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Fundamentals of Mathematical Logic

1.1 Propositions and Related Concepts

A proposition is any meaningful statement that is either true or
false, but not

Both. We will use lowercase letters, such as p, ¢, 7, ... , to represent
propositions. We will also use the notation

p:1+1=3

to define p to be the proposition 1 + 1 = 3. The truth value of a
proposition is true, denoted by T, if it is a true statement and false,
denoted by F, if it is a false statement. Statements that are not
propositions include questions and commands.

Exercise 1:

Which of the following are propositions? Give the truth value of the
propositions.

a.2+4+3="7

b. What time is it?

c.2+2=4

d. How are you?

Solution:
a. A proposition with truth value (F).
b. Not a proposition since no truth value can be assigned to this
statement.
c. A proposition with truth value (T).
d. Not a proposition.

New propositions called compound propositions or propositional
functions can be obtained from old ones by using symbolic
connectives which
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We discuss next. The propositions that form a propositional function
are called the propositional variables.

Let » and ¢ be propositions. The conjunction of p and ¢, denoted

2 A g, is the proposition: p @nd ¢. This proposition is defined to be
true only when both p and ¢ are true and it is false otherwise. The
disjunction of » and ¢, denoted p v ¢, is the proposition: z o7 ¢. The
’or’ is used in an inclusive way. This proposition is false only when
both p and ¢ are false, otherwise it is true.

Exercise 2:
Let »:5 <9
g:9 <7.
Construct the propositions p A gand p v ¢

Solution. :

The conjunction of the propositions » and ¢ is the proposition
pPAg:d<9and 9 <.

The disjunction of the propositions p and ¢ is the proposition
pyv g:d<9or9 <.

A truth table displays the relationships between the truth values of
propositions.

Next, we display the truth tables of » A gand p v¢

P qQ P~Aq
T T T
T F F
F T F
F F F
P q pvq
T T T
T F T
F T T
F F F
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Let » and ¢ be two propositions. The exclusive or of » and
g, denoted
2 ®¢, is the proposition that is true when exactly one of » and ¢is

true and is false otherwise. The truth table of the exclusive ’or’ is
displayed below

p

Eshes NN ke
g g 32
SIS

Exercise 3:
a. Construct a truth table for (» ® ¢) @~
b. Construct a truth table for » ®»

Solution :

(pe@q)o@r

H
N

TR @
AN
Sl kol

Mg 2
BICL PRI

He o HHEEEHAeHAHAE T
e
S
e

] i
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The final operation on a proposition » that we discuss is the
negation of p< the negation of z, denoted — p, is the proposition
not p. The truth table of — pis displayed below.

p -2
T F
F T

Exercise 4:
Construct the truth table of [- (2 A ¢)] v 7~
Solution :

Pprg —-(@rg [~@rgd]lvr
T F
T
F
F

I 5 30
HHERA2
N
H g

H

Exercise 5:
Find the negation of the proposition z: \5 <z < 0.

Solution :
The negation of pis the proposition — p: 2 >0 or z<< \b

Definition 1 :

A compound proposition is called a tautology if it is always true,
regardless of the truth values of the basic propositions which
comprise it.

Exercise 6:
a.Construct the truth table of the proposition
(#r @) v (—pv —¢) Determine if this proposition is a tautology.

b. Show that pv — pis a tautology.
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Solution :

a.

P q -2 —~¢g —-pv—-g prg (@rgv(=pr-g
T T F F F T T
T F F T T F T
F T T F T F T
F F T T T F T
Thus, the given proposition is a tautology.

b.

P -2 pv—p

T F T

F T T

Again, this proposition is a tautology
Definition 2:

A compound proposition that has the value F for all possible values
of the propositions in it is called a contradiction.

Exercise 7:

Show that the proposition pA» — pis a contradiction.
Solution.

P —-p pr-p

T F F

F T F

Remark: if T is the symbol of tautology and F is the symbol of
contradiction and let P any proposition then :

*p/\T =P
P A F=F
P v T =T
P v F=P
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Definition 3 :

Two propositions are equivalent if they have exactly the same truth
values

under all circumstances. We write p = ¢

Exercise 8:

a. Show that — (v ¢ =— pr — ¢
b. Show that — NG =—pv— @
c. Show that — () = »

a. and b. are known as DeMorgan’s laws.

Solution :

a.

P @ -2 -g¢g pvg -W@ve -pr-g¢

T T F T F F
T F F T T F F
F T T F T F F
F F T T F T T
b.

P 4 -2 —-¢ prg - (2rg — PV =g

T T F T F F
T F F T F T T
F T T F F T T
F F T T F T T

T 0

Exercise 9 (H.W):
a. Showthat p A g=gr pandpv g=¢gv p
b. Show that (v ¢ v 7=pv (gv 7)and (A @ A 7=p A (g A

-

c. Show that (# »n @) v 7=(pv 7) A (¢v r)and (v @) A 7=
A 7') \ (Q/\ 7‘)

d.Show that — (# rg) =— pr— ¢
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REMARK:
In propositional functions, the order of operations is that — is
performed first. The operations v and A are executed in any order.

1.2 Law of algebra of proposition :

1. P=(paAaP) , P=(P v P) idempotentof A , v
2. P vq) =(gvp), (prqg) =(gnap),commutative
of A , VvV

3: [(P vC])vI’]E[Pv(C{VI’)]
(P A~ q) Anr]=[P A (g ar)], associative of A , v

44 =P vag)=(=-p ~=-q), -(P rd)=(=p v-0
Demorgans law

a

[P V(ganN]=[Pva)a(pvr)]
[P A(qvi]=[PAq v (par)] ,distributive law

6: (p v1)=1 , (pr0 =0), domination law
7. (pV =p) =1, (pAr —=p) =0, complement law

8 (p vO0)=p , (prl=p) , identity law
9: p=-(-p) , double negation
10 p—->g =(-pVq) implication

11: pog=(p—->9) ~(g—p),equivalence
12: (P A~ g >r] =[p—>(—>r)] , exportation

13: (p>PAr(p>—-9)]=-p , absurdity
14: (p—>q) =(-9q — —-p) , contrapositive

15: pv(parg)=p , pAr(pVv q)=p , absorptionlaw

10
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Solve the Exercise by using law of algebra of proposition

Exercise 10 :
showthat p - (q ->r) =p - (-qVr)

solution:
p ->(q >r)=p >(-qVr) , implication

Exercise 11
[ pA(=aan) IV (gAaTr)V(pAar)=r

solution :
[- pA(=aan ]V (aar)V(pAar)
=[- pA(=qAn)]VI(gVp)ar] by distributive law

=[ (-~ pr=-g)ar] V[(gV p)ar] byassociativelyof ~a

=[ (-pAr=q) V (qQVPpP)]Arr by distributive law
=[-(pVvg VvV (qVp)]rr by demorgans law
=[ -(pVva) VvV (pVvQg)lar by commutativity of V
= 1Ar by complement law
=T by identity law

11
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Review Problems

Exercise 1:

V;/'rite the truth table for the proposition: (# v (- 2 v ¢) r— (¢gr —
,

Exercise 2:

Let Zbe a tautology. Show that p v £ = ¢

Exercise 3:

Let ¢ be a contradiction. Show that p v ¢ = p

Exercise 4:

Show that (v 2) A [(=7v (@A) AN(rv @l=p 1 ¢

Exercise 5:

Show that the proposition s = (z A @) v (=2 Vv (pr— @) isa
tautology.

Exercise 6:

Show that the proposition s = (pr — ¢) A (— 2 Vv @) isa
contradiction.

Exercise T:

a. Find simpler proposition forms that are logically equivalent to p @
rand p @ (p @ p).

b.Is(p® ¢ ® 7r=p® (¢® »)? Justify your answer.
c.ls(p® 9 ~rr=(pr7r) ® (¢~ 7)? Justify your answer.

1.3 Conditional and Biconditional Propositions

Let p and ¢ be propositions. The implication p— ¢is the the
proposition that is false only when pis true and ¢ is false; otherwise it
is true. pis called the hypothesis and ¢is called the conclusion.
The connective — is called the conditional connective.

12
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Exercise 12:
Construct the truth table of the implication p — ¢

Solution.
The truth table is

P q p-oyg
T T

T

T F F
F T T
F F T

Exercise 13:
Show that p >¢g=- p v ¢

Solution.

P q -p po¢ —-pvyg
T T F T T
T F F F F
FT T T T
FF T T T

It follows from the previous exercise that the proposition » — ¢is
always true if the hypothesis p is false, regardless of the truth value
of g We say that p — ¢ is true by default or vacuously true.
In terms of words the proposition » — ¢ also reads:

a) if p then ¢.

b) p implies ¢.

(c) zis a sufficient condition for ¢

Ed) ¢ is a necessary condition for

e) ponly if ¢

Exercise 14:

Use the if-then form to rewrite the statement I am on time for work
if I catch the 8:05 bus.”

Solution.
If I catch the 8:05 bus then I am on time for work.

13
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In propositional functions that involve the connectives —, A,v, and
— the order of operations is that — is performed first and — is
performed last.

Exercise 15:

a. Show that — (» > ¢) = pr — ¢

b. Find the negation of the statement ” If my car in the repair shop,
then I cannot go to class.

Solution.
a. We use De Morgan’s laws as follows.
ﬂ(ﬁ—)qgfﬁ(ﬂp\/g)

VAN g

= p/\ — g
b. "My car in the repair shop and I can get to class.”

The converse of » — ¢ is the proposition ¢ — ». The opposite or
inverse

of » — ¢is the proposition — p — — ¢ The contrapositive of
p—qis the

proposition — g—— p

Exercise 16:
Find the converse, opposite, and the contrapositive of the implication:

” If today is Thursday, then I have a test today.”

Solution.
The converse: If I have a test today then today is Thursday.

The opposite: If today is not Thursday then I don’t have a test
today.

The contrapositive: If I don’t have a test today then today in not
Thursday

Exercise 17:
Show that p > g=—¢—> — p

14
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Solution:

We use De Morgan’s laws as follows.
P—>9d= PV Y

= (p/\ — Q)

~ (=712

—— v - P
gv - P

Exercise 18:
Show that — ¢ > - p=p > ¢

Solution:
We use De Morgan’s laws as follows.
g —> " pPp=gyv P
- g NP
N — G,
pV —/

;4

AN mom o

-2V g
=p->q

Definition 4:

The biconditional proposition of » and ¢, denoted by z <> ¢, is the
propositional function that is true when both » and ¢ have the same
truth values and false if » and ¢ have opposite truth values. Also

reads, "'p if and only if q” or p is a necessary and suffcient
condition for q.”

Exercise 19:
Construct the truth table for p < ¢.

Solution.
P q poyg
T T T
T F F
F T F
F F T

15
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Exercise 20:

Show that the biconditional proposition of » and ¢is logically
equivalent to the conjunction of the conditional propositions p —
gand ¢ — p.

Solution.

P 4 po>g g op pog 2> 9 r (g p
T T T T T T

T F F T F F

F T T F F F

F F T T T T

REMARK :The order of operations for the five logical connectives is
as follows:

1. — 2. A,v in any order.

3. —>,< in any order.

Definition 5 :

let p and g be proposition, p is said to be logical implies the
propositionq ,ifandonly p — q isatautology, denoted by
p<qg,if p—> qis notatautology ,then p> q .

Exercise 21 :

provethat (p A - q )<= (- pVv-0Q).

solution : we must provethat (p A=q)—> (- pVv-q).is T

(pPAr=q)>(=pV=0q)==(PpAr-=0q)V(-pVv-0Q)
=(~pVa) V(=p V -q)

(-pV-=p)V(@Vv-q)

-p VT
T

So, (P A=Qq)= (T pPpV-Q).

16
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Review Problems

Exercise 1:

Construct the truth table for the proposition: — v ¢ —» 7
Exercise 2:

Construct the truth table for the proposition: (p—7) < (¢ — 7)

Exercise 3:
Write negations for each of the following propositions. (Assume that
all variables represent fixed quantities or entities, as appropriate.)

1. If 7 is rational, then the decimal expansion of 7 is repeating.
2. If 7 is prime, then 7 is odd or 7 is 2.
3If z>0,then z >0o0r z=0.

4. If » is divisible by 6, then 7z is divisible by 2 and 7 is divisible by
3.

Exercise 4 :Write the contra positives for the propositions of
Exercise 3.
Exercise 5: Write the converse and inverse for the propositions of

Exercises 6 :
1 * construct a truth table for the following proposition :

[((p ->0a)A(g —>T1)].
2* simplify the following expression by using the laws of algebra of
proposition

a- =(=pAr-q).
b- —-(pVva)Vv(-pnrq).
c- -[(pVva)ar]va.

3* prove the following equivalence by using the laws of algebra of
proposition :

a-pA(pVva)=p

b-pA(-pVa)=pnrg
c-(PAQ)V —=p==pVQ

17
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4* write each condition proposition symbolically , write the converse
and contra positive of each statement and in words also , find the
truth value of each condition proposition , its converse and its
contraposition

1/ if4< 6 , then 9> 12 .

2/ | 4| <3, if -3<4 <3,

1.4 Propositions and Quantifiers

Statements such as ”z > 3” are often found in mathematical
assertions and in computer programs. These statements are not
propositions when the variables are not specified. However, one can
produce propositions from such statements. A predicate is an
expression involving one or more variables defined on some domain,
called the domain of discourse. Substitution of a particular value
for the variable(s) produces a proposition which is either true or false.
For instance, A7) : 7 75 préme is a predicate on the natural
numbers. Observe that A1) is false, A2) is true. In the expression
ARz), zis called a free variable. As z varies the truth value of Az)
varies as well. The set of true values of a predicate Az) is called the
truth set and will be denoted by 772

Definition 6:

If Az) and ¢)z) are two predicates with a common domain /2 then
the notation Az) = ¢Xz) means that every element in the truth set
of Az) is also an element in the truth set of ¢Xz)

Exercise 22:

Consider the two predicates Az) : z is a factor of 4 and ¢Az) : zis a
factor Of 8. Show that Az) = ) =2)

Solution:

Finding the truth set of each predicate we have: 77 ={1,2,4
and 7@ = {1, 2, 4, 8. Since every number appearing in 7/ also
appears in 7¢?

18
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then Az) = ¢)2)
If two predicates Az) and ¢Xz) with a common domain 2 are such
that

7P= 7% then we use the notation Az) < ¢A=z)

Exercise 23:
Let 2 = IR. Consider the two predicates Az) : 2 < z < 2 and

) 2) :|X’ < 2. Show that Az) < ¢A=).

Solution:

Indeed, if 2 in Z/Pthen the distance from z to the origin is at most 2.
That is,

x| >2 and hence z belongs to Z&. Now, if z is an element in then |X|
< 2,

i.e.(z - 2)(z + 2) < 0. Solving this inequality we find that 2 <

z <2 That is, z € 7P

Another way to generate propositions is by means of quantifiers
For example vV z € 0, Az) is a proposition which is true if Az) is
true for all values of 2z in the domain 2 of 2 For example, if £1s an
nonnegative integer, then the predicate A£) : 24 7s evern is true for
all £ < IN. we write, V£ < IN, (24 zs even)

Definition 7 :

The symbol Vv is called the universal quantifier.

The proposition Vz ¢ 2, Az) is false if Az) is false for at least one
value of z. In this case z is called a counterexample.

Exercise 24:

Show that the proposition vz ¢ IR, z > % is false.

19
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Solution:

A counterexample is 2z = % Clearly, % <2=

NP

Definition 8:

The notation 3z ¢ Z, Az) is a proposition that is true if there is at
least

one value of z ¢ 2 where Az) is true; otherwise it is false. The
symbol 3 is called the existential quantifier.

Exercise 25:

a. What is the negation of the proposition Vz ¢ 2, Az)?

b. What is the negation of the proposition 3z ¢ 2, Az)?

c. What is the negation of the proposition vz ¢ 2, Az) - )2)?

Solution:

a.ﬂzeD,ﬁRz’)

c. Since R.Z') Q(z' = (- Rz')) v ¢Xz) then — (Vz e D, Rz) -
A2) = 3z < D, Ra) and - A=)

Exercise 26:

Consider the universal conditional proposition
vz e D, if Rz) then () z).

a. Find the contra positive.

b. Find the converse.

c. Find the inverse.

Solution:

a. vz e D, if - Nz) then - Kz
b. Vz e D, if Az) then Rz)
C.VZe D if — Rz) then— )z

20
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Exercise 27:

Find the negation of the following propositions:
a. Vvziy, Hz, g

b. 32V gy, Az, g)

Solution.

a. 3zvy, - Kz, g)
b. vziy, - Az, »)

Review Problems
Exercise 1:

Consider the statement 3z e IR swc/k that 22 = 2

Which of the following are equivalent ways of expressing this
statement?

a. The square of each real number is 2.

b. Some real numbers have square 2.

c. The number z has square 2, for some real number z

d. If z is a real number, then 22 = 2.

e. Some real number has square 2.

f. There is at least one real number whose square is 2.

Exercise 2:

Determine whether the proposed negation is correct. If it is not, write
a correct negation.

Proposition : For all integers 7, if 72 is even then 7 is even.

Proposed negation : For all integer 7, if 72 is even then 7 is not even.

Exercise 3:
Let 2 ={48148{ 0, 1, 3, 16, 23, 26, 32, 36}. Determine which

of the following propositions are true and which are false. Provide
counterexamples for those propositions that are false.
a. Vz e D, if zis odd then z > 0.

21
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b. Vz € /2, if zis less than 0 then z is even.
c. Vz e L, if zis even then z <0.

d. vz e ), if the ones digit of = is 2, then the tens digit is 3 or 4.
e. Vz e /), if the ones digit of z is 6, then the tens digit is 1 or 2

Exercise 4:
Write the negation of the proposition: vz < IR, if 2(z + 1) > 0 then
z>0o0r z <1

Exercise 5:

Write the negation of the proposition: If an integer is divisible by 2,
then it is even.

22
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Fundamentals of Set Theory

Set is the most basic term in mathematics and computer science. In
this chapter we introduce the concept of sets and its various
operations and then study the properties of these operations.

2.1 Basic Definitions

Definition 1 :

a set should be a well-defined collection of objects, these objects are
called elements and we use capital letters, such as A,B,C,........to
represent sets and lower case letters to represent elements

Definition 2 :
In any application of the theory of sets, all the sets under investigation
will likely be subsets of affixed set, well call this set the universal set.

There are two different ways to represent a set. The first one is to
list, without repetition, the elements of the set. The other way is to
describe a property that characterizes the elements of the set.

Exercise 1:
» for U={1,2,3,.....} the set of appositive integers
Let A={1,4,9,....64,81}= { x? |y € U,x? < 100}
={x2|x€U A x?< 100}
Now, we introduce the following designation that appears frequently
throughout the text.

We introduce her several sets that will be used through, this course

Z=the set of integers ={0,1,-1,2,-2,.............. }
N= the set of nonnegative integer (Natural number) = {0,1,2,...... }
Z'= the set of positive integers ={1,2,3,...... }

23
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Q= the set of rational number={ a |b| a,b € Z, b#o}
Q*= the set of positive rational number {r € Q, r Z}
Q"= the set of nonzero rational number
R= the set of real number
*= the set of positive real number
R"= the set of nonzero real number
C= the set of complex number = {X +iy| x, y € R, i? =-1}
For eachn € Z*, Zn ={ 0,1,2,...n-1}

Definition 3 :
A set which contains no elements is called empty set (Null set)

Exercise 2:
s p={xel:ix= 2}
o :{;(ESR:;(Z <O}
¢ = {Z . yisarealumberandy? = —1}
Since the square of a real number y is always nonnegative

Exercise 3 :
List the elements of the following sets.

a. { 2. zis a real number such that z* = 1}

b. { z. zis an integer such that z* - 3 = 0}
Solution.

a. [1,-1]
b. ¢

Exercise 4 :
Use a property to give a description of each of the following sets.

a. {a, ¢ 7, 0} . b.{-1,3,5,7, 9}

Solution.
a. {z.z 75 a vowel}
b{ 7 € IN: 7 s odd and less than 10}
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>|<Let A and £ be two sets. We say that 4 is a subset of /4, denoted
by

A c F, if and only if every element of A4 is also an element of

/£ Symbolically:

Ac Po vz, zec Aimpliesz c B

Exercise 5:
A={1,23,45,6}, B={24,5}, C={1,2,3,4,5}
Then Bc A,Bc=C,C —B.
Note: if Ais any set, thatA < A. That is, every set is a subset of itself.

If there exists an element of 4 which is not in Z then we write
A < B Since the proposition z € ¢ fis always false then for any

set
Awehave ¢c A oV, zecp W impliesz c A

Exercise 6:
Suppose that 4 = {2, 4, 6}, £#={2,6} ,and (= {4, 6}. Determine
which of these sets are subsets of which other of these sets.

Solution :
Bc Aand Cc A

If sets 4 and — /& are represented as regions in the plane,

relationships between 4 and /4 can be represented by pictures,
called Venn diagram.

Exercise 7 :
Represent 4 — /A using Venn diagram.

Solution : B

Remark:

We define CC D= |C| < |D|
And CCD = |C|<|D|. And id called proper subset of D.
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Theorem 1 :

Let AB,C c U, then

a)ifAcBand BcC then AcC.
b) if AcBand Bc Cthen Ac C.
c) ifAcBandB <C,then Ac C.
d) ifAcBand BcC, then AcC

Proof: We shall prove a.,b and leave c.,d exercises

to prove that ACC we need to verify that for all X€U, if X € C.

we start with an element X from A.

since ACB, X€EA implies > X€EB , then with
BCC,XEB—-X€E€C

So, XEA->XEC

Since XE€EA, X€E€CandACC

b-since Ac B, if X eB with BcC, it then follows that X eC.

so AcC, However, Ac B= there exists an element beB, such that
be A, because BcC,beB—>beC

thus, A = C and there exists an element beCwith beg A SO AcC

Theorem 2 : for any universe v .let Aco
Then ¢ C A.and if A=¢ thengc A,

proof: if the first result is not true, then ¢ < A, so there is an element x

from the universe with xe¢ but xe¢ A.

But xe ¢ isimpossible

so, we reject the assumption ¢c A and find that ¢ < A.In addition if
A=¢ thenthereisanelement acA (and ag¢ ) ,50 g A

Definition 4 :

Two sets 4 and A& are said to be equal if and only if 4 ¢ Zand

B c Awe write A= ZThus, toshow that 4 = Zit suffices to
show the double inclusions mentioned in the definition. For non-
equal sets we writ 4 = Z
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Exercise 8:
Determine whether each of the following pairs of sets are equal.

(a) {1,3,5} and {5,3,1}
(b) {{1}} and {1,{1}}

Solution :
(a){1,3,5} = {5,3,1}
(b) {{1}}= {1{1}}sincel ¢ {{1}}

Definition 5 :
Let 4 and & be two sets. We say that 4 is a proper subset of
Z, denoted by A c 5, if A c Fand A » 5. Thus, to show that

A is a proper subset of /4 we must show that every element of 4 is
an element of Z and there is an element of & which is not in A4

Exercise 9 :
Determine whether each of the following statements is true or false.

(a) z e {2} (b) {2z} c{z} (c){ztec {2} (d) {2} « {{2}} (e) I {2}
f) ¢ {2}

Solution:
(a)True (b) True (c) False (d) True (e) True (f) False

Definition 6 :
Two sets that have no common elements, called disjoint sets

Definition 7 :
If I/is a given set whose subsets are under consideration, then we
call /a universal set.

Let ’be a universal set and 4,2 be two subsets of . The
absolute complement of 4istheset A= {zecl/ -z ¢ A}
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The relative complement of 4 with respect to Zis the set
B-A={zcll zc€¢ Bandz ¢ A}

Exercise 10:
Let A={X: Xisan integer and y >4}
Then A={X: Xis an integer and X<4}

Exercise 11:
Let /= IR. Consider thesets A ={zc 1. z <-1orz>1} and
B={zeclIR: z<<0}

.Find a. 4 b./5F-A4

Solution:
a. A =[-1,1]. b. £7-A=[-1, 0

>I<Let A and 2 be two sets. The union of 4 and Zis the set
Au B={z-zc Aorzch

Where the ’or’ is inclusive. This definition can be extended to more
than two sets. More precisely, if 4,4, ...., are sets then

U A = {z-z e A7 for some 7}
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>|<Let A and A be two sets. The intersection of 4 and Zis the set
An B={z.z¢c Aandz c 5

If An /B = ¢/ we say that 4 and Z are disjoint sets.

Note : The operation of union and intersection can be defined for
three or more sets in the obvious manner.

In general if Ay, Ao,.....An are subsets of Y.then A1 Y A2 Y...... Y An will
be denoted by Y} Ak and A1 N Az N...... NAn will be denoted by 1] A,

Definition 8 .
The symmetric difference of 4 and 5, denoted by A4A 5, is the set
containing those elements in either 4 or & but not both.

Exercise 12 :
Find ANPif A=1{1,3,5}and A=1{1, 2, 3}
Solution. ANFB = {2,5}

B

The symmetric difference is equivalent to the union
of both relative complements, that is AAB = (A-B)U(B - 4),

and it can also be expressed as the union of the two sets, minus their
intersection:

AAB =(AUB)—- (AN B),

or with the XOR operation:
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AAB ={z:(x € A) XOR (z € B)}.
The symmetric difference is commutative and associative:

AAB = BAA,
(AAB)AC = AA(BAC).

Thus, the repeated symmetric difference is an operation on a multiset of
sets giving the set of elements which are in an odd number of sets.

The symmetric difference of two repeated symmetric differences is the
repeated symmetric difference of the join of the two multi sets, where

for

each double set both can be removed. In particular:

(AAB)A(BAC) = AAC.

The empty set is neutral, and every set is its own inverse:

AAD = A,
ANA = 2.

Given 7 sets A;,As,....,A, the Cartesian product of these sets is

the set
A x Ay x ..... x A, =(a, @y .. , @5): &1 € A1, ; € A, ..... ,
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Exercise 13:
Let A={z, 4,F=11, 2, 3}, and C'= {e, 4}. Find
a. A X Bxa
b. (4 xB) xc

Solution:
a.

A xB XCYZ{('Z'; 1, d); ('Z'; 2, d), ('Z'; 3, d), (.% 1, d), (.% 2, d);
(%3, 4),(%1,9,(22,0,(23,0, %1, (290,23, 9}

b.
(A X@ OX =

{((z 1), 2), (% 2), 9), (2 3), 2), (% 1), 2), (% 2), a),

(% 3), @), (= 1), 8, (% 2), 5, ((z 3), 8, (% 1), 9
(% 2), 8), (% 3), &)}

Definition 9 :
if A is a set, then the set of all subset of A is called the power set of A
and denoted by p(A)= (2%), where k is the number of elements Set A.

Exercise 14 :

Let A={1,2,3), the power of A(p(A)) consists of the following subsets
of A,P(A)=2%=8
P(A)=1{d, A, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}}

Review Problems:

Exercise 1:
Which of the following sets are equal?

a.{a, 6,6 d b.{d e a g c{dbad disadecéd
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Exercise2:

Let A={¢ca /g9 B={4 adl={44g
Answer each of the following questions. Give reasons for your

answers.

a. Is Bc A?

b.Is O A

c.IsC 7

d. Is C’is a proper subset of 4?7

Exercise3:

a. Is 3¢ {1, 2, 3}7
b.Is1 <{1}?

c. Is{2} € {1, 2}?

d. Is {3} € {1, {2, {3}}7
e. Isle {1}?

f. Is {2} c {1, {2}, {3}}7
g Is{l}c {1,2}?
h.Is1 e{{1}, 2}?

i. Is{1} <-1, {2}}7

j- Is {1} <{-1}?

Exercise4:

Let A=1{4 ¢ 4 f, fand AF={a, 4, 4 [l Find each of the
following;:
a. A P
b.4A N5

c. A- 5B
d. - A4

Exerciseb:

Determine the following sets, i.e list their elements if they are nonempty,
and write @ if they are empty.

a\{neN:n*=9}

b\{nez:n*=9}

A\ {neR:x*=9}

32



Chapter two BY.MAKARIM A.

d\{neN:3<n<7}
e\{neZ:3<‘n | <7}
A{neR:x* <0}

Exercise6:

Indicate which of the following relationships are true and which are
false:

a. Z"cQ

b.IR c Q
C.Q cZ

d.Z+ UvZ =17
e.Q NnIR=Q
f.IQuU Z=17

g.Z'nIR=17"
h. Zu IQ = 1Q

Exercise 7:
Let A=

{z, y, 24 and KB = {a, 4 List the elements of each of the
following sets:

a. Ax 5

b. B xA

c. AxA

d. B <P

Exercise 8:

the veen diagram of this fig )shows sets A,B and C. Shad the following

BuUC)’
Exercise 9:

prove the following AA(BAC)=(AAB)AC
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Exercise 10:

for U= {1,2,3,....9,10}, Let A= {1,2,3,4,5), B={1,2,3,4,8}, C={1,2,3,5,7}
and D={2,4,6,8}. Determine each of the following: C1 D, AY(B-C),
(B-C)-D, (AYB)-(CI D).

Exercise 11:

Determine all of the elements un each of the following
a- {1+ (-1)" | n € N}
b- {n+(1/m)"(n €{1,2,3,5,7}}
c- {n*+n? n €{0,1,2,3,4}}

Exercise 12:

1/ LetU={a, b,c,d e f g h k}, A={a, b, c, g}, B={d,efg}, C={
a,c,f}, D={f, h, k}

compute AUB, BUC, ANC, BND, A-B, A, A®B, A®C, ANBUC,
ANBNC, AUB, AnB

2/ Let U={12345,6,7,89}, A={124,68}, B={2,4,59}

C= {y : y is a positive integer and ¥°< 16}

D={7,8}

Compute: A0B, AnB, ANBNC), (AUB)UD A UA, AN(C UD)

2.2 Properties of Sets:

Theorem 3 :
- AYB=BYA
Al B=BI A (Commutative properties)
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AY(BYC)=(AYB)YC
AT (BI C)=(AT B)I C (Associative properties)

- A1 (BYC)=(AI B)Y(AI C)
AY(BI C)=(AYB)I (CI A) (Distributive properties)

_AYA=A

Idempotent properties
Al A:A( P prop )

- Prgperties of complement
1) (A)=A
2) AUA=Y

-properties of universal set
DAUg=A
2)ANng=¢

properties of the Null set.
1) Aug=A
2) Ang=A

BY. MAKARIM A.

The following exercise shows that the operation < is reflexive and
transitive, concepts that will be discussed in the next chapter.

Exercise 15 :

a. Suppose that 4,4, are sets such that 4 ¢ Aand Z < C. Show

that 4 cC

b. Find two sets A and Zsuch that 4 ¢ Aand 4 c Z

c. Show that 4 A4
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Solution :

a. We need to show that every element of A4 is an element of C Let
ze A

Since 4 c/Athen z <5 But Z cC'sothat z <C.

b. A = {2z} and F={z, {z}}.

c. The proposition if z <4 then z <.A4is always true. Thus, 4 A4

Theorem 4 : Zet A and B be two sets. 7hen
a AnnBc Aand AL~ P
b A cA VB andB cA U5

Proof :
a.If z €A B~ then z ¢ A4and z </ This still imply that =
cAHence, A n/FB <A A similar argument holds for 4 B~ c/Z

b. The proposition "if z <4 then z AU/’ is always true. Hence,
A cAVE
A similar argument holds for # <4 U /2

Theorem 5 : Zet A be a subset of a universal set U. 7hen
a ¢° =

b. U= ¢

c. (A) = A

d A A =U

e AA~c= ¢

Theorem6 :

lf A and B are subsets of U then
a A oU=U

6. Ao A=A

c A v ¢=A

d A oB=F8 uA
e (A vB) vC=A4 v (L uC)
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Proof :
a. Clearly, A U/ cl. Conversely, let z <. Then definitely,
x €A VUThatis, U cA UU.

b.If ze Athen z eAor z A Thatis, z < AuA and consequently

Ac —Aov A—
Conversely, if z e~—A4 A )then z <A Hence,( A vA= cA

clfz e~ A4 U g=>fthen z cAsince z ¢ ¢ Thus,( A4 U ¢) cA
Conversely, if ze A then z < Aor ze ¢ Hence, Ac<=A U ¢+

d.If z eAuo/Fthen z < Aor ze /ZBut this is the same thing as
saying z €/ or z €A Thatis, z € +—/5 U A~—> Now interchange
the roles of 4 and AZto show that Z wA cA4A U/

e.Let z e (4 vb) UCThen ze (A vb) orz eC. Thus,

(z edor z eB) or z «C'This implies z eAor (z eBor ze ().
Hence, z €A (£ uCJ> The converse is similar.

Theorem7 : (H.W):

Let A and B be subsets of U. Then

a A "U= A
b A nA=A
e A N ¢g= ¢

d A "B=5F~ A
e (A nB) nC=4 m(BmC)

Theorem 8 : Suppose that A c B. Then
a A "nB= A
6. A WF=F5
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Proof:

a. If z € A~ A then by the definition of intersection of two sets we
have z €A Hence, An 5 <A Conversely, if z <A then z <5 as
well since 4 < /FHence, # ¢ A ~/AZThis showsthat 4 cA4 ~/A>
b.If z €4 VU/Athenz cAor z /5 Since A cFthen =

e /Z Hence,

AuB B Conversely, if z ¢S then z < Au B This shows that

B cAUL.

Theorem 9 : from any universe v, and any set A,Bc v the following
statement are equivalent:
AcB,AUB=B,ANB=ABC A

Proof :
we proof a=b and b=c and left c=d and d=a as exercise.
(i) a=b,if ABareany set,thenB c AUB.
for the opposite inclusion.
if yeAUB, then yeA or yeB, but since AcBin either case we have
y €B.
so, AuBc B and,
since we now have both in collusions, it follows AU B=B.
(i) b=c, given sets, A,B we always have AnBc Alet YEA with
AUB=B, YEA= YEA UB= YE€B (since AUB=B) =
YEANB.
SO, Ac AnB.
and we conclude that A=ANB.

Exercise 16
Express A-B= ANB
= AuB Demoragan's law
=AuUB Low of Double Complement
Q: Proof that (AUB)¢ = A°‘NB°¢
Solution:

- We first show that (AUB)® < A‘NB°
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if Y€(AUB)S, then y¢ AUB

thus, y¢ A and y¢ B,

and so ¢ A° and y ¢ B°

Hence 3€ A°’NB® = (AYB)'CA°I B°

- Next we show that A°T B® c(AYB)
Let y€A°NB, then €A and y€B°
So xz A and y¢B

Hence y« AUB

So y€(AUB)*= A°‘NB°c (AUB)°

- (AUB)*= A*NB°

Q) prove that the following are equivalent:
AcB, AnB=A, AuUB=B

proof:
Suppose A =B and let X€EA.
Then X€EB, hence XEANB,
andAcAnB, By part (i) AuUBc A therefore AnB=A.
on other hand, suppose AnB=A and let X€EA.
Then X€(ANB), hence XEA and XEB therefore, A B.
Both results show that A =B is equivalentto AnB=A.
Suppose again that A =B and let X€E(ANB)
Then X€EA, or X€EB.
If XEA, then X€EB, because A cB.
In either case X€EB, Therefore(AUB)cB.
By part (i), Bc (AUB).
Therefore AUB=B.
Now suppose AUB=B and let X€EA, then y € AUB by definition
of union of sets.
hence y e B= AUB, therefore A cB.
Both results show that A =B is equivalentto AUB=B.
Thus, AcB, AnB=A and AuUB=B are equivalent
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Q: Use the laws in operations of set to prove (UN A) U (B N A) =

Solution:

UNA)UMBNA)=(ANU) U (ANB)
=AN{U Y B)
=AN@BY U
=ANU
=A

Q: Prove (If A and B are finite then (A UB)=7(A)+7(B)-n(ANB).
Proof: clearly AUB and A~B are finite if A and B finite.
AuBzBu(%) and B and 4/, are disjoint.

So, n(AUB)= +77(%)
Also, A = (%) AnB)and A% and AnB are disjoint.

So, (A (AB)+77 (ANB)

Or 77(%): A)-n(ANB)
By substituting for 77(%) we get 7(AUB)=7(B)+n(A)-n(A~B).

Review Problems:
Exercise 1:

Let 4,5, and C'be sets. Prove that if 4 cAthen 4 ~nC B C

Exercise 2:
Find sets 4,5, and C’such that 4 ~C'= 25 ~nCbut A= £

Exercise 3:
Find sets 4,5, and C’such that A~nC c B~ Cand AL C
cBAoCbut A+ 5

Exercise 4:

Let A4 and Zbe two sets. Prove that if 4 ¢ Athen 5~ < A°
Exercise 5:

Let 4,5, and C'be sets. Prove that if 4 < C’and Z Cc then
A OF cC
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Exercise 6:
Let 4,75, and C'be sets. Show that 4 x(&Z v ) = (A xB) u(A4 xC)

Exercise 7:
Let 4,75, and C'be sets. Show that A x(ZnC) = (A x Bn (4 xC)

Exercises 8:

(1) prove that a: AcB if ANB*=®
b: AcBif AUB=uU

(2) Simplify each of the following:

1- AYBY(AnBI C)

2- (A-B)U(AI B)

2.3 Sequence:

Definition 10 :

A sequence is simply a list of objects, one after another and numbered
in natural increasing order by the positive integers.

* The list may be finite, that is, it may stop after a certain number of
items.

* The list may be infinite

Exercise 17:

The list 1,4,9,16,25,.....n% is sequence of positive square integers, The
first elements in this sequence is 1, the second is 4.

*In this example all the items listed are distinct; this need not be true
for every sequence.

Exercise 18 :

The sequence 1,0, 0, 1,0, 1, 0, 1, 2, 4. is a finite sequence with repeated
items.
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* A general sequence. that is , one where we do not specify the entries,
can be written as ai, az, as,........an or sometimes as a;, 1<i <co where the
sequence is finite, we may write it as (ai) 1,<i <n.

Definition 11 :
The set corresponding to a sequence is simply the set of all distinct
elements in the sequence.

Note, that an essential feature of a sequence is the order in which the
elements are listed in the sequence.

Exercise 19 :
Leta, b, a, b, a, b,........an infinite sequence, Then the set
corresponding to this sequence is simply {a, b}.

*The idea of a sequence is also important in computer science, where a
sequence is some time called a linear array.

Exercise 20 :
If we have the sequence Si, So, ....

we can represent this sequence as boxes Arrays S
[SulSe[Ss[. [. [.[. [Sn]

and the sequence S(1), S(2), S(3), .....will be called the sequence of
values of the arrays S

Exercises (H.W)

1) give the set corresponding to the sequence 2,,1,2,1,2,1,2,1,1, 3,5,

7,9,11,13

2) write out first four, beginning with n=1 terms of the squares whose

general terms is given 2", 3n2-2n-6

3) write a formula for the nth term of the sequence 1,3,5,7, .....,
1,4,7,10, 13,16

1,1,1,1,1,1,1,......

1,1,2,6,24
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2.3.1 Computer Representation of sets and Subsets:

To represent a set in a computer, the elements of the set must be
arranged in a sequence, when a universal set U is finite, Say U={x1, X2,
...xn} and A is a subset of U.

Then, the characteristic function fa assigns 1 to elements X that belongs
to A and O to elements X that does not belongs to A.

Thus, fa can be represented by a sequence of 0's and 1's of length n.
Any set with n element can be arranged in a sequence of length n, So
each of its subsets corresponds to a sequence of Zeros and ones of length
n. representing the characteristic function of that subset.

This fact allows us to represent a universal set in a computer as an
array A of length n assignment of a zero or one teach location A [n] of
the array specifies a unique subset of U.

Exercise 21 :

LetU={a,b,c,qg,g,r,s,w} the array length 8
Since A[k] =1 for 1<x<8
If A={a,c,r,w}then
_ 1ifx=13,68
A= it - 24567
(1/0]1/0/0f1]0]1]

2.3.2 Characteristic Function

Definition 12 :
If A is a subset of a universal set U, the characteristic function fa of A is
defined as follows:

lify e A
fA(X = -Ze
Oify ¢ A

Note,
We may add and multiply characteristic function, since their values
are numbers.
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Theorem10: :
fa of subsets satisfy the following properties
(a.) fAﬁB = fA M fB: that iS, fAﬁB(l) = fA(l) fB(l) for a.” Z

b) f =f +f,—f, f,. That Is, f W Wy g ®_5 Wf @ vy
AUB A B A "B AUB A A A B

c) f =f, +f,—2f. f, : Thatis f,.,W=f%+f¥_2¢95 for all
A®B A B A 'B A®B A B A B

Exercise 22 :

Let U={1, 2, 3, 4,5, 6, }
A={1, 2, 4}
B={1, 2, 3, 5}

find f, ., fuur Fao

solution:
f,=1,1,0,1,0,0
f,=1,1,1,0,1,0
f,+1,=2,2,1,1,1,,0
fos=1,*1,=1,1,1,1,10
fopg=f +f,—f,*f.=1,1,1,1,1,0
foop = fo+ 1, —2f,*1,22,2,1,1,1,0-(2,2,0,0,0,0)
=0,0,1,1,1,0

2.4 Counting Sequences and Subset:

If two independent tasks (T1) and (T>). are to be performed in Sequence,
and if (T1) can be performed in (n:1) ways and (T2) in (n2) ways, the
Sequence (T1 T2) can be performed in (n1 n2) ways.

In general if independent tasks (Ty, To, ...... Tx) are to be performed in
sequence and T1 can be performed in nl1 ways, T2 in n2 ways,.... Tk in Nk
ways, then the sequence (T1, T2, ........ T«) can be performed in exactly
nln;.....Nkx ways.
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Exercise 23 :

Let S be a set with n elements. How many subsets does S have
Solution:

We know that each subset of S is determined by its characteristic
function, and if S has n element, this function may be described as an
array of 0's and 1's having length n.

The first element of the array can be filled in two ways (with a0 or al),
and this is true for all succeeding element as well, Thus, by the extended
multiplication principle there are 2.2.2....... 2=2"ways of filling in array
and therefore 2" subset of S.

2.4.1 Finite sets, counting principle:

A set is said to be finite if it contains exactly m distinct elements here m
denotes some nonnegative integer. other wise, a set is said to be infinite.
for example, the empty set @ and the set of letters of the English
alphabet are finite hat, the set of even positive integers {2, 4, 6, ...} is
infinite. If a set A is finite, we let n (A) denote the number of elements of
A.

If A and B are disjoint, therefore n(AUB)= n(A) + n(B).
we also have a formula for n(AUB) even when they are not disjoint

Theorem 11
If A and B are finite sets, then AUB and ANB are finite and
n(AUB) = n(A) + n(B) — n(ANB).

corollary:
If A and B and C are finite sets, then so is AUBUC, and n(AUBUC) =
n(A) + n(B) + n(C) — n(ANB) -n(ANC) — n(BNC) +n(ANBNC)
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Exercise 24

Suppose that 100 of the 120 mathematics students at a college take at
least one of the languages, French, German, and Russian. Also suppose
65 study French

45 = German

24 study Russian

20 = French and German
25 = French and Russian
15 = German and Russian

Find the number of students who study all three languages

Solution:

n(RUGUR) = n(F) + n(G) + n(R) — n(FNG) — n(GNR) + n(FNGNR)
n(FUGUR) = 100, because 100 of students study at lest one of languages.
100 = 65 + 45 +42 — 20- 25 - 15 + n(FNGNR)

so, n(FNGNR) = 8. Students study all three languages.

20-8 =12 study F and G but not R

25-8 =17 study F and R but not G

15-8 = 7 study G and R but not F

65-12-8-17 = 28 study F only

45-12-8-7 = 18 study G only

42-17-8-7 = 10 study R only

120-100 20 do not study any of the languages

Exercise 25 :

A survey is taken on methods of commuter travel each respondent is
asked to check BUS, TRAIN, or AUTOMOBILE. as a major method of
traveling to work move than one answer is permitted. The result
reported were as follows
30 people checked BUS

35 = = TRAIN

100 = = AUTOMOBILE

15 = = BUS & TRAIN

15 = = = = AUTOMOBILE
20 = = TRW & =

5 = = all the methods

How many respondents completed their surveys?
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Solution: Let A, B, and C be the set of people who checked BUS, TRW
and AUTOMOBIL, respectively we know that:

n(A) =30, n(B) =35, n(C) =100, n(ANB) =15, n(ANC) =15
n (BNC)=20 and n(ANBNC) =5
The total number of people responding is then
n(AUBUC) = n(A) + n(B) + n(C) - n(ANC) - n(ANB) - n (BNC) +
n(ANBNC) =30 +35+100 ) — (15 + 15 + 20) + 5 =120

Exercise ( H.W):

4/ A survey of 500 television watchers produced the following
information.

285watch football games

195 = basketball games

115 = hockey games

50 = hockey and basketball
45 = football and basketball
70 = football and hockey

50 do not watch any of three games
a/ How many people in the survey watch all three games
b/ How many people in the survey watch exactly one of the three games

2.4.2 Sigma notation:

Now , we need to introduce a concise way of writing the sum of a list of
n+1 terms like

am, Am+1, am+2, ..... am+n, Where m and n are integers and n > 0. This
notation is called:- Sigma notation because it involves the capital Greek
letters >, we use it to represent a summation by writing.

m+n

dm, dm+1, Am+2y eesee Am+n = Zai

i=1
Here the letter i is called the index of the summation and this index
account for all integers starting with the lower limit m and contriving
on up to the upper limit m+n.

we may use this notation as follows.
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7
Zai —a3+ad4+a5+ab+a7
i-3

4

i =17 +22+32+42 =30

i=1

100 101 3 99

300 =110 +12° 13 4. +100° = S (j-1) = (k+1)

i=11 j=12 k=10

iai == Zai—l = Zam

4 2
i=3 i=4 i=2
5
Y a=a+a+a+a+a=5a

i=1

Theorem 12 :
(The Binomial Theorem) If X and Y are variable and n is appositive
integers, then:

n n n n n nin
(X+Y) =] XY 4] XYM IXAY T XM XY= Xy
0 1 2 n-1 n o\ K

Exercise 26 :

1) from the binomial theorem it flows that the Coefficient of X°Y? in the
expansion of

e

2) to obtain the coefficient of a®b? in the expansion of (2a - 3b)’, replace
2a by x and -3b by y.

from the binomial theorem the coefficient of X°Y2in (X+Y)’ is (;J and

mx Y2 = @(Zaf’ (~30) = @(2)5 (-3)2a®? = 6048a°h*

5

3) we need to know the coefficient of a2b3c2d® in the expansion of (a+2b-
3c+2d+5)*e,

If we replace a—u, 2b—w, -3c—X, 2d—Yy and 5—z, then we can apply
the multinomial thermo (nl1,n2,n3,...,n)) to (u+w+x+y+z)!** and
determine the coefficient of u?w3x?y°z* as (2,3,2,5,4)= 302,702,400.
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But (2,3,254)% (ad) (2b)° (-3c)? (2d)° (5)%=(2,3,2,5,4)!(1)%(2)X(-3)?
(2)5(5)%(a?b®c?d®) = 435,891,455,000,000a2h%2d®

t W Ol s (2,3,4,5,4)1° mia, Lied alasda

_ n! AL
© nln2in3t.n! (nL,n2,n3,....,n,

Exercise: (H.W)
1- determine the value of each of the following summation

zal(i2 +1) i[1+(—1)‘] : i(—l)kwhere n is odd positive
integ_er _ _

2- Express each of the following using (Sigma notation)

2)1+4+0+16+25+36+49
1 2 3 n+1
3) =+ + +

where n is positive integer
n n+l n+2 2n

3- Determine the coefficient of X°Y? in the expansions of (x+y)?,
(X+2Y)*2

4-Determine the coefficient of (XYZ?) in (X+Y+2Z)* and (XYZ?) in
(2X-Y-2)*
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Matrix and operation

3-1 Definitions and properties

Definition 1 :
a matrix is a rectangular array of numbers arranged in m horizontal
Rows and n vertical columns.

a‘11 a‘lZ ' " a‘1n
a‘21 a22
A= sy
_a'ml amZ ' ' amn_
Theithrowof Ais [a, a, , ., a,] , 1<i<m
oy ]
azj
The ith column of A is | , , 1 <j<n
L &m

We can write the matrix A as [ aij |

Definition 2:

Size of matrix : the dimension (size)of Ais(m xn)read (mbyn),*
iIf m=n we say that A is a square matrix , of order n.

*if aj=0 for i = j we say that A is diagonal matrix .
* the elements a1, ax, ass, ...., ann form the main diagonal of A .
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Exercise 1 :

the following matrix is diagonal matrix,

1 0 O
A:{4 0} A= |02 0
01 0 0 -4

2 X2 3 X3

Definition 3:

A matrix all of whose entries are zero is called a zero matrix, for example
000
0 0O

Theorem 1:

a  A+B=B+A

b: A+0=0+A=A
¢ (A+B)+C=A+(B+C)

Definition 4:

e if the diagonal , elements are equal 1, then the matrix is called
1 00 00
01000

e identity matrix of order n, In=10 0100
0 0010
0 000 1]

e aBoolean matrix isan m x n whose elements are either ; zero or

one
11 1 00
A{ },B=011
01
0 01

51



Chapter three BY. MAKARIM A.

Exercise 2 :
3 o s 3 2 3 4
IetAz{ } B=1|-2 ,C=|5 6 -1
4 1 2
4 2 0 3

The value of ap=-2, an=1, asx=2,
The value of b11=3, ba=4,
Thevalueof c11=2,c13=4 ,c33=3.
Definition 5:

Two matrix A=[ajj], B = bjj] are said to be equal if aij= bjj

Exercise 3:
2 -3 -1 2y -1
ifA={0 5 2|andB=|x 5 2 |findxy,z
4 -4 6 z -4 6
solution:
x=0, y=3, z=4
Exercise 4 :
let A:{s -2 5} | B:{x -2 5} |
4 1 2 4 y z
Solution:
X=3,y=1,z=2

3-2 operation of matrices :
Definition 6 :

Sum of matrix : the sum of two matrices A=[aij], B =] bjj] is the
matrix C=[cj], suchthat cjj=aij+ bj,
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Exercise 5:
2 3 4 0 -2 4 0 1 8
A=|5 6 -1{, B=|5 1 -1|, C= A+B =10 7 -2
2 0 3 2 0 6 4 0 9
Exercise 6 :
Let A= F 4 _1} and B= {4 > 1} then
50 -2 0 23
A+B= {3+4 4+5 —1+1}:[7 9 o}
540 0+2 -1+3 5 2 1
Theorem 2:
if A, B, c are three matrices, and O is zero matrix , then
(1) A+B=B+A

(2) A+(B+C)=(A+B)+C
(3) A(BC)=(AB)C

(4) A(B+C)=AB+AC
(5) (B+C)A=BA+CA
(6) A(B-C)=AB-AC

(7) (B-C)A=BA-CA

(8) a(B+C)=aB+aC

(9) a(B-C)=aB-aC

(10) (a+b)C=aC+bC
(11) (a-b)C=aC-bC
(12) (ab)C=a(bC)

(13) a(BC)=(aB)C=B(aC)

Definition 7:

Matrix multiplication: the product of A and B is the matrix
C =[cj],suchthat, Cij=airbij +ai2boj+.... + aipby;
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Amxp .Bp ><n=Cm><n,

&, 5 &, | |by b, D Co G
a22 v a‘2p b:Zl b22 ! ij C21 CZZ !
a|2 LA aip ' bp2 ! ! ' C|2 !
a‘m2 ! ! amp_ _bpl bp2 ! bpn _le CmZ '

BY. MAKARIM A.

The size of a product matrix

mxr rxn mXxn

inside

outside
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3x4 2x4

e 113
o EE™N

7 2

Co3 = 8y XDy318y,XDy3+a,3XD35
(2x4)+(6x3)+(0x5)=26

Ciq
_(HH-.

4 1 4
2 6 0 0 -1 3 ..-.
2 75

(1x3)+(2x1)+(4x2)=13

Exercise 7 :

let A:{
1 2 3

2 3 -4

Rt

2 X3 3 X2

C=AxB= |:
1(3)

2(3)+3(=2) +(-4)B) 2(1)+3(2) +(-4(-3)

+2(-2) +3(5) 11) +2(2) + 3(-3) }

_[-20 20
14 -4

2X2
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Rules of Matrix Arithmetic

Multiply AB: Multiply B A
-1 -2 3 6
AB= B-A=
11 4 -3 0
Therefore: ABZBA
Theorem 3 :

if A, B and C are three matrices, then,
L AX(BXC):(AXB)XC
e Ax(B+C)=(AxB)+(A < C)
° (A+B)><C:(A><C)+(B><C)

Remark: if Aisan n <xn matrixand p, q are a positive integer s, we
define

o AP=A.AA......A,and A’=1In

* AP Ad= APt

* (AP)a= APa

*  (AB)P=APBP
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Definition 8:

If A= [ ajj] is matrix of size mxn , we define the transpose of A
By AT=[a]" ,where(aij)’ = aji

Transpose of a Matrix, Al

d3;
i d3p
da3
A34

I.e the transpose of A is obtained by interchanging the rows and
columns of A .

Exercise 8:
2 3 -4 2
let A={ } "AT=]3
1 2 3
-4 3
2X3 3xX?2
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Definition9:
a matrix A is called symmetric if A T= A, and this matrix must be a
square , aij = aji

Exercise 9:
1 2 -3 1 2 -3
ifA=|2 4 5|,and B=|2 4 0
-3 5 6 32 1

, then A is symmetric , since ap= ax1 =2 .... ajj = aji
But, B is not symmetric, since aiz =as:

Theorem 4 :
*( AT)T:A
*(A+B)T:AT+ BT
* (AB)T - BTAT
*(rA)’=r AT, where ris constant .

Review problem :

Exercise 1:
3 o s 3 2 3 4
:IetA:{ B },B: 2| ,C=1|5 6 -1
4 1 2
4 3

(a) what is aj», az, a3?

(b) what is b11, b31?

(c) what is 13, C23, C33?

(d) list the elements of the main diagonal?
Exercise 2:

which of the following are diagonal matrices ?

» 3 3 0 0 2 6 -2
A:[O O} , B=10 -2 0|,C=|0 -1 O
0 0 5 0 0 3
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Exercise 3:
{‘Hb C+d}:{4 6} .finda,b,cand, d
c—-d a-b 10 2
Exercise 4:
s 1 3 1 -2 3 31 -2
IetA:{ },8:12,:245,E=54—3
4 1 -2
3 1 2 01 2
IF possible, compute :
e (2C-3E)" <B
° (BT+A)><C
e (BC)",and C" x BT
e (3E)AT
Exercise 5:
1 2 -2 2
1 -2 5 3 L
consider the matrix A= |3 -2 3|, B= A Ll
32 0 1 -
0 -3 1 3
3 4
Evaluate 1* >'a;, 2* Y b; .
i=1 i=1
Exercise 6:
foreachn e N, let A, ={1 n}, and, B= [1 (_1)} :
01 -1 1

*give A; forall ne N,
*find{neN,:B] =B, }.
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3-3 A procedure (an algorithm) for finding the inverse
of an invertible matrix.

Definition 10:

Row Equivalent : Matrices that can be obtained from one another by a
finite sequence of elementary row operations are said to be row
equivalent.

Theorem 5 :

If A is an nxn matrix, then the following statements are equivalent, that
Is, all are true:

(a) Aisinvertible
(b) AX=0 has only the trivial solution (the only solution is x, =0,
X,=0...x ,=0)
(c) Ais row equivalent to In.

3-3-1 Why study determinants?:

They have important applications to system of linear equations and can
be used to produce formula for the inverse of an invertible matrix.

*The determinant of a square matrix A is denoted by det(A) or |A|.
*If A'is 1x1 matrix A=[a,,], then: det(A)=a,,
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Determinant of a 2x2 matrix

If A is a 2x2 matrix
dp app
A=
dy1 8y

Then we define

all a12
det(A)= = det(A)= a;,a,, -ay,8,
dy1 Ay
2
21
Example 1
5 4
A=
3 2
Then we define
5 4
det(A)= - = det(A)=5.2 - 4.3=-2

Example 2:
if A= (‘I’ i] then det A= |A|= 3-2=1
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If A 1s a 3x3 matrix A=|a,, a,, a,,
d3) A3y A3z
I'hen we define
Aip--Apz--Aips
det(A)= 421 a&z a%S =a;; 822 823 -a,, 421 823 +a,, 1 822
431 aLz ags 432 933 431 33 431 43y
“xample 2
1 5 -3
detAy=|1 0 2 |=1 % 2|5 |1 25|10
3.1 2 -1 2 32 3 -1

=1[0%2 - (-1%2)] =5 [1%2-2%3] - 3[-1%1-0%3]=25

al bl «cl
If A= [az b2 c2] then there are two methods to compute the det A
3x2

a3 b3 c3
Method 1:
det A=al det (bz CZ]- bl det (bl C1j+ cl det (bz Clj
b3 c3 b3 c3 b2 c2
Exercise 10:
2 -1 5
A= 2 3
1 2 2
det A = 2det (2 3)- (-1) det(s 3j + 5dlet (5 2)
2 2 1 2 1 2
=2(4-6)+1(10-3) + 5 (10-2)
= -4 +7+40=43
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Exercise 11;
12 3 0
31 2
A=
5 2 1 10
2 3 0
1 4 2 3 4 2 31 2
det A=1det|2 1 10| —2det|5 1 10| +3det|5 2 10
31 0 21 0 2 3 0
31 4
—0det |5 2 1
2 31

Complete the solution?

Method 2:
Duplicate Column Method — for 3x3

From the previous slide:

djp g ag3
— _ ad,, a ad,, a ad,, a
det(A)=| ay, @y, 8y |=ay | 22 “28| -ay,| 2t “28) 4a,4 721 %22
a,, a a,, a . a
32 da3 31 da3 31 A3y
d3y d3p dg3

= det(A)= ay;8,y833+ 81583831 % 81385183, - 813855837 = 118,583, “8,3y, 855

=0+30+3-0-(-2)-10=25
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Remark: we can not use method 2 for matrix higher than 3x3, for
matrix 4x4 and higher, we use method 1.

Definition 11:

If det A=0, then A is called Singular matrix

3-3-2 Properties of Determinants:

1. if all element of any row (column) of matrix A is Zero then det A =
|A]=0
2. if two rows (columns) ae equal, then the determinant is zero

al bl cl klal k2b2 k3c3
3. ifA=|a2 b2 c2|andB=| a2 b2 c2 | Then|A]=K|B|thisis
a3 b3 c3 a3 b3 c3

true if any row (column) in B is K times the corresponding row
(column) in A.

kal kbl kcl
There for if B=| fa2 2 fc2 |, then |B| = kgf |A|
ga3 gb3 gc3
4. if tow rows (column) are proportional, then the determinant is

Zero.
5. If B is obtained from B by interchanging two adjacent rows
(column), then |B| = -|A|
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Minor and Cofactor of a Matrix Entry

If A is a square matrix, then the minor of entry a;; is
denoted by Mj; and is defined to be the determinant of
the sub-matrix that remains after the i" row and jt
column are deleted from A. The number (-1)™M;; is

denoted by C;; and is called the cofactor of entry a;;.

Definition:

For 3x3 matrix

Ay An3
My, =
dzp dz3

Example 4

The minor of
a,, 18:

The cofactor
of a,; 1s:

The minor of
a,5 18:

The cofactor
of a,; 1s:

dp a3
A=

dy1 Ay A3

d3y dgp sz

Cy=(-1)*My; =My,

25
A= P—5—3
| 0 §
5 3
M, = - = 5X8 - 3X0=40

Cp=C-DM=(-1)"M,; ;=M ;=40

1 2
M,= = 1X0 - 2X1=-2
1 0

Coy=(-1)IM=(-1)°Mp3 =-Mp; =2
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Finding determinant using the cofact

a1 992 943

ar1 gy A9z

31 A3y Q33

a,, a a,, a

C,=|%22 %2 oo 8y, 8y, o 21 9
127 13

A3p a33 a3, a3 31 39

411 A2 A3

8y, 8y, Ay | = 8110 TapCytaCy

431 837 833
L,
And for nxn matrix: = a;,C;; +a,,C, +....+a, C

CRRRORIRG
Srwnowmd

1n

Example: evaluate det(A) for:

1 0 2 -3
A= 3 4 0 1
det(A) =a),C); +a,,C, +a;3,C 5 +a,,Cyy
-1 5 2 -2
01 1 3 ]

4 0 1 30 1 3 4 1
dettA)=(1)|5 2 2 |-O|-1 2 2 |[+2 |1 5 =2
1 1 3 0 1 3 0 1 3
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3 4 0
-(-3)|-1 5 2

0 1 1

= (1)(35)-0+(2)(62)-(-3)(13)=198

Why it 1s useful to find the

inverse of a matrix?

« Many problems in enginecering and science
involve systems of n linear equation with n
unknown (that 1s square matrix).

« The method 1s particularly useful when it 1s
necessary to solve a series of systems:
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In this case each has the same square matrix
A and the solutions are:

X=AB,, X=AB,....... X=A"B,

In this case each has the same square matrix
A and the solutions are:

X=AB,, X=AB,....... X=A"B,

In this case each has the same square matrix
A and the solutions are:

X=A"B,. X=A"B,....... X=A"B,

}CZV\

current

11 A0 9

YR

68

voltage

Vi

Va
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- -1
Cy a1 Yo A1p Vi
Cr | — 5 Ay ayy Vo
Qn - anl anZ ....... axm Mn

3-3-3 Inverse of matrix

How to find the inverse matrix?

For a 2x2 matrix

a b
A= \
xC d

If ad-bcZ0 then
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Find the inverse of:

Using the formula:

d -b

-C

A=

|
&

ad-bc a

Since: ad-bc=3-2=1

d -b 3 -2
Al=
-c al|l~| -1 1
B=Al= is the inverse of
2
2 5] 35 ]
AB= =
-1 3 1 2
35 || 2 5]
B-A= =
1 2 -1 3

1 2
A=
1 3
b
ad-be a=1; b=2;
: c=1; d=3
ad-bc
2 -5
A=
-1 3
10
=1
01
10
=1
01
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3-4 using inverse matrix to solve to system of linear
Equation.

Example: consider the system of
linear equations:

X, +2X,+3%X5=5

2X;+5X,+3X,=3
X4 +8x;=17

We can write the this system as AX=B

1 23 Xy S

A= 2 5 3 X=| X, B=| 3

1 08 X3 17
Theorem 1

« If Ais an invertible nxn matrix, then for each nx1

matrix B, the system of equation AX=B has exactly
one solution, namely X= A-'B.

djp dp a1 Xy B,
Ay 8y | =B
| 8ny @np. Ay | ¥XL ;BL
— — — ] -1* ]
Xy CIRCIP I a1 B,
X | = dyy &y . Ay B,
R 8 8p...8n | | By
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Example: consider the system of
linear equations:

X, +2X,+3X5=5
2X;+5X,+3X53=3

X, +8X4=17

We can write the this system as AX=B

1 23 Xy 5
A= 2 5 3 X=| X, B=| 3
1 0 8 X3 17
41— adjA
det A
In example 1 we found that the inverse of
Alis:
-40 16 9
Al= 13 -5 -3
5 -2-1

By theorem 1 the solution of the system is:

-40 16 9| 5 1
X=AB=| 13 -5 -3]| 3 = -1
5 -2 -1|| 17 2

or: X;=1, x,=-1, X3=2
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Why it is useful to find the
inverse of a matrix?

Many problems in engineering and science e
involve systems of n linear equation with n
unknown (that is square matrix).

The method is particularly useful when itis
necessary to solve a series of systems:

AX=B,, AX=B,........ AX=B,,

BY. MAKARIM A.

In this case each has the same square matrix
A and the solutions are:

X=A"1B,, X=A"B,....... X=A"B,

Electronic Circuitry

voltage
currént .
811 85 84p C A
8p1 8 .. 8 C, | =| Vv,
dng 8np. ann ] ¥Cn4 *V’L
— — —-1_ _
C1 dyg gp . 81 vy
C | = dpg pp .. Vv,
;Cng Ay1 8np.... ann ] Vi,
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Exercise 12 :
solve the equation by inversion method
X+2y+3Z=4
X+3y+427Z=0
X+4y+32Z2=2
Solution:-
1 2 3 X 4
A= |1 3 4|=|y|=|0
1 4 3 Z 2
x) (1 2 3\7'(4
“lyl=[1 3 4] |0
z) (1 4 3) 1

A = @ (9-16) — 2 (3-4) + 3 (4-3)= -7+2+3=-2

= (- 234:- = -
Cu=(1? |, | =916=-7

= (- 3 1 4 = - - =
Ci2=(-1) | 3 (3-4)=1
= (- 4 1 3 =4- =
Ciz=(-1) L 4 4-3=1
2 3 _ _
Co=- ‘4 3‘— (6-12) =6
R B
Caz |} 3 =30
12 _
C23—-‘1 4‘ =-(4-2)=-2
2 3
Ca = ‘3 4‘ =8-9=-1
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C32=- ‘1 4‘2-1
Cas = ‘1 2‘ =(3-2) =1
-7 1 1Y) (-7 6 -1
adjA=|6 0 -2|=[1 0 -1
-1 -1 1 1 -2 1
7
5 =3 0
A’l_—% 0 +%
-1 -k
X % -3 Y\4) (14-0+1) (15
y|= % O(=|-2+0+1|=| -1
z % 2 -2+0-1 -3
- X=15, y—l Z=

Review problem:
( 1)Write which of the following system of linear equation as a single
Matrix equation AX=B .

(1) X1+8X2-2X3=3 , AX1-TXo+X3=-3 , -2 X1-5 X2-2 X3=1
(2) Xi-3 Xot6 X3=2 , 1 X1+5 Xot+ X3=-9
(3) 5 Xi1+2 X>=6 ) 4 X1-3 Xo=-2 , 3 X1t Xo=9

(4) 2 Xy+5 Xo-3 Xz+4Xs=4 | X1+9 X3+5X4=12
3 X1-3 X2- 8X3+5X4=2

(2) solve the following system by determine the inverse of the three
variable (a) X+2 X2- X3=2 , X1+ Xo+2 X3=0 , X1- Xo- X3=1
X1 - X2 =1.
(b) X+ Xo+2 X3=2 , X142 Xo+ X3=0 , X1+ 2Xo+3X3=1
() 2X1+5Xo+3 X3=3 |, X1+8 X3 =15, X1-2Xo+2
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Relations and Functions

4-1 some basic definition :

A “relation” is a fundamental mathematical notion expressing a
relationship between elements of sets.

Definition 1:
A binary relation fromaset Atoaset Bisasubset R < A x B.

So, R is a set of ordered pairs. We often write @ ~, b or aRb to mean
that (a, b) <R.

Many times, we will talk about a “relation on the set A”, which means
that the relation is a subset of A x A. We can also define a ternary
relation on A as a subset RxA°or, in general, an n-ary relation as a
subset R X A", or R x A; x A; x xx A" ifthesets A' are different. In
this class, we will focus only on binary relations. Here are some

Exercise 1:
1. Let A= Nanddefine a~,b iffa <b.

2. Let A = P(N) and definea ~,b iff a b is finite.

3. Let A =R’ and definea~, b iff d(a,b) = 1.
4. Let A = P({1,... , n}) and define a~.b iffac b.

4-2  Properties of Relations :

*A binary relation /Z from a set A4 to a set Zis a subset of

A XPB If (a 6 ¢ £ we write a/Zb and we say that « is related to
4. If a is not related to Zwe write ¢ /204
In case A = F we call Za binary relation on 4

The set Dom(R) ={a <A.(a, b ¢ R for someb <5} is called
the domain of /2

The set Zangd R) = {6 <« B-(a, b) ¢ R jfor some a < A} is called
the range of /2
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Exercise2:

a. Let A=1{2,3,4}and Z= {3, 4, 5, 6, 7}. Define the relation /4 by
a/f2b if and

only if ¢ divides 6. Find, £ ,Dom(F) , Range A)

b. Let A = {1, 2, 3, 4}. Define the relation Z by /¢ if and only if
a < 6. Find, 2 ,Dom(A) ,Range(A)

Solution:
a> = {2,4),(2,6),(3,3),(3,6), (4, 4)}
,Dom(R) = {2, 3,4}, and Range(R) = {3, 4, 6}
bD R ={(17 1)’(1’ 2)7 (17 3)’ (17 4)7 (2’ 2)’ (2’ 3)’(2’ 4)’ (3’ 3)’(3’ 4)

(4,4)}
,Dom(R) = A, Range(R) = A

To draw a digraph of a relation on a set 4, we first draw dots or

vertices to represent the elements of 4. Next, if (a, ) < /£ we draw
an arrow gcalled a directed edge) from a to &
Finally, it (@, @) </ then the directed edge is simply a loop.

*Next we discuss three ways of building new relations from given
ones. Let Zbe a relation from a set A4 to a set &, The inverse of

A is the relation Z* from Zange(A) to Dom(A) such that:
B ={ba)c BXA,(a8cR

Exercise 3:

Let Z2=1{(1, »), (1, 2), (3, 2)} be a relation from 4 = {1, 2, 3} to
B={z, g 3

a. Find. Z*

b. Compare/Z" and Z

Solution:

a. ' ={(%1),(51),(%3)}
b. B'=2F

77



Chapter four BY. MAKARIM A.

* Let £Zand 5be two relations from a set A4 to a set FZThen we
define the relations Z o Sand Zn~ S5  by:

Ro S={(a b c AX B (a, b ¢ Ror(a b c S},
Exercise 4:
Given the following two relations from 4 = {1, 2,4} to A=
{2, 6, 8, 10}:
af?6if and only if 2 [ 4
aStif and only if 6-4=a
List the elements of 2, 5, Zu 5 and Z &

Solution:

7Z={(1,2), (1,6), (1, 8), (1, 10), (2, 2), (2, 6), (2, 8), (2, 10), (4, 8)}
S= 7(2: 6): (4: 8)0

2o S=F/F -« ZnSE=5

Definition 2:
Now, If we have a relation Z from A4 to /£ and a relation .5'from £ to

C’we can define the relation 50 Z, called the composition relation,
to be the relation from 4 to C’defined by:

S0 R={(a,b)- (bc) e Rand (a,c) € S for some b « B}

Exercise 5:

Let 2= {1, 2)7 (17 6)7 (27 4)7 (37 4)7 (37 6)7 (37 8)} & S=
{(2, »), (4, ), (4, 9, (6, 9, (8, »)} , Find S0 Z

Solution.
S0 2= {(17 ”)7 (17 t)z (27 '9)7 (27 t); (37 '9)7 (37 t); (37 ZJ)}
Note: RoS # SoR

Definition 3 :

let R and S be two relations from A to B, then
R={(a,b) e AxB:(ab) ¢R}.

R ~S={(@b):(ab) eRand(ab) S}

Ru S={(ab):(ab) eR or(ab)eS}

R-S ={(ab):(ab) eRbut(ab) ¢ S}

ReS ={( R-S) u (S-R)}

78



Chapter four BY. MAKARIM A.

Definition 4:

We next define four types of binary relations:

A relation Zon a set A is called reflexive if (¢, @) € Zfor all
A. In this case, the digraph of Zhas a loop at each vertex.

Exercise 6:
a. Show that the relation ¢ < 4on the set 4 = {1, 2, 3, 4} is reflexive.
b. Show that the relation on IR defined by /% if and only if ¢ < 4is
not reflexive.

Solution:
a., each vertex has a loop.

b. Indeed, for any real number 2 we have ¢> 2 = 0 and not ¢ - ¢ <0.

Definition 5 :

A relation Zon A is called symmetric if whenever (&, §) < /Zthen
we must have (4, @) € A The digraph of a symmetric relation has
the property that whenever there is a directed edge from z to 4, there
is also a directed edge from 4 to 2

Exercise 7:

a. Let A={q, 4, ¢, & and Z={(a, a), (4 o, (¢, ), (&, d)} Show that
/7 is symmetric.

b. Let IR be the set of real numbers and Z be the relation ¢4 if and

only if @ < 4. Show that Zis not symmetric.

Solution:
a. 0ftc and c/dbso /£ is symmetric.
b. 2 <4but4 <2

Definition 6 :

A relation Zon a set A4 is called anti symmetric if whenever (¢, 4)
c/fand @ #bthen (4, @) ¢ /< The digraph of an anti symmetric
relation has the property that between any two vertices there is at
most one directed edge.
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Exercise 8:
a. Let IN be the set of nonnegative integers and / the relation «/% if
and only if ¢ divides 4 Show that /Zis anti symmetric.

b. Let 4={a, 4, ¢ &4 and 2= {(q, d); (ér c)r (6’, é)r (d; d)} Show
that Zis not anti symmetric.

Solution.
a. Suppose that # dand 4 a4 We must show that ¢ = 4. Indeed,

by the definition of division, there exist positive integers £, and £,
such that 6= £,cand ¢ = £,46 This implies that z = £, £,z and
hence £, 4, = 1. Since £,and £, are positive integers then we
must have £ = £, = 1 Hence, ¢ = 4

0. bfcand c/f2bwith 6 = ¢
Definition 7 :

A relation /Zon a set A4 is called transitive if whenever (&, §) <
Rand (6, ¢) € Rthen (a, ¢) € & The digraph of a transitive relation
has the property that whenever there are directed edges from & to

6 and from & to cthen there is also a &z7ecfed edge from a to ¢

Exercise 9 :
a. Let A={a, 4, ¢ d} and Z={(q d)’ (&: C), (C’ é): (dﬁ d)}
Show that
Zis not transitive.
b. Let Z be the set of integers and /4 the relation @/ if a divides &.
Show that Zis transitive.

Solution:
a. (4, ¢) e Rand (¢ 6) ¢ Zbut (4, 0) ¢ 4.
b. Suppose that @ /4 and & c Then there exist integers £ and £,
such
that &= £ e and c= £, 4. Thus, ¢ = (4, #,)a which means that

a /c
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Remark.

—A relation that is reflexive, symmetric, and transitive on a set A is
called an equivalence relation on A. For example, the relation”=’
is an equivalence relation on IR.

Exercise 10 :
Let Z be the set of integers and 72 € Z. Let /4 be the relation on Z
defined by @/ if @ \ 64is a multiple of 72. We denote this relation

by @ = 6 (mod n) read ”a congruent to é modulo 7.” Show that Zis
an equivalence relation on Z.

Solution:
==is reflexive: For all € Z, - a =0 o n That is, @ =a (mod 7n)

=is symmetric: Let @, 6 € Z such that @ = & (mod n). Then there is
an integer £ such that @-4 = 47 Multiply both sides of this equality

by (-1) and letting #'= -£we find that 6- e = #7 Thatis 6=
a (mod n)
= 1s transitive Let @, 4, ¢ € Z be such that @ == 6 (m0d 7) and

== ¢ (mod n)

Then there exist integers 41 and 4 such that ¢- 6= £lzand 4- c=
A

Adding these equalities together we find @ - ¢ = 472 where

£= A + A& e Z which shows that a =c (mod n)

Definition 8 :

let R be an equivalence relation on the set A,

If ac< A then [a]= {xeA:xRa},[a] is called the equivalence class
of R .

Exercise 11 :
let A={1,2,3}
, R=(1,1),(1,2),(2,1),(2,2),(3,4),(4,3),(3,3),(4,4)}, find [1].[2]
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Solution:

[1={12} , [2]={12}

(1) JoY bnddl p Jogys &1 puoliall g (1) J 58501 i o JULI 1da S5 (e Laodls
ol Gl dag , (2) Jo¥ badudl pe dagiys @I poliadl (2 (2) J 381 cigo IS,
Al Z Il G il oud (p 33K uolic

Remark :

*[a] #¢ , 3ac[a] ,
*[al c A , vace]a]

Theorem :
[a] =[b] iff a Rb and if [a] #[b] ,then[a] n[b] =¢ .

Definition 9 :

iIf R is an equivalence on a set A, then the collection of all
equivalence class of the elements of A gives o partition of A,
denoted by A/R :

Exercise 12 :

let S={1,2,3} and the relation

R={(11),(1,2),(2,1),(2,2),(3,3) } is equivalence relation on S under the
Relation R, find the partitionof S(S R.

Solution:

[1]={12}, [2]={12}, [8]1={3},
P= (S/R) = {{1,2} {3}}.

Remark :
letp={A, }be a partition of aset A, we defined a relation R on A

by aRb iff a,b belong to the some A, , then R is equivalence
relation and A/R .= p.
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Exercise 13 :
let A={1,234}, findR of the following partition

p. ={{12}{34}}, p,={{1.2,3},{4}}

solution :
R,={(1,1),(21),(1,2),(2,2),(3,3),(4,3),(3,4),(4,4).},

R,={(1.1).(2.1),3.1).(1,2),(2,2).(3,2),(1,3).(2,3).(3,3),(4.4)}

4-3 Partial Orders:

Partial orders are another type of binary relation that is very important
in computer science. They have applications to task scheduling,
database concurrency control, and logical time in distributed
computing,

Definition 10 :
A binary relation R < A x A is a partial order if it is reflexive,
transitive, and ant symmetric.

A partial order is always defined on some set A. The set together with
the partial order is called apposed”

Definition 11 :
A set A together with a partial order < is called a posit (4, <).

Exercise 14 :
Consider the following relations:
* A = N,R =< easy to check reflexive, transitive, anti symmetric

*A=NR=>,same.
* A = N,R =<, not because not reflexive
* A = N,R = | (divides), easy to check reflexive, transitive, anti

symmetric

83



Chapter four BY. MAKARIM A.

* A = P(N),R =c, check reflexive: S c S, transitive: S ¢ S’ A §'cS”
—S < §" antisymmetric S <c S A S8 cS->85=8

» A = “set of all computers in the world”, R = “is (directly or
indirectly) connected to”. Not a partial order because it is not true that
aRb ~bRa a = b. Infact, it is symmetric and transitive. Equivalence
relation.

Definition 12 :

**Now, let 4,,4,, ... ,A, be a partition of a set .4. That is, the
A, are subsets of A that satisfy

(I Y, A=A
(i) A;n A;= 90 fori= 5

Define on A the binary relation z Z yif and only if z and z belongs
to the same set 4z for some 1 < 7< 7

Remark.
Let R be an equivalence relation on A. For each a € A let [a] = {z <
A- zRa} % = {[a]-a ¢ A}.

Then the union of all the elements of %z’s equal to A and the

intersection of any two distinct members of A/R is the empty set.
That is, the family A/R forms a partition of A.

Review Problems:

Exercise 1:
Let X = {a, 4, 4. Recall that A_X) is the power set of _X. Define a

binary relation 2 on AX) as follow |A A| = 5
a. Is {a, b} R {b, c}?

b. Is {a} R {a, b}?

c.Is{c}R{b}?

J
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Exercise 2:

Let A={3,4,5} and A= {4, 5, 6} and define the binary relation
Rasfollows: (2,9 ¢ AxB, (2,9 ¢ <= 2 <y  List the

elements of the sets Zand Z*

Exercise 3:

Let A={2,4} and Z={6,8, 10} and define the binary relations
VAN

from A to £ as follows:

(.Z',y)eAxB,(.Z',y)eﬁ)@@%(
(z,9) e Ax BzSy=> y\Nd=z
List the elements of 4 x 2 ,/Z, S,/Z v S, and Z2n.S

Exercise 4:
Consider the binary relation on IR defined as follows:
1° zZ,ye Lz Ry=z> gy

2- zZyye L,z Ry=zy>0

Is Zreflexive? Symmetric? Transitive?

Exercise 5:
Let 4 = IN x IN. Define the binary relation Zon A as follows:
(0,0 R(,d) o=a+d=06+c

a. Show that Zis reflexive.
b. Show that /Zis symmetric.
c. Show that Zis transitive.
d. List five elements in [(1, 1)
e. List five elements in [(3, 1)
f. List five elements in [(1, 2)
g. Describe the distinct equivalence classes of 2
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4-4 Functions:
4-4-1 Definitions and Examples

A function is a special case of a relation. A function /from a set
Ato aset Ais arelation from A4 to & such that for every z <

A there is a unique g ¢ 5. such that (z, ) ¢ /> For (2, y) € fwe
use the notation y = Az) We call zthe image of z under / The set
A is called the domain of /whereas Zis called the co domain.
The collection of all images of fis called the range of /

Exercise 15 :
Show that the relation /= {(1, @), (2, ), (3, @)} defines a function
from 4= {1, 2, 3} to B ={ae, 4, 4 Find its range.

Solution.
Since every element of .4 has a unique image then /is a function. Its
range consists of the elements 2 and 4

Exercise 16 :
Show that the relation /= {(1, @), (2, ), (3, o), (1, 4)} does not
define a function from 4= {1, 2,3} to ZA={a, 4, 4

Solution.
Indeed, since 1 has two images in A then /is not a function.

* A sequence of elements of a set A4 is a function from IN" to
A. We write (a,) and we call @, the nth term of the sequence.

Exercise 17:

a. Define the sequence @, = 7, 7 > 1. Compute > a,
k=1

b. Define the sequence @ = 7* Compute the sum > a,
k=1
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Solution:

a. Let 5, => a, Then write 572 in two different ways, namely,
k=1

S, =14+2+..+7and S, =2+ ((2—-1)+ ...... +
1 Adding, we obtain

285, = (n+1)+(2+1)+ ...+ (2+ 1) = 7n(n + 1) Thus,
§ = n(n+1)
" 2
b. First note that (72+1)°-72° = 372°+37+1. From this we obtain the
following chain of equalities:
29 -1° = 3(1)? + 3(1) + 1
3°-2° =3(2)” +3(2) +1

(24 1) -7° =37+ 32+ 1
Adding these equalities we find

3Zn:k2+3zn:k+n= ( n+1)3-1 , Using a. we find
k=1 k=1

3>k +3”(”2+1)+ n=n'+3n'+ 3n
k=1

A simple arithmetic shows that
4 2n+1)
K2 = n(n+1)(

6
Exercisel8:
Let A = {a, 64, ¢ Define the function /: A A) —IN by _/(J(Yj = X

Find the range of /

Solution:
By applying /to each member of A A) we find Zange( /) =

{0,1,2,3}

Exercisel9:
Consider the alphabet = = {2, 4} and the function /: =~ — Defined

as follows: for any string s ¢ =
A s) = the number of a, in s Find A¢), Aababb), and A bbbaa)
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Solution.
Ae), =0, Aababb) =2, and fbbbaa) =2

4-4-2 Definition 13 : (Hamming distance
function):
Letz = 90, 1¢ and X "be the set of all strings of 0’s and 1’s of

length 72
Define the function Z: = "x =" — IN as follows: for any (s, 9)

>h"x X"

H(s, t) =
number o f positions in which s and t have different values

Exercise 20 :
For the case n = 5, find H(00101, 01110) and H(10001, 01111)

Solution:
H(00101, 01110) =3 and H(10001, 01111) =4

4-4-3Definition 14 : (Boolean functions)

An n-place Boolean function /is a function from the Cartesian
product

{0,1}" to {0, 1} Consider the 3-place Boolean function /: {0, 1}°
— {0, 1} defined by A=z, z,, z,) = (z, + z, + z,) mod 2

Describe /using an input/output table.

N

/(-Z'u z,, -Z's)

w

COOCOHEFRFF§
COHHMFRFOOMFME
OO OO §
O MEOMRROOM
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4°4°4 De finition 15 .~<— Encoding and Decoding
functions)

Let = = {0, 1}and = be the set of all strings of 0’s and 1’s. Let
Z be the set of all strings over = that consist of consecutive triples

of identical bits. Thus, 111000 €Z . A message consisting of 0’s

and 1’s is encoded by writing each bit in it three times. The
encoded message is decoded by replacing each section of three
identical bits by the one bit to which all three are equal.

We define the encoding function £2': =° — Z by

E(s) =
the string obtained from s by replacing each bit of s by the same bit
written three times

and we define the decoding function 22: Z — = by

D(s)=

the string obtained from s by replacing consecutive triple of bits
of s by a single copy of that bit>

Exercise 21 :

Find  £{0110) and /X111111000111)

Solution:
We have £{0110) = 000111111000 and /ZX111111000111) = 1101.

Review Problems:

Exercise 1:
Let A= 91,2, 3,4,5¢ and let #: A A) — Z be defined as follows:

0 ifhasevennumberofelement

Ad) :{1 ifhasoddnumberofelement
Find the following

a. /{1, 3, 4}
b g

c. /{2, 3})
d. /42, 3, 4, 5))
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Exercise 2:
Let * =—¢, 6 and =  be the set of all strings over

a. Define /: =° — Z as follows:
thenumberofb,tothelefto ftheleft mostains

As) = { 0 ifscontainsnoa,
Find Aaba), fbbabd), and A6). What is the range of /7

b. Define g: =° — 3’ as follows:

g(s) =
the string obtained by writing the characters of s in reverse order
Find 4 aba), 9(b6babd), and g(H)> What is the range of g7

Exercise 3:

Let £Zand 2 be the encoding and decoding functions.
a. Find E(0110) and D(111111000111).

b. Find E(1010) and D(000000111111

Exercise 4:

Let H denote the Hamming distance function on *°
a. Find H(10101, 00011

b. Find H(00110, 10111

Exercise 5:

Consider the three-place Boolean function f: {0, 1}* —{0, 1}defined
as follows: f(z,,z,,z,) =B z,+x, + 2 x,) mod 2

a. Find A1, 1, 1) and A0, 1, 1)

b. Describe /using an input/output table.

4-5 Recursion:

A recurrence relation for a sequence ¢,, a,, ... is a relation that
defines @7zin terms of ¢, a,, ... , @, ,. The formula relating @, to
earlier values in the sequence is called the generating rule. The

assignment of a value to one of Z%e a’s is called an initial
condition.
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Exercise 22 :

The Fibonacci sequence 1,1,2,3,5, ...... is a sequence in which
every number after the first two is the sum of the preceding two
numbers. Find the generating rule and the initial conditions.

Solution:
The initial conditions are ¢,= @, = 1 and the generating rule is
an = dn—1+ dn—z J 72 Z 2

Exercise 23 :
Let 7z > 0 and find the number 72 of words from the alphabet = =

{0, 1} of
length 72 not containing the pattern 11 as a sub word.

Solution:
Clearly, s, = 1(empty word) and s, = 2. We will find a recurrence

relation for s,

72 > 2> Any word of length 7 with letters from > begins with either 0
or 1.

If the word begins with 0, then the remaining 72-1 letters can be any

sequence of 0’s or 1’s except that 11 cannot happen. If the word
begins with 1 then the next letter must be 0 since 11 can not

happen; the remaining 7 - 2 letters can be any sequence of 0’s and

1’s with the exception that 11 is not allowed. Thus

the above two categories form a partition of the set of all words of
length 7z with letters from X and that do not contain 11. This
implies the recurrence relation

S, =8, + 8., 72> 2

*The most basic method for finding the solution of a sequence defined
recursively is by using iteration. The iteration method consists of
starting with the initial values of the sequence and then calculate
successive terms of the sequence until a pattern is observed. At that
point one guesses an explicit formula for the

Sequence and then uses mathematical induction to prove its validity.
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Exercise24 :
Find a solution for the recurrence relation

a, =1
a,+2 nx1

Solution :
Listing the first five terms of the sequence one finds
a, =1

a =1+ 2

e, =14+14

a,=1+6

e, =14+ 8

Hence, a guess is e, =2n+ 1, > 0. It remains to show that

this formula is valid by using mathematical induction. Basis of
induction:

Forn=0,a,=1=2(0)+1

Induction hypothesis: Suppose that 2, = 272 + 1

Induction step: We must show that 2,,, =2(z+ 1) + 1

By the definition of a,,,we have ¢,,= a2, +2=22+1+4+ 2=
20z+1)+1

n+l

Exercise 25 :
Consider the arithmetic sequence

e, =a, ,+d n> 1
Where ¢, is the initial value. Find an explicit formula for &,

Solution:
Listing the first four terms of the sequence after @ we find

a,=a, +d

e, =a, + 2d
a, = a,+ 3d
e, =a, +4d

Hence, a guess is @, = a, + 7d
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Next, we prove the validity of this formula by induction. Basis of
induction: For =0, ¢, = @, + (0)d

Induction hypothesis: Suppose that ¢, = ¢, + 724

Induction step: We must show that ,,,= @, + (2 + 1)&

By the definition of «,,we have ¢,,= ¢, + d= a, + nd+ d= a,
+ (2 + 1)d

Exercise 26 :
Find a solution to the recurrence relation

a, =0
a,= a,,+(h-Yn=>1

Solution :
Writing the first five terms of the sequence we find

a,= 0

a =10

a, =0+4+1

e, =0+1+2

e, =0+1+2+3

A guessing formula isthat ¢, =0+ 14+ 2 + ...... + (72 -

n(n—-1
1/
We next show that the formula is valid by using induction on 7> 0
0(0-1)

2
Induction hypothesis: Suppose that «, _nn-Y

Basis of induction: ¢, = 0=

Induction step: We must show that ¢, = n(n+1) . Indeed,

a.,.=a, +n O n(n2—1) —n . n(n2+1)
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Review Problems:

Exercise 1:
Find the first four terms of the following recursively defined sequence:

a, =1 a, =2
a,=a,,;+a,,+1 n=1=3

Exercise 2:
Find a formula for each of the following sums:

a. 1424+ ...+ (n-1) , 7> > 2
b. 0+2+4+6+8+ ...... +22 ,7n>1
c. 3.1+3.24+3.3+ ....... 3.7 ,2>>1

Exercise 3:
Find a formula for each of the following sums:

a. 1+2+42°4+....... + 2" , 2> 1

b. 3"+ 3" 4+ ....... +3+3+1 , 2 >1

c.3. 2"+3.2"+3.2""+....43.2+3.2+3 , 72> 1
d. 2" -2 2" 2274 L. + (-1)" .24 (-1)" ,2>1

Exercise 4:

Use iteration to guess a formula for the following recusively defined
sequence

and then use mathematical induction to prove the validity of your
formula:

c=1,c =3c,, +1 ,forall 7> 2

Exercise 5:

Use iteration to guess a formula for the following recursively defined
sequence

And then use mathematical induction to prove the validity of your
formula:

a,=1 ,a, =2"-a,, , for all 7z >2

n
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4-6 Representing a Relation by a Matrix:

Let A4 be a set with 7z elements and /4 be a binary relation on A4p
Define the 7 x7z matrix AA /%) = () as follows:
1 if (a,b,) R
7= {o if (a;,b,) ¢ R
If the numbers on the main diagonal of 4/ /Z) are all equal to 1 then

Ris re- flexive. If MM A)"= M A), where A A)"is the transpose of
M K), then the relation /is symmetric. If 72, = 0 or 772; = 0 for 7 =

J'then Zis anti symmetric.

Exercise 27 :
letA={24,6}, B={r,s},and
R={(2,r),(25s),(69)}

Solution:
11
MRmxn =10 0
01

(A Zegezmll yolic sue ) Bgasmll Bgiw sue Jies M La
( B acgemll yolic suc ) Bigasmll sueel sue Jies N o

Exercise 28 :
let A=B={1,2,3,4}, {(a,b) : a=b}

AxB= {(1,1),(12),(13),14).,21),22),23), (24)
(3,1).,(3,2) ,(33) ,(34) ,(4.1), (4.2), (4.3) ,(4.4) }-

R={(11),(22).,(33).(44)}
Solution:

MRan =

o O o B+
o O +— O
o O O
= O O O
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Exercise 29 :

1000

Consider the matrix MR =|0 1 1 0| write theset A and B, and
1 010

determine the element of relation R .

Exercise 30 :
The relation from {0, 1, 2, 3} to {a, b, ¢} defined by the list:
{(0, a), (0, ¢), (1, ¢), (2, b), (1, a)}. is represented by the matrix

W =-=O
OO O o~
OO MHAON

Exercise 31 :
The divisibility relation over {1, 2, .... , 12} is represented by the

enormous matrix

1234567891011 12
1 11111111111 1
2 0101010101 0 1
3 00100100100 1
4 00010001000 1
5 00001000010 O
6 00000100000 1
7 00000010000 O
8 00000001000 O
9 00000000100 O
10 00000000010 O
11 00000000001 O
12 000000000 00 1
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Again, properties can by recognized by examining the representation:
Reflexivity the major diagonal is all 1.

Symmetry: the matrix is clearly not symmetric across the major
diagonal.

Transitivity: not so obvious

Exercise 32 :
Let A =11, 2, 3} and
£2={(1,1), (1, 2), (2,2), (2, 3), (3,1), (3, 2), (3, 3)}. Find
and use it to determine if the relation /4 is reflexive, symmetric
or anti symmetric.

*If we represent the relations as matrices, then we can compute the
composition by a form of “boolean” matrix multiplication, where + is
replaced by v (Boolean OR) and x is replaced by »(Boolean AND).

Let R, be a relation in Exercise 30 and Let R, be the relation from
{a, b, c} to {d, e, f} given by:

O S
O R aq
HOH%

Then R, 0 R, = {(0, d), (0, €), (0, f), (1, d), (1, e), (1, f), (2, e)},
that is,

de f
0 111
1 111
2 010
3 000

*A relation on a set A can be composed with itself. The composition
RO R of R with itself is written R2. Similarly R" denotes R composed
with itself n times. R" can be recursively defined: R' = R,
R"=RO R".

97



Chapter four BY. MAKARIM A.

Definition 16 :

Boolean matrix operation:

Let A=[ajj] and B=[bjj] be m xn Boolean matrices , we define
Av B=[Cj] , Cj=ajvhbj (OR).

AArB=[dj] , dij=ajsbj (and) .

Finally, if Aisan m x p and B isan p x n Boolean matrix . we define
A® B =] ejj], the Boolean product of A and B by :

&j:(&lfqu)xf(am,\ba)v ...... v(&pAbm)

crall Juariad lasls Aghinal] Zslao¥l ciyall Tles uds isledll coyinll Akes (g5 Lia
(V) o (A) o aexly

Exercise 33 :

1 01 1 10
011 1 01 1 oo
if A= ,B= ,C=|0 1 1
1 10 0 01
1 0 1
0 0O 1 10
Compute: AvB , AAB, A®B
Solution:
1vl Ov1l 1vO0 111
AuB = Ovl 1v0 1v1 _ 111
1v0 1v0 O0Ov1 111
Ovl Ovl 0OvO 110
1A1 0OAl 1AO 1 00
AAB = 0Al 1A0 1A1 _ 0 0 1
1A0 1A1 OA1l 0 0O
0A1l 0OAl OAO 0 0O
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A® B=
@AADVv(E@AQVOAD AAOV(EAADVOAOD (@AAO)V(EAADV(OAD
@AADVv(OADV(EAD @AAOVOADVEAAOD (@AAO0)V(OADV(EAADY
OADV(OAO)V(EAALD (OAOVOADVIAAO (OA0)V(OADV(EAAD
@ADVv(E@AQV(OAD (AAOV(EAADVOAO (@AAO)V(EAADV(OAD

Theorem:
if A , B and C are Boolean matrices , then

* AvB =Bv A , AArB = BAA

* (AVB)VC:AV(BVC) ) (A/\B)/\C:A/\(B/\C).
*Av(B/\C)z(AvB)/\(A\/C),

A/\(BVC):(A/\ B)V(A/\C)

*A ®(B®C)= (A®B) ®C
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Elements of Graph Theory:

5.1 : Vertex, vertices

A vertex is a connection point. A Graph has a set of vertices, usually
shown as

V={v,cv,c...cv,} , V={ABC}or V={l<2...N}.
A vertex may have no connections, one connection or many
connections.

An edge is a connection between vertices. Given vertices v, and v, in
a Graph,

Definition 1 :

- If A'is a finite set and R is a relation on A, then we can represent R by
directed graph or digraph of circles and lines, these circles is called
vertices and the lines is called edge

Note:-
1- the number of vertices = the number of elements of A
2- the number of edge = the number of order pair of R.

Exercise 1:

" 0 e

Let A= {a,b,c,d,e} and Let R & S be two relations represent by the
following digraph, then find R,R™*,RI S
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Definition 2 :

A Graph is called undirected if the edges have no implied direction,
i.e., (v,cv,) is the same as (v, <v,), the edge just connects v, to

v, .

Definition 3 :
A Graph is called directed if the edges have a direction, i.e.,

(vic vj) means an edge starting at vi and going tov, , i.e, (v,cv,)
is not the same as (v, < v,).

Exercise 2:

A relation on the set {a,b,c,d} is defined by the following list: {(a,c),
(c,0), (a,a), (b,b), (c,a), (d,b), (d,a)}. Draw the directed graph
representation of this relation and write its logical matrix.

(T F T 1
F T F i
S ——
T T F F

where it is assumed that a.bed — 1.2,3.4.

Exercise 3:

Let A=1{1, 2, 3,9, 18} and the "divides” relation on 4. Draw
directed graph of this relation.

Solution:
The directed graph of the given relation is

F

5-2 Properties of Relations

Let R be a relation on a set A, we list four types of relations:-
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1- Ris reflexive if aRa vae A
2- Ris irreflexive if aRa vaeA.
3- Ris symmetric if aRb —bRa.
4- R is not symmetric if aRb and bRﬁ
5- Ris anti —symmetric if aRb and bRa = a=b
6- R s transitive if aRb and bRc = aRc
%7— R is equivalence relation if it is reflexive + symmetric +transitive

o

Reflexive symmetric not symmetric anti-
symmetric

Exercise 4:
. let A={1,2,3,4}, R={(1,1), (1,2), (2,1), (2,2), (3,4), (4,3), (3,3), (4,4)}.
Check that.

Exercise 5:

Give examples (in the form of directeD graph) of relations that are:
@) symmetric and transitive;

b) Symmetric but not transitive;

¢) Transitive ""ut not symmetric;

d) Neither symmetric nor transitive;

a) . ® b .._____' a .‘—"_.

di

"7
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Definition 4 :

If R is a relation on a set A and a € A, then the in — degree of a is the
number of b € A such that (b,a) €R, the out — degree of a is the number
b € A such that (a,b) €ER
Note: from the digraph we have:

1- the in — degree of a vertex a= the number of edges terminating at
A .ol J1 A1) o s g
2- The out — degree of a vertex a= the number of edges leaving a .

Exercise 6:

find the in — degree and out — degree of a vertices 1, 4, 2 when
A={1,2,3,4,5}, R={(1,1), (1,2), (3,1), (4,4), (2,5), (3,4), (4,5), (5,1)}

solution:
1- in —degree of 1=3.
Out — degree of 1= 2.
Out — degree of 4= 2.
2- in—degree of 2 =1.
Out — degree of 2 = 1.

Exercise 7:
find the digraph R1 BxB where A= {a,b,c,de,f}, B={a,b,c}, R={(a,a),

(a,c), (b,c), (a.e), (b.e), (c.e)}

Solution :
BxB={(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c)}.
RI (BxB) ={(a,a), (a,c), (b,c)}

Exercise 8:
Find the in-degree and out-degree of each of the vertex in the graph
& with directed edges
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Definition 5 :

*Two edges associated to the same vertices are called parallel.
*An edge incident to a single vertex is called a loop.

*A graph with neither loops nor parallel edges is called simple
graph.

Definition 6 :

An undirected graph is called connected if there is a path between
every pair of distinct vertices of the graph. A graph that is not
connected is said to be disconnected.

Exercise9:
Determine which graph is connected and which one is disconnected.

. b,

Solution:
a. Connected.
b. Disconnected since there is no path connecting the vertices 21 and

.
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Definition 7 :
A path in a relation R is a sequence a,, ...., ¢, With & > 0 such that

(a;, a,,) € R foreveryi < k. We call k the length of the path.
R"= q(a, b) — there is a length n path from a to b in R

5-3 Path in Relation and Digraph

Definition 8 :

Suppose that R is a relation on a set A, a path of length n from a vertex
a to a vertex b is finite sequence.

II= a1, X1, X2, ....., Xn-1,0 beginning with a and ending with b, such that
aRxi1, Xx1RXa,...., xn-1Rb

Exercise 10: @
from the digraph Xs, Xi, Xz is the path of length 2 /v

)

Note: A path of length n has n+l1 element of A and they are not
necessarily distinct.

Exercise 11:

°

> In this fig we have

n 1=1,2,5,4,3 is path of length 4

n2=1,2,5,1is path of length 3 from 1 to it self

nt 3= 2, 2 is path of length 1 from a vertex 2 to it self

Definition 9 :
A cycle is a path that begins and ends at the same vertex.
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Exercise 12:
in the last example, we have = 1,2,5,1 and & 3= 2, 2 are cycles.

Definition 10 :

1- a R" b is mean that there is a path of length n fromato b

2- a R* b is mean that there is some path in R from a to b. R”is some
time called connectivity relation for R.

Exercise 13: /Ve ° o

Let A={a,b,c,d,e}, R={(a,a), (a,b), (b,c), (c,e), (c,d), (d,e)}.
Compute R? R”

Solution :

R={(a,a), (a,b), (b,c), (c.e), (c,d), (d.e)}.
aR%a since aRa and aRa

aR%b since aRa and aRb

aR?c since aRb and bRc

bR% since bRc and cRe

bR?d since cRe and cRd

cR?% since cRd and dRe

-. R2={(a,a), (a,b), (a,c), (b,e), (b,d), (c,e)}.

To compute R”, we need all ordered pairs of vertices for which there is
a path of any length from the first vertex to the second one.

We can find rR”= {(a,a), (a,b), (a,c), (a,d), (a,e), (b,c), (b,d), (b,e), (c,d),
(c,e), (d,e)}.

Review Problems:

1- Let A={1,2,3,4} ,Ri={(1,1), (1,2), (2,1), (2,2), (2,3), (2,4), (3,4), (4,1)}
And R={(1,1), (1,3), (2,3), (3,3), (3,2), (4,3)}

Draw the digraphs of R1 and R2 and determine the in — degree and out
— degree of the vertices 2, 3, 4.

2- For the following relation on S={0,1,2,3} give a matrixes for them:

106



Chapter five BY.Makarim A.

{(m, n) €Ry if M+n=3}
1. {(m, n) €ER; if m < n}

2. {(m, n) €Rz if Max {m,n}}=3
3- Let A= {1,2,3,4,5}, Determine whether the relation R whose digraph
Is given is reflexive, symmetric.
4- Let R be the following symmetric relation on the Set A={1,2,3,4,5}
R={(1,2), (2,1), 3:4), (4.3), (3,5), (5.3), (4,5), (5.4), (5,5)}
Draw the graph of R and find [1], [3], [5].
5- If A={1,2,3,4}, R= AxA find A/R
6- Let A={1,2,3,4} and B={a, b, c} and
R={(1,a), (1,b), (2,b), (2,c), (3,b), (4.2)}
S={(1,b), (2,c), (3,b), (4,b)}, then complete:
R,RI C,RYC,R®S,R™, DomR™, RomR™
7- Let A={1,2,3,4} Let R={(1,1), (1,2), (2,3), (2,4), (3,4), (4,1), (4,2)}
S={(3.1), (44), (2,3), (2,4), (1.1), 1. 4)}
Find 1- RoR 2- SOR 3-So0S 4-1s (1,1) € SoR?

5-4 Reflexive and symmetric closures:

Definition 10 :
The converse of relation risr = = {(a,b)|(b,a) e r}
Definition 11 :

Reflexive closure of any r exists and equals r U e.

Theorem 1:

Symmetric closure of any r exists and equalsr ur ’
*The transitive closure r * of relation r on S contains only such
pairs

(a,b) e SxS that there exists a path from ato b in relation r.

Connectively and Wars hall's Algorithm :
*Warshall’s algorithm
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II'.'_Th? (Warshall): Let & = {&,,} be the logical matrix of

; ) T T .
relation r on =et A. Define matrices W1 = II"LL' as .
follows: )
Wl — R T . T
, f 'l T . . T
WL ol or (W and W)
Then the matrix of the transitive closure r * = ¥ 1 IJ

o
Exercise 14 :

Using Wars hall's algorithm, find the transitive closure of the following
relations on {a,b,c,d,e}:
a) {(ac),(bd),(ca),(db),(ed)}
b) {(ab),(ac),(ae), (ba),(bc),(ca), (cb),(da),(ed
T T

alT T

[ I s e |
[ = R R

T o7
T 1

ol T
-
T

Theorem 2 :

Let R be a relation on a set A. then R us the transitive closure on R.

Exercise 15:
Let A={1,2,3,4} and Let R={(1,2), (2,3), (3,4), (2,1)}.
Find the transitive closure R.

Solution :
the digraph of R is: E) e
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Since R” is transitive closure, we can find R” by computing all paths.
So/ R*={(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,4)}

Theorem 3 :

Let A be a set with |[A] = n and Let R be a relation on A. Then:
R*=RYR’Y..R".

Remark:

method in theorem (1) has certain difficult because graphical method is
impractical for large Sets and relation and is not systematic.
Let R be a relation on a set A={al,a2,....,an}

:J¥€ warshal's aab jaxbs
Wo= MRadgins JSi (e @85all Jiaty pgai :Step (1)
Such that W= MR ...... Wn = MR*

WHK-1 Lacas @ e WK 23gaiall slrgly asas :StEpP(2)
WK I WK-1 e (1'S) JS sty a9 :StEP(3)
Kocaally K sgeadl oo (1) e goins &1 adlsll ouais psds :Step(4)
& Lasais WK-1 adginll oo labisas @ adlsll § (1) ao9s pss :Step(5)
WK
-1 ALl Slglasd) mpgy JII JLll

Exercise: 16 :
Let A={1,2,3,4} and Let R={(1,2), (2,3), (3,4), (2,1)}
Find the transitive closure of R.

Solution:
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0100
1 010 )
Step1: Wo=MR = column 1 = location 2,
0 001
0 00O
rowl=location2 = a;;1=1
01 00
1110 ) )
W, = 00 0 1 .column 2 =location1.,2, row 2= location 1,2,3
0 0 0O
=an=1,ar=1, as=1, an=1,a»=1 ,an=1
1110
1110 ) i
W; = 00 0 1 . column 3 =location 1,2 , row 3 = location 4
0 00O

= au=1l , ax=1

W3:

O O R B
o R o R N
= N

1
1
0
0
R”=W,={(11).(1,2) ,(1,3) .(1,4),(2,1),(2,2),(2,3).(2,4).(3.4)}

Exercise 17: HW
(1) Let A={1,2,3} and Let R={(1,1), (1,2), (2,3), (1,3), (3,1),
(3.2)}
Compute the transitive Closure . by using Wars hall's
algorithm.
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(2)Let A={1,2,3,4} for the relation R whose matrix is given, find the
matrix of the transitive closure by using wars hall’s algorithm.

1001 1001
1100 0110
MR = , MR =
0010 0110
000 1 1001
5-5 Trees:

An undirected graph is called a tree if each pair of distinct vertices
has exactly one path. Thus, a tree has no parallel edges and no loops.

Definition 12 :

A binary tree: is a rooted tree such that each vertex has at most
two children. Moreover, each child is designated as either a left child
or a right child.

Definition 13 :

1-(node level) :is the number of paths from node to root .
2-(node degree) : is the number of paths that out fromit.
3-(tree degree) : is the high degree of node degree that includes
in tree.

4- (Tree height): is the bigger level to any node in tree.

Exercise 18 :
Find the level of each vertex and the height of the following rooted

tree.
Vi

A2

I 4
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Solution:
21 is the root of the given tree.

Vertex level

FEEISS
DO DO DO D = =

Definition 12

Exercise 19 :

a. Show that the following tree is a binary tree.

b. Find the left child and the right child of vertex zs.

c. A full binary tree is a binary tree in which each vertex has either
two

Solution:

a. Follows from the definition of a binary tree.
b. The left child is z and the right child is .
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5-5-1 Binary search tree
Binary tree that ordered from left node to right node, such that
the left node have the small number and the right node have

the bigger number.
()
©

S &
> ®

Exercise20: Built the binary tree to the following system number
50,90,40,45,20,80,85.

Solution:

s
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5-5-2 Representation of Arithmetic Expression using Binary
Tree

Some of important application for binary tree is representation
the arithmetic expression such that (*, +, -, ....) IS represent
the node

But number is represent the leaf .

Exercise 21 : Built the binary tree to the following:

A= B*C+(8+D*E)/(F*2) .
Solution:
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Exercise 22 : Built the binary tree to the following: S a®™

Solution:

oOPv.O
OING

Exercise 1: Built the binary tree to the following system number
(1 20,4,6,12,8,3,7,9,5
(2) 50,85,10,75,38,90,30,70,40,95
(3) 18,23,50,42,63,20,28,33,47,3

Review Problems:

Exercise 2: Built the binary tree to the following expression

(1) X=2*(a-blc)
(2) A+b*(c+d)

(3) an5+8*b"3-2%c-5
(4) atb-[(c+d)*e]
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Introduction to Cryptograph

6-1 Group

Definition 1 :

A group (G, *) is a set G on which a binary operation *is
defined which satisfies the following axioms:

Closure: Foralla,b e G,a*b € G.

Associative: Foralla, b,c €e G, (a@a*b)*c=a* (b *c).
ldentity: 3e eGs.t.forallae G,a*e=a=e*a.
Inverse: Foralla e G,3a-1 e Gs.t.a*a-1=a-1*a=¢e.

Definition 2 :

A group (G, *) is called an abelian group if * is a commutative
Operation:
Commutative: Foralla,b e G,a*b=Db*a.

Example 1:

. The following are examples of groups.
1)G=Z,*=+, I=0and x *=-Xx.
(2)G=Q,*=+, I=0and x_, =-X.
3)G=R,*=+, I =0and x™* =-x

Rmarke :

1* (R-0 , . ) is abelian group but ( Z, .) is not group , since 0O is at
least one integer which dose not have its multiplicative inverse

2* the algebric system ( Z, - ) is not a group , since substraction on Z is
not associative as for example ( 3-4) -5 = 3- (4-5) .
Similarly , non of the system (Q, -), (R, -) and (C,-) .
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Exercise 1:
Show that the set G={ 1,-1,i,-i } is abelian group with respect to
multiplication composition .

111 | -1

1 111 | -1

Solution: we taking the multiplication table -1]-1] 1 |—i|i
i | —-i]-1]1

—1|—-1]1[1]-1

Closure: Foralla,be G,(a. b) e G
Associative: the element of G are complex number and the multiplication of
complex number being associative, it follows that multiplication on G is
associative .

Identity: the element 1 is the identity , since 1*a=a*1=a vaeG

Inverse: the inverse element of 1,-1,i,-i, are1,-1, -1 and i respectively

Now, the commutative law, v a,b e G, a.b=b .a

6-2 New composition on Integers:

Let m be an arbitrary fixed positive integer, then for any integer a and
b, we have the following compositions :

1* Additive modulo m, denoted by +m is defined as a +mb = r whew r is
the least positive remainder obtained by dividing ( a+b) by m, 0<x<m,

2* multiplicative modulo m, denoted by xmis defined as a xmb = r where
r is the least positive remainder obtained by dividing ab by m .
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Exercise 2 :
2+53=0 ...... i.eSbySis0

2Xs3=1 ,6%xs3=2 and 4x36=0

Definition 3 :
(additive group) let m be an arbitrary but fixed positive integer , then
the set Zm={ [0],[1].[2].,,,,[m-1]}of all disjoint residue class modulo m .

Definition 4 :
( multiplication group ) let p be an arbitrary but fixed prime integer ,
then the set G= { [1], [2], ...... [ p-1]} of all distinct non- zero residue

class modulo p is a finite abelian group with respect to multiplication of
residue class as the composition .

Exercise 3 :

Show that the set G={0,1,2,3 } is a finite abelian group of order four
with respect to additive modulo 4 ,

Solution:
+4/0 1 2 3
001 2 3
1112 30
212301
313012

1* closure: v1,2€G ,1+42=3 € G

2* Associative: v1,23 e G, (1+42)+43=1+4(2+43)=2

3* identity element: iso,since0+.za=a , vaeG

4* the inverse element: 0'=0 , 11=3 ,21=2 ,31=1

5* commutative law: since + is commutative, so +4 IS commutative .
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Definition 5 :

agroup G is said to be a cyclic group , if there exists an element ,a « G
, such that every element of G is expressible as some integer power of a

Exercise 4 :
the group ({0,1,2,3,}, +4) is cyclic group generated by 1, Since
14+41=2,1+41+41=3,1+41 +4 1 +41=0

Theorem 1 :
every cyclic group is necessarily abelian .

Proof:
let G= { a} be cyclic group generated by a.

Let x and y be any two arbitrary element of g then x=a™ and y =a"
for some integer mand n

Xy=ama"=a™" =a"™m =a". am = yx

Thus, Xy = yX , V. XYy G
Hence , G is an abelian group .

Remark:

an abelian group is not always cyclic group .

Exercise 5 :

Find the number of generator of acyclic group of order 10

Solution:

let G ={a} beacyclic group of order 10, generated by an element a,
then o(a) =0o(G) =10

SO ,G={aa%a,a*,a>,ab%a’,a,a’,al’=¢e}

Now the numbers less than 10 and relatively prime to 10 are 1,3,7,9
So, a, a3 a’, a% are generators of G .
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Definition 6 :
the multiplication table of a group is called cayley table .

Definition 7 :

Latin square is formed from clayey table , where each row and column
has the number of elements of the group and no two elements can be
repeated in arrow or column .

Exercise 6 :
Let Zsbe a group of integer modulo 5,
The Latin square can be formed by the clayey table of Zs.

012 3 4
0|0 1 2 3 4
111 2 3 40
212 3 4 01
3/3 401 2
414 0 1 2 3

Definition 8 :

tow Latin square L1 =[ajj], and L>=[ bjj] on nsymbols 1,2,3,,,,n are
said to be orthogonal if every ordered pair of s symbols occurs exactly
once among the n? pairs (ajj, bij) ., i=1,2,,,,,n, j=1,2,,,n

Exercise 7 :
a pair of orthogonal order 3 Latin squares and the 9 distinct order
pairs that they form

w DN
R N W
N W -

3
2 ,
1

w B DN
N W

Definition 9 :
a Latin square is said to be in the standard form if the symbols are in
the initial row in the natural order 0,1,2...... s-1
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Exercise8:
Two orthogonal Latin squares of order 5

2 410 3 4 0 2 1 3
4 1 0 3 2 21 3 40
10324 ,3 4021
0 32 41 0 21 3 4
32410 1 3 40 2

To standardize the first square in we make the transformation
24,4 -51,1-52,0-53,3 >4

Thus, the transformed square orthogonal to one another,

01 2 3 4 01 2 3 4
1 2 3 4 0 2 3 4 01
2 3401 , 40123
340 1 2 1 2 3 40
4 0 1 2 3 3401 2
Theorem 2 :

if there is an orthogonal family of r Latin square of order n ,then r
<n-1.

Exercise 9 :
1 2 3 1 2 3
2 31 31 2
1 2 3 31 2

Latin square of order 3
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1 2 3 4 1 2 3 4 1 2 3 4
2 1 4 3 3 41 2 4 3 21
3 41 2 4321 ' 21 43
4 3 21 2 1 4 3 3 41 2
Latin square of order 4
1 2 3 45 1 2 3 45 1 2 3 45
34512 451 2 3 51 2 3 4
, 51234, 23451, 451 2 3
2 3451 51 2 3 4 3 451 2
451 2 3 34512 2 3451

Latin square of order 5

6-3 Codes and Latin square :

What we have called coding theory , shod more properly be called the
theory of error — correcting codes , since there is another aspect of
coding theory which is older and deals with the creation and decoding
of secret messages , this field is called cryptography.

Definition 10:
an n-ary codeisasubset ¢ < Z) , the elements of C are called code —
words . Given a code C, an encoding function is any bisection E : Z]

— C , butadecoding function is any function
D: 2}, > :Z]}

I.e E(s) = the by string obtained form replacing each bit of s by the
same bit written three times .

D( s) = the string obtained from by replacing consecutive triple of
bits of s by a single copy of that bit.

122



Chapter six BY.Makarim A.

Exercisel0:
Find E(0110) and, D(111 111 000 111)

Solution: E(0110) =000 111 111000
D(111 111 000 111)=1101

Definition 11 : ( Hamming distance function)

Let X=X1 X2 ....Xn ,Y=VY1 VY2 ....yn be two words from Z}, the

Hamming distance d( x,y) between x and y is the number of places in
which they differ.

e d(xy)={i:1<i <n Xi=Vi}.

Exercise 11 :
for n=5 , find H( 00101, 01110) and H( 10001, 01111)

solution : H(00101,0110)=3 , H(10001,01111) =4

Definition 12 :
a code is said to be t- error correcting if when no more than t-error has
occurred in the transmissions of code word .

Remark:

block of repeated symbols is called a code word .

e

a code word is what is transmitted in place of one piece of information
in the original message.

We note that if we have n xn Latin square we can build n? code words
by using ordered triplets ( i,j,aij ) .

Exercise 12 :

Let the Latin square of group Zs,
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N P O
o N -
. O DN

The code words are

(0,0,0) , (1,0,1) ,(2,0,2)
0,11, (11,2),(2,1,0)
0,22), (1,2,0), (2,2,1)

Theses triplets are of Hamming distance at least 2 apart because of
construction Latin square .

Theorem 3 :
any pair of orthogonal Latin square of order nyields a :- error
correcting code with n? code words .

Exercise 13 :
the clayey table of Zs and of its orthogonal

01 2 3 4 1 2 3 40
1 2 3 4 0 01 2 3 4
2 3 4 0 1 , 4 01 2 3
3401 2 34 01 2
40 1 2 3 2 3 401

Then the cod words is

(0,00,1) ,(10,12) ,(2,0,23) ,(3,034) ,(4,04,0
(011,0) ,(1121),(2132), (3,143) ,(41,04)
(1,2,2,4) ,(1,230) ,(2,24,1) , (320,2) ,( 4,213
0,3,3,3) ,(1,344),(253,00),(33,11) ,(4322)
0,4,4,2) ,(1,4,03) ,(24,14) ,(3,4,2,0) , (4,4,3,1
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Review Problems:

Exercise 1:

. 1 1 1
show that the set of four matrices ( OJ R ( OJ ,( 0 j >
0 1 0 1 0 -1

0 _
matrices .

-1 . T
( 0] forms an abelian group under multiplication of

Exercise 2 :
let G={1,-1,i,-i } ,wherei?=-1, prove that (G, *) a cyclic group.

Exercise 3 :
Given an example of a finite abelian group which is not
cyclic .

Exercise 4 :
let Q be the set of rational number defined on the
operation (*) is abelian group .

Exercise 5 :
if you have two Latin square of order 2 , show that does
not exist a pair of orthogonal 2x2 Latin square .

Exercise 6 :
Define the following functions: Hamming distance, Encoding,

decoding and find E(0110), D(111 111 000 111) and if H on 25:
find H(10101, 00011) .
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