Adrenergic drugs

Dr. Younus.h.johan College of pharmacy University of anbar

Sources

Lippincott Illustrated Reviews: Pharmacology 7th Edition Katzung ; Basic & Clinical Pharmacology 14th Edition Bennett & Brown ; Clinical pharmacology 11th edition Essentials of Medical Pharmacology; Lafi 09

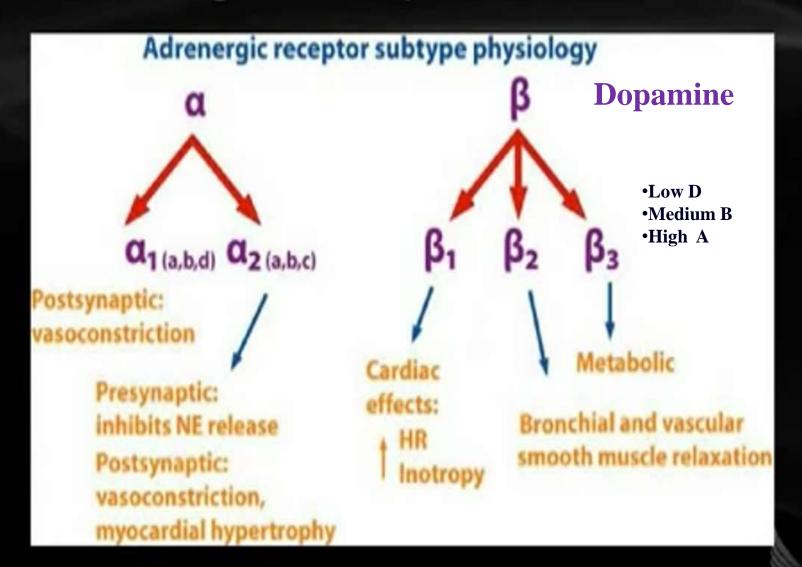
α -Adrenergic Receptors : Molecular Actions

Q1 receptor increase IP3, DAG, and intracellular Ca+2 lead to contraction of smooth muscle in;

- 1. blood vessels,
- 2. prostate,
- 3. eye in glaucoma

Ω2 receptor inhibit adenylyl cyclase

For persynaptic $\alpha 2$ receptors, lead to decreased calcium influx and decreased release of nor epinephrine .


3-Adrenergic Receptors : Molecular Actions

 β receptor activate adenylyl cyclase and intracellular cAMP

β1 receptor generally increase cardiac out put,

 β 2 receptor generally dilate bronchial, uterine and vascular smooth muscle (skeletal blood vessels)

Adrenergic Receptors

Each receptor had

•Physiological function (that may be deranged by disease)

- •Agonist drug (and mediator)
- •Antagonist drug
- •Each of the last two had clinical application

$\alpha \ 1 \ \text{Adrenergic receptors}$

•Activation causes :

- Vasoconstriction
- •Mydriasis
- •Contraction of bladder trigone and sphincter (urinary retention)
- Contraction of capsular smooth muscle prostate

Adrenoreceptor sensitivity

• β -receptors are usually more sensitive to activators than α -receptors

With drugs that exert both effects,
the β responses predominate at low doses :
at higher doses, the α responses predominate

Exception is NE , for which $\boldsymbol{\alpha}$ responses predominate at lower doses

a1-adrenergic Receptor Agonist

Agonist (specific) is phenylephrine

Used to treat nasal congestion A similar drug is methoxamine Phenylephrine is also used to raise blood pressure intravenously Causes rebound bradycardia These medications must be given in large central veins to prevent digital necrosis secondary to vasoconstriction

Drug	Action (receptors)	Selected therapeutic uses and important remarks
Non-catecholamines* Phenylephrine	α ₁	Nasal congestion, hypotension
Methoxamine	α ₁	 Hypotension (during surgery, does not produce cardiac arrhythmias in sensitised heart, i.e. no beta activity) Paroxysmal supraventricular tachycardia

a1-adrenergic Receptor Antagonists

Antagonists (specific) are prazosin, terazosin, and tamsulosin, doxazosin

Prazosin used for hypertension Terazosin and tamsulosin used for benign prostatic hypertrophy (relaxes prostatic capsular smooth muscle)

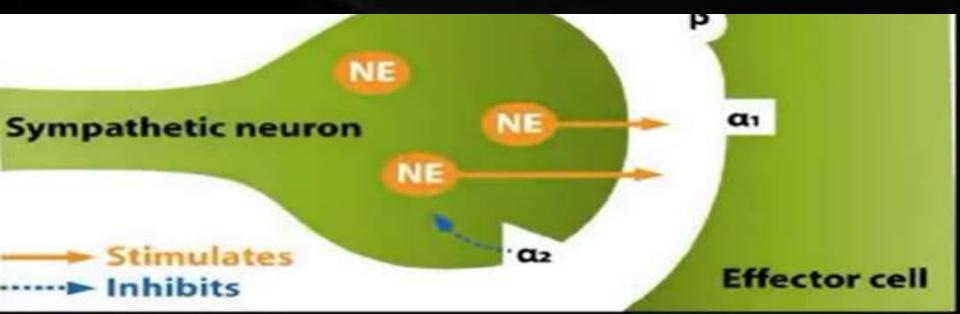
Antagonists (nonspecific, i.e., they block α₁ and α₂) are phenoxybenzamine and phentolamine Medical management of pheochromocytoma

These meds can cause rebound tachycardia

a1-adrenergic Receptor Antagonists

Drug	Action (receptors)	Selected therapeutic uses and important remarks
	1.5 7 1 5 1 1 1 1 1 1 1	

a-adrenoceptor antagonists


Phenoxybenzamine	α_1, α_2 (blocking)	Pheochromocytoma, Raynaud's disease (irreversible block)
Phentolamine	α ₁ , α ₂	Diagnosis of pheochromocytoma (competitive block); it induces reflex tachycardia. (by vasodilatation and blocking autoregulatory α_2 receptors)

a2-adrenergic Receptors

Found at prejunctional nerve terminals

Activation inhibits neurotransmitter release (presynaptic inhibition)

Also found peripherally where they behave like a1 receptors

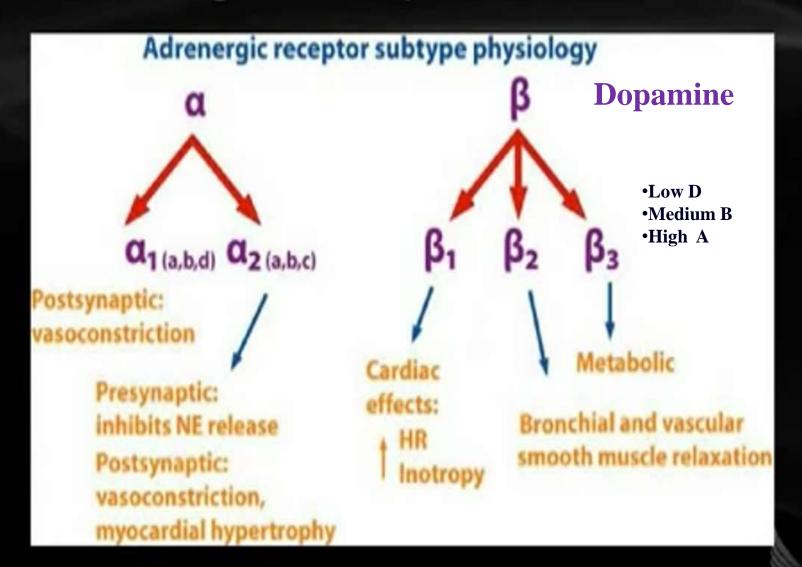
a2-adrenergic Receptors (cont.)

Agonist is clonidine

Used to treat hypertension A similar drug is guanabenz

Antagonist (specific) is yohimbine

Not used clinical	1.	
Phenoxybenzamine	α_1, α_2 (blocking)	Pheochromocytoma, Raynaud's disease (irreversible block)
Phentolamine	α ₁ , α ₂	Diagnosis of pheochromocytoma (competitive block); it induces reflex tachycardia. (by vasodilatation and blocking autoregulatory α_2 receptors)


Adrenergic drugs

2

وجدتك في قلبي .. ومنذ ذلك الوقت وأنا أطوف حولي ..

جلال الدين الرومي

Adrenergic Receptors

β₁-adrenergic Receptors

Activation causes

Increased heart rate (effect on SA node)

Increased conduction velocity (effect on AV node)

Increased force of contraction (positive inotropy; effect on atrial and ventricular muscle)

β₁-adrenergic Receptors (cont.)

Agonist is dobutamine

Used to treat cardiogenic shock and heart failure

Drug	Action (receptors)	Selected therapeutic uses and important remarks
Dopamine DBA	dopaminergic β_1	1decreased renal function 2Congestive heart failure 3Shock,
Dobutamine	β ₁	Congestive heart failure

β₁-adrenergic Receptors (cont.)

Antagonists ("β-blockers") are used to treat angina, hypertension, and arrhythmias

Propranolol (nonspecific; blocks β_1 and β_2)

Esmolol (specific, β₁ only) Metoprolol (specific, β₁ only)

Selected therapeutic uses and important Drug Action (receptors) remarks β-adrenoceptor antagonists² Acebutolol Hypertension β_1 Atenolol Metoprolol Esmolol (4Minutes)

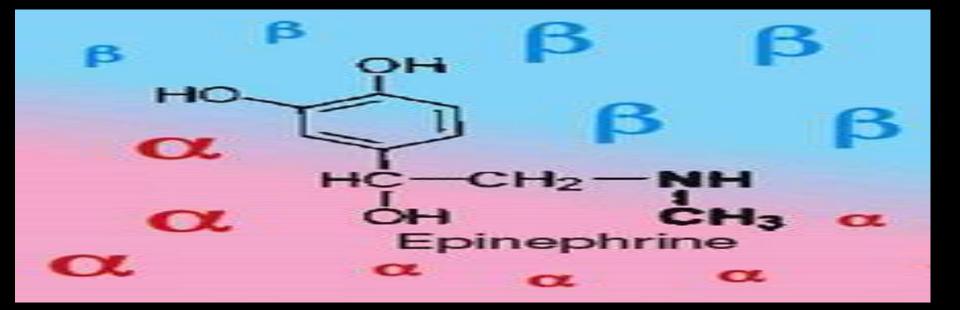
Drug	Action (receptors)	Selected therapeutic uses and important remarks	
β-adrenoceptor antagonists ²			
Propranolol	β_1, β_2	Hypertension, migraine, hyperthyroidism, pheochromocytoma, angina pectoris, myocardial infarction	
Timolol	β_1, β_2	Glaucoma, hypertension	
Pindolol	β_1, β_2	Hypertension	

Drug	Action (receptors)	Selected therapeutic uses and important remarks	
β-adrenoceptor antagonists ²			
Labetalol	$\beta_1, \beta_2,$	Pheochromocytoma, Cocaine	
	α_1	Over dose (hypertension)	
Carvedolol	β ₁ , β ₂ ,	Angina pectoris,	
	α_1	cardiomyopathy,	
		(heart failure,	
		hypertension)	
		Higher ratio of β to α blockade	
		than labetolol	

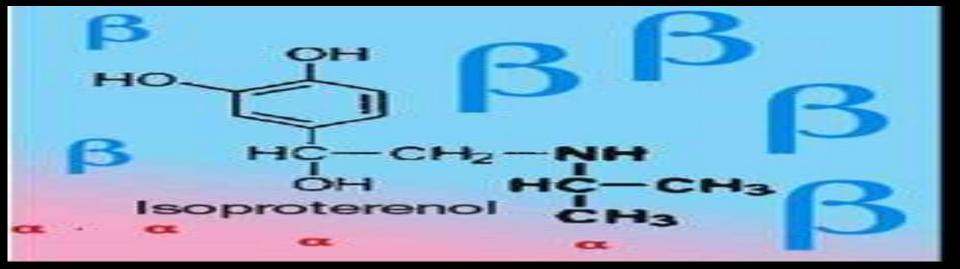
β₂-adrenergic Receptors

Activation causes

Vasodilation (all vessels) Decreased preload Muscle tremor Glycogenolysis Uterine relaxation Bronchodilation


β₂-adrenergic Receptor Agonists

Salbutamol Terbutaline Ritodrine	β2	Asthma (bronchospasm), premature labour (they have short onset and duration of action)
Salmeterol Formoterol	β2	Asthma (they have slow onset and long duration of action)


Drug	Action (receptors)	Selected therapeutic uses and important remarks
<u>Catecholamine*</u> Noradrenaline	$\alpha_1, \alpha_2, \beta_1$	Shock

Drug	Action (receptors)	Selected therapeutic uses and important remarks
Adrenaline	$\alpha_1, \alpha_2,$	Acute asthma, open angle glaucoma, anaphylactic shock,
	β_1, β_2	in local anaesthetics to increase duration of action

Drug	Action (receptors)	Selected therapeutic uses and important remarks
Isoprenaline	β_1, β_2	Asthma, severe bradycardia, heart block, sinus bradycardia

Amphetamines: Clinical Uses

Attention-deficit hyperactivity disorder (ADHD) Methylphenidate

Short-term weight loss

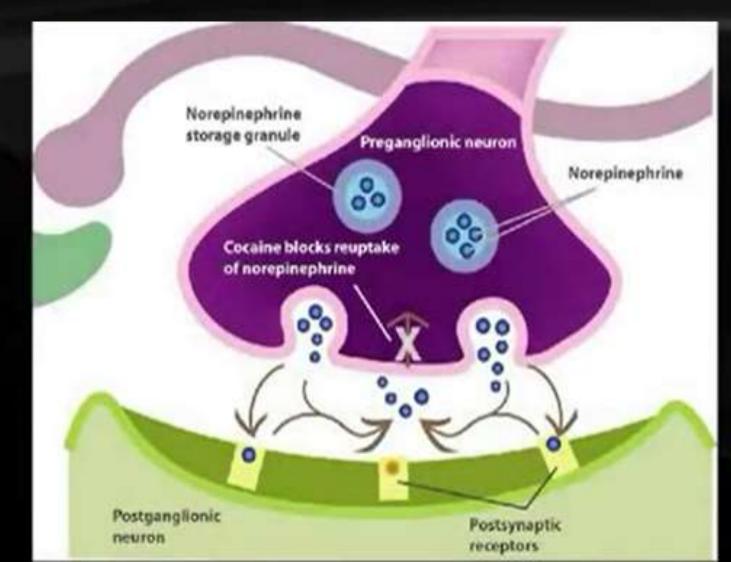
Narcolepsy

Amphetamine α , β (CNS) Attention deficit syndrome (in children)

Ephedrine

Similar effects to amphetamines although not used for ADHD or narcolepsy Used therapeutically as decongestant Used in unregulated dietary supplements (e.g., Metabolife®) and herbal preparations such as ephedra and *ma huang* until removed from market by FDA in 2004

Association with adverse effects including sudden death (e.g., when used by athletes)


Ephedrine

$\alpha_1, \alpha_2, \beta_1, \beta_2$ Nasal congestion, asthma (CNS)

Drug	Action (receptors)	Selected therapeutic uses and important remarks
Drugs affecti	ing neurotransm	itter release or re-uptake
Reserpine	Disrupts storage of amines causing depletion of amines	Hypertension (no longer used because of adverse-effects like depression)
Guanethidine	Adrenergic neurone blocking agent	Hypertension (no longer used because of adverse-effects, orthostatic hypotension, male sexual dysfunction
Cocaine	Neuronal amine re-uptake (U_1) blocker	CNS stimulant (drug abuse)

-

Cocaine

Dopamine Receptors : Molecular Actions

- Complex action at multiple receptors depending on the dose
- Activation of D1 causes vasodilation of renal, mesenteric, and coronary vasculature

activate adenylyl cyclase

intracellular cAMP

D1 receptors are also found on the brain / CNS.

D2 receptors are inhibitory have less important role, are responsible for presynaptic feedback inhibition

"Low-dose dopamine"

Activates D₁ receptors.

Increases renal/mesenteric blood flow.

Commonly used in ICU to preserve renal blood flow.

"Medium-dose dopamine"

Increases cardiac output via activation of β_1 -adrenoreceptors.

Useful in management of shock states.

Can precipitate arrhythmias

"High-dose dopamine"

Activates a1-adrenoreceptors

Vasoconstriction

Increases systolic and diastolic blood pressure

Can lead to adverse effects Peripheral ischemia

Possible necrosis and gangrene

Thank you

وجدتك في قلبي .. ومنذ ذلك الوقت وأنا أطوف حولي ..

جلال الدين الرومي

Home work

Summarize adrenergic receptors in the following mind map

- 1. Alpha 1
 - A. Site
 - **B.** Physiological function
 - C. Agonists
 - **D.** Antagonists
 - A. Selective
 - **B.** None selective
 - E. Clinical uses of drugs for each C&D
- 2. Alpha2
- 3. Beta1
- 4. Beta 2
- 5. D1
- 6. D2