
 - Vasodilation
- Respiratory effects
 - Bronchial constriction, narrowed airways

- At recommended doses, the cholinergics primarily affect the MUSCARINIC receptors.
- At high doses, cholinergics stimulate the NICOTINIC receptors.

Direct-Acting Agents

- Reduce intraocular pressure
- Useful for glaucoma and intraocular surgery Examples:
 - acetylcholine,
 - carbachol,
 - pilocarpine
 - -Topical application due to poor oral absorption

Direct-Acting Agent—Bethanechol

- Increases tone and motility of bladder and GI tract
- Relaxes sphincters in bladder and GI tract, allowing them to empty
- Helpful for postsurgical atony of the bladder and GI tract

Indirect-Acting Agents : ACH Esterase Inhibitors

- Cause skeletal muscle contractions
- Used for diagnosis and treatment of myasthenia gravis
- Used to reverse neuromuscular blocking agents
- Used to reverse anticholinergic poisoning (antidote)
 Examples:
 - physostigmine,
 - pyridostigmine

Indirect-Acting Agent-donepezil (Aricept)

- Used in the treatment of mild to moderate Alzheimer's disease.
- Helps to increase or maintain memory and learning capabilities.

Cholinergic Agents: Side Effects Side effects are a result of overstimulation of the PSNS.

• Cardiovascular:

 Bradycardia, hypotension, conduction abnormalities (AV block and cardiac arrest)

- CNS:
 - Headache, dizziness, convulsions
- Gastrointestinal:

 Abdominal cramps, increased secretions, nausea, vomiting

Cholinergic Agents: Side Effects

- Respiratory:
 - Increased bronchial secretions, bronchospasms
- Other:

 Lacrimation, sweating, salivation, loss of binocular accommodation, miosis

Cholinergic Agents: Interactions

- Anticholinergics, antihistamines, sympathomimetics
- Antagonize cholinergic agents, resulting in decreased responses

Effects of Cholinergic Agent Excess or toxicity as in gas war "SLUDGE"

- <u>Salivation</u>
- <u>L</u>acrimation
- <u>Urinary incontinence</u>
- <u>D</u>iarrhea
- <u>Gastrointestinal cramps</u>
- <u>E</u>mesis

Toxicity of Acetylcholinesterase Inhibitors

DUMBELSS Diarrhea Urination Miosis Bronchoconstriction Excitation (muscle and CNS) Lacrimation Salivation Sweating

Cholinergic Agents: Mechanism of Action

• Direct-acting (agonist)

- Bind to cholinergic receptors, causing stimulation
- Acts on the receptor sites to activate a tissue response

Drug	Action	Selected therapeutic uses and important remarks
Directly A	cting Ag	ents Ach like
Bethanechol	Muscarinic receptors (activation)	Atonic bladder (in postpartum or postoperative non-obstructive urinary retention generalised cholinergic stimulation*
Pilocarpine	Muscarinic receptors (activation)	Narrow (closed) and wide (open) angle glaucoma; enter the brain - CNS-disturbances
Carbachol	Muscarinic & nicotinic N _N -receptors (activation)	glaucoma, when used topically shows little or no adverse-effects Rarely used (high potency and long duration)

* Generalised cholinergic stimulation: salivation, flushing, decreased blood pressure, nausea, abdominal pain, diarrhoea, and bronchospasm; if the drug enters the CNS (e.g. physostigmine), it would show CNS disturbances which may lead to convulsion.

CHOLinergics

- BethanaCHOL Post op and neurogenic ileus and urinary retention
- CarbeCHOL Glaucoma, pupillary contraction, and relief of IOP, also for Post op urinary retention
- MethaCHOLine Induces bronchospasm used in Asthma Challenge Test
- Pilocarpine Cystic Fibrosis Sweat Test; "PiloCHOLpine"

Cholinergic Agents: Mechanism of Action

- Indirect-acting
 - Inhibit the enzyme cholinesterase (chE) (acetylcholinesterase)
 - Cholinesterase- destroys acetylcholine before it reaches the receptor or after it has attached to the receptor site

Result: more ACh is available at the receptors Indirect-Acting Cholinergic Agents (Cholinesterase Inhibitors)

- Reversible
 - Bind to cholinesterase for a period of minutes to hours

Clinically Important Acetylcholinesterase Inhibitors

Edrophonium (Tensilon*)

Diagnosis of myasthenia gravis ("Tensilon test") Physostigmine

Treatment of glaucoma

Neostigmine

Reversal of non-depolarizing neuromuscular blockers

Treatment of myasthenia gravis

Pyridostigmine

Treatment of myasthenia gravis

Neuromuscular Junction in Myasthenia Gravis

Drug	Action	Selected therapeutic uses and important remarks
Indirectly Ac	ting_(Reve	ersible) Agents Inhibits AChE

Physostigmine Atropine& TCA antidote	 <u>Atony of bladder and intestine,</u> <u>glaucoma,</u> <u>overdose with anticholinergics (e.g. atropine, phenothiazines and TCA)</u> enters - brain, -generalised cholinergic stimulation*; (0.5-2 hr)
Demecarium	• Glaucoma; (4-6 hr) *CDPPIE
2- Neostigmine	 <u>Atony of bladder and intestine</u>, <u>overdose with competitive neuromuscular</u> <u>blocking agents (e.g. tubocurarine)</u>, <u>myasthenia gravis</u> poorly CNS , generalised cholinergic stimulation ; (0.5-2 hr)
3- Pyridostigmine	• <u>chronic management of myasthenia gravis</u> ; (3-6 hr)
4-Ambenonium	 <u>chronic management of myasthenia gravis</u>; (4-8 hr)
1-Edrophonium	 <u>diagnosis of myasthenia gravis</u>, * ENPA postoperative paralytic ileus

Anti-ACh-Esterases MOA:

Prevent degradation of ACh increasing endogenous AcH - More ACh (acetylCHOLine) so more CHOLinergic!

Edrophonium – Dx Myasthenia Gravis, used to differentiate it from cholinergic crisis

BBB)
NeoSTIGmine/PyridoSTIGmine – Rx Myasthenia Gravis (No BBB)

= Rx - Myasthenia Gravis, Ileus, Urinary Retention, Reversal of NMJ Blockage

PhysoSTIGmine – Rx for Atropine Overdose (Will cross BBB), also for glaucoma

Ecothiophate – For Glaucoma

Donepezil - For Alzheimer's disease - Lipid Soluble

Tacrine - Lipid Soluble - Rx - Alzheimers

Indirect-Acting Cholinergic Agents (Cholinesterase Inhibitors)

- Irreversible
 - Bind to cholinesterase and form a permanent covalent bond
 - The body must make new cholinesterase

Examples of Organophosphate AChE Inhibitors

Pesticides

Malathionbased insect spray

Nerve gas (VX)

Organophosphates

Treatment of glaucoma (ecothiopate) Insecticides (parathion, malathion) Nerve gas (sarin, tabun, VX)

Drug	Action	Selected therapeutic uses and important
		remarks

Indirectly Acting (Irreversible) Agents (organophosphate, Nerve agent) Covalently binds to AChE (click)

Isoflurophate (DFP)	chronic management of <u>open angle</u> <u>glaucoma</u> (ointment, last for 1 week); enters <u>CNS</u> , generalised cholinergic stimulation* (largely reversed by high dose of atropine); DFP ages in 6-8 hr
Echothiophate	In chronic management of <u>open angle</u> glaucoma; (100 hr)

Drug	Action	Selected therapeutic uses and important
in such the local	a the later	remarks

Reactivation of Acetylcholinesterase (AChE)

Pralidoxime 2pam Atropine,	Displaces organophosp hate regenerating the enzyme	Poisoning with organophosphophorus <u>compounds</u> (before enzyme ageing occurs, i.e. loss of an alkyl group from the phosphorylated enzyme); can reverse the effect of DFP except for those in CNS; less effective with newer nerve agents (enzyme ageing in seconds).

The End

46

Home work Summarize in a table

1- Transmitter, receptors, primary locations, postreceptor mechanism, stimulant substances and blockers in the autonomic nervous system.

2- Responses of some effector organs to autonomic nerve impulses, and circulating catecholamines and autonomic drugs.

Receptor Name	Typical Locations	Result of Ligand Binding
Cholinoceptors		
Muscarinic M ₁	CNS neurons, sympathetic postganglionic neurons, some presynaptic sites	Formation of IP ₃ and DAG, increased intracellular calcium
Muscarinic M ₂	Myocardium, smooth muscle, some presynaptic sites; CNS neurons	Opening of potassium channels, inhibition of adenylyl cyclase
Muscarinic M ₃	Exocrine glands, vessels (smooth muscle and endothelium); CNS neurons	Like M ₁ receptor-ligand binding
Muscarinic M ₄	CNS neurons; possibly vagal nerve endings	Like M ₂ receptor-ligand binding
Muscarinic M ₅	Vascular endothelium, especially cerebral vessels; CNS neurons	Like M ₁ receptor-ligand binding
Nicotinic N _N	Postganglionic neurons, some presynaptic cholinergic terminals; receptors typically contain two $\alpha 3$ and one $\beta 4$ type subunits in addition to γ and δ subunits	Opening of Na^+ , K^+ channels, depolarization
Nicotinic N _M	Skeletal muscle neuromuscular end plates; receptors typically contain two $\alpha 1$ and $\beta 1$ type subunits in addition to γ and δ subunits	Opening of Na ⁺ , K ⁺ channels, depolarization

		Effect of			
	Sympathetic Activity		Parasympathetic	: Activity	
Organ	Action ¹	Receptor ²	Action	Receptor ²	
Eye					
Iris radial muscle	Contracts	α			
lris circular muscle			Contracts	M ₃	
Ciliary muscle	[Relaxes]	β	Contracts	M ₃	
Heart					
Sinoatrial node	Accelerates	β_1, β_2	Decelerates	M ₂	
Ectopic pacemakers	Accelerates	β_1, β_2	•••		
Contractility	Increases	β1, β2	Decreases (atria)	M ₂	
Blood vessels					
Skin, splanchnic vessels	Contracts	α			
Skeletal muscle vessels	Relaxes	β ₂	•••		
	[Contracts]	α			
	Relaxes ³	M ₃			
Endothelium of vessels in heart, brain, viscera			Synthesizes and releases EDRF ⁴	M ₃ , M ₅ ⁵	

	Effect of			
	Sympathetic Activity		Parasympathetic Activity	
Organ	Action ¹	Receptor ²	Action	Receptor ²
Skin				
Pilomotor smooth muscle	Contracts	α		***
Sweat glands			Eccrine	Abundant Lower body
Eccrine	Increases	М	sweat glands	sweat glands temperature with odorless secretion
Apocrine (stress)	Increases	α	Apocrine sweat	Less numerous Wet skin dur- sweat glands ing pain, fear.
Metabolic functions			glands	with secretions emotional up- that develop set, and sex- odors ual arousal
Liver	Gluconeogenesis	β2, α		***
Liver	Glycogenolysis	β2, α		
Fat cells	Lipolysis	β₃		***
Kidney	Renin release	β1		***

