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2.1. Analysis of: Stress, Strain and Deflection in Flexible Pavement 

2. Flexible Pavement   

A pavement structure is not so easily to accurate structural analysis because the materials  

forming the flexible pavement layers and soils supporting the pavement are not same, so 

their  exhibiting are not similar and their response under loads are different.  

2.1.1. One Layer System 

Boussinesq (1885) analysed the stresses in flexible pavement as a single layer due to an 

applied load based on the assumptions that: the pavement and supporting soils subgrade 

below form a homogeneous, isotropic, single elastic layer with the same value of elastic 

modulus (E). The first analysis approach represented the load as a point load and then the 

load was represented as a circular load which is more realistic than the point load. 

Note:  
• Isotropic materials are materials whose properties remain the same when tested in 

different directions. Isotropic materials differ from anisotropic materials, which 
display varying properties when tested in different directions. Common isotropic 
materials include glass, plastics, and metals. 

• A half-space has an infinitely large area and an infinite depth with a top plane on 
which the loads are applied . 



Figure 2.1. Stresses due to point loading  

2.1.1.1. Point loading 

The closed-form solution for a point 

load on an elastic half-space was 

originally developed by Boussinesq 

(Fig. 2.1.) as shown in the 

following forms: 



2.1.1.2. Circular Loading 

For pavement analysis, the equivalent circular contact area of a tire on pavement surface is 

taken. For this purposes a uniformly loaded circular area is considered for calculating the 

stresses in the soil mass. The equation of vertical stress under point load may be integrated 

over the circular area as shown in Figure 2.2.  

Figure 2.2. Stresses under uniformly circular loading   



   The response due to a circular load with (a) radius and uniform pressure (q) on an elastic 

homogeneous half-space is obtained by integrating the Boussinesq’s components due to a 

concentrated load. 

Figure 2.3. Stresses due to circular 

loading  

    When the load is applied over a single 

circular loaded area, the most critical 

stress, strain, and deflection occur under 

the center of circular area on the axis of 

symmetry, where: τzr = 0 and σr = σt, so σz 

and σr are the principal stresses. For points 

on the centerline of the load (i.e., r = 0), these 

stress components are given by:  



Flexible and Rigid Plates Loading  

Rigid Plate: 
All the above analyses are based on the assumption that the load is applied on a 
flexible plate, such as a rubber tire . If the load is applied on a rigid plate, such as that 
used in a plate loading test, the deflection is the same at all points on the plate, but 
the pressure distribution under the plate is not uniform. The differences between a 
flexible and a rigid plate are shown in Figure 2.4. 

(a) Flexible plate                (b) Rigid plate 

Flexible Plate: 
The load applied from tire to pavement is similar to a flexible 
plate with a radius (a) and a uniform pressure (q). The deflection 
beneath the center of the plate can be determined from: 

Figure 2.4. Differences 
between flexible and 

rigid plates. 
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  A comparison of these two equations  indicates that the surface deflection 
under a rigid plate is only 79% of that under the center of a uniformly distributed 
load (flexible plate). This is reasonable because the pressure under the rigid plate is 
smaller near the center of the loaded area but greater near the edge . The pressure 
near the center has a greater effect on the surface deflection at the center . The same 
factor, 0 .79, can be applied if the plates are placed on a layer system, as indicated 
by Yoder and Witczak (1975), as shown in Figure 2.5.. 

Figure 2.5. Deflection induced by rigid and flexible plate loading. 



2.1.1.3. Methods of Solution 

In addition to using the theoretical formulas suggested by Bossinseq’s method (circular 

loading method) , there another two methods as explained in the following articles: 

Foster and Ahlvin (1954) presented charts for determining vertical stress σz, tangential stress 

σt, radial stress σr, shear stress τzr, and vertical deflection w, as shown in Figures 2.6 through 

2.10. The load is applied over a circular area with radius (a) and an load intensity (q).    

Because Poisson ratio has relatively small effect on stresses and deflections, Foster and 

Ahlvin assumed the Poisson’s ratio value 0.5. 

2.1.1.3.1. Foster and Ahlvin Charts (Poisson’s ratio is constant = 0.5) 
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Figures 2.6. Tangential Stresses  
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Figures 2.7. Vertical Stresses  Figures 2.8. Radial Stresses  

Figures 2.9. Shear Stresses  Figures 2.10. Vertical Deflection (w) 



After the stresses are obtained from the 
charts, the strains can be obtained from 

Example 1: Figure (2.11) shows a homogeneous half-space subjected to two 
circular loads, each 10 in.(254 mm) in diameter and spaced at 20 in.(508 mm) 
on centers. The pressure on the circular area is 50 psi (345 kPa (1 psi=6.9 
kPa).  The half-space has elastic modulus 10,000 psi (69 MPa) and Poisson’s 
ratio 0.5. Determine the vertical stress, strain, and deflection at point A, 
which is located 10 in.(254 mm) below the center of one circle. 
 

Figures 2.11. Example 1. 



Strain: 

εz= [14 .38 - 0 .5(2.10+ 0.8)/10,000 = 0.00129. 

 From Figure 2.10, the deflection factor at point A due to the left load is 0 .68 

and, due to the right load  is 0.21 .  

The total deflection w = (0 .68 + 0 .21) × 50 × 5/10,000 = 0 .022 in . (0.56 mm) . 

The final answer is σz = 14.38 psi (99 .2 kPa), εz = 0.00129, and w = 0.022 in . 

(0.56 mm) τzr,w, 

Solution :  

From Figures 2.7, 2.8, and 2.10, the stresses at point A: 

 

Due to the left load with r/a = 0 and z/a = 10/5 = 2 are: 

σz = 0.28 × 50 = 14.0 psi (96 .6 kPa),  and 

σr = σt = 0.016 × 50 = 0.8 psi (5 .5 kPa) ; 

 

Due to the right load with r/a = 20/5 = 4 

and z/a = 2 are: 

σz = 0.0076 × 50 = 0.38 psi (2 .6 kPa), 

σr=0.026 × 50 =1.3 psi (9.0 kPa), and 

σt = 0. (Out of the right load’s range). 

By superposition:  

σz = 14.0 + 0 .38 =14 .38 psi (99.2 kPa), 

σr= 0.8+1.3 = 2 .10 psi (14 .5 kPa) , and 

σt = 0.8 psi (5.5 kPa). 



2.1.1.3.2. Ahlvin and Ulery Tables ( Any value of Poisson’s ratio ) 

Tables for One-layer Solutions are suggested by Ahlvin and Ulery (1962), to find 
stresses, strains, and deflection  in one layer system for any value of Poisson’s ratio, 
as shown in Figure 2.12 and Tables 2.1. and 2.2. 

Figure 2.12. 



Table 2.1. Function A. 



Table 2.2. Function B. 



Example 2: Figure (2.13) shows a homogeneous 
half-space subjected to two circular loads, each 
12 in. in diameter and spaced at 21 in. on centers. 
The pressure on the circular area is 100 psi.  The 
half-space has elastic modulus 9600 psi and 
Poisson’s ratio 0.35. Determine the vertical stress, 
strain, and deflection at point A, which is located 
as shown in figure. 

Solution:  

For load (L): a= 6, z= 12, r= 9 → z/a = 2, r/a = 1.5 . 
From table A = 0.06275, B =0.06371, C = -0.00782, D =0.05589,  

Figure 2.13. Example 2. 

H.W…. Using Foster and Ahlvin Charts  



• The study of ESWL for dual wheels was first initiated during World War II when 
the B-29 bombers were introduced into combat missions. Because the design 
criteria for flexible airport pavements then available were based on single-wheel 
loads, the advent of these dual-wheel planes required the development of new 
criteria for this type of loading. 

Equivalent Single Wheel load (ESWL) 

Figure 2.14. Dual wheel vs single 
wheel loads. 

• Several theoretical studies have 
been develop for converting dual 
wheels to equivalent single wheel 
such as: 

1. Criterion based on that the single 
wheel has the same contact radius 
of the dual wheels . 

 Equal Vertical Stress Criterion 
 Equal Vertical Deflection Criterion 
 Equal Tensile Strain Criterion 

2. Criterion Based on Equal Contact Pressure with different contact radius. 
 

3. Criterion Based on Equivalent Contact Radius OR equivalent single-axle 
radius (ESAR) . 



Based on Equal Vertical Stress Criterion, From Figure (2.15), the total load of the 
dual tire assembly is 2Pd, with Sd being the center to center spacing and d being the 
clear distance between tire edges (d=Sd – 2ac). It is assumed that for the pavement 
thickness (t) less than or equal to d/2 (t ≤ d/2), no stress overlap occurs. Thus, the 
stress depths is due to that of only one wheel of the dual (Pd). Likewise, at depth of 
approximately 2Sd, the effect of stress overlap is such that it is equivalent to the 
stress caused by  the total load of the dual tire assembly (2Pd). For intermediate 
depth between d/2 and 2Sd,  the wheel load acting is linear when plotted on a log 
load versus log thickness diagram as shown in Figure (2.16). This relationship can 
be used to find the ESWL for the diagram. 

Equivalent Single Wheel load (ESWL) 

Figure 2.15. Influence of multiple 
wheels on stresses 

Figure 2.16. Method of determine 
ESWL for any dual wheel loads. 



Example 3: Find ESWL at depths of 5 cm, 20 cm and 40cm for a dual wheel 

carrying 2044 kN each. The center to center tire spacing is 20 cm and distance 

between the walls of the two tyres is 10 cm. 

Solution 
At depth z = 40cm, which is twice the tire spacing (2Sd), ESWL = 2Pd= 2 × 2044 = 4088 kN. 
For depth, z = 5cm, which is half the distance between walls of the tire (d / 2), 
 ESWL = P = 2044 kN.  
For z=20 cm, use the linear relationship: log (ESWL) = 3.511.  
Therefore, ESWL = antilog(3.511)= 3244.49 kN 

2.1.2. Layard Systems 

Flexible pavements are layered systems with better materials on top and cannot be 
represented by a homogeneous mass. These layers are subjected to applied stress which  
is uniformly distributed over  a circular area (radius a) as shown in Figure (2.17). For 
this system, the  following  basic assumptions to be satisfied are : 
1. Each layer is: homogeneous, isotropic, linearly elastic , and with an elastic modulus Ei 
and a Poisson ratio µi (where i for each layer). 
2. The material is weightless and infinite in the horizontal direction. 
3. Each layer has a finite thickness h, except that for the lowest layer (subgrade) which 
has an infinite in thickness . 
4. A uniform pressure q is applied on the surface over a circular area of radius a . 
5. Continuity conditions are satisfied at the layer interfaces, as indicated by the same 
vertical stress, shear stress, vertical displacement, and radial displacement . 



2.1.2.1.Two-Layer Systems 

The two-layer system is a composed of: hot mix asphalt (HMA) layer which is consisted of 
surface, binder, and stabilized layers which are treated as a first layer with E1 and the 
second layer consists of  untreated layer (granular material such as base, sub-base, and 
subgrade) with E2,  as shown in Figure (2.18).  (Note: E1>E2)

 

Figure 2.18. A two layers system  

•   The vertical stress on the top of subgrade is an important factor in pavement design. 
The function of a pavement is to reduce the vertical stress on the subgrade so that 
detrimental pavement deformations will not occur. The allowable vertical stress on a 
given subgrade depends on the strength or modulus of the subgrade. 

Vertical Stress  

Figure 2.17. An n-layer system. 

E1, µ1 

E2, µ2 

En, µn 



•   The stresses in a two-layer system depend on the modulus ratio El /E2 and the 

thickness–radius ratio h/a . Figure 2.19 shows the effect of a pavement layer on the 
distribution of vertical stresses under the center of a circular loaded area . The chart 
is applicable to the case when the thickness h1 of the top layer is equal to the 

radius of contact area, or h1 /a = 1 and µ is assumed to be 0.5 for both layers. It can 
be seen that the vertical stresses decrease significantly with the increase in modulus 
ratio. For example: at the pavement–subgrade interface (i.e. contact surface between 
layer 1 and 2), the vertical stress is about 68% of the applied pressure if El/E2=1,  
and when El/E2=100 the vertical stress distribution reduces to about 8% of the 
applied pressure. 

Figure 2.19. Vertical stress distribution in a two layers system. 



Figure 2.20 shows the effect of pavement thickness and modulus ratio on the vertical stress 

σc at the pavement–subgrade interface under the center of a circular loaded area. For a given 

applied pressure q, the vertical stress increases with the increase in contact radius and 

decreases with the increase in thickness.  

Figure 2.20. Vertical interface 
stresses for two-layer system 

Example 4 : A circular load having radius 6 
in. (and uniform pressure 80 psi (552 kPa) is 
applied on a two-layer system, as shown in 
Figure 2.21 .The subgrade has an elastic 
modulus 5000 psi (35 MPa ) and can support 

a maximum vertical stress (σc) of 8 psi. If the 
HMA has an elastic modulus 500,000 psi, 
what is the required thickness of a full-depth 
pavement? If a thin surface treatment is 
applied( instead of HMA) on a granular base 
with an elastic modulus 25,000 psi  what is 
the thickness of base course required ? 

Figure 2.21. Example  4 



Solution:  a) Given El/E2 = 500,000/5000 = 100 , and σc/q = 8/80 = 0.1, from Figure 2.20, find  

a/h1 = 1.15,  so the value of  hl = 6/1.15 = 5.2 in ., which represents the minimum thickness for 

full depth .  b) Given El/E2= 25,000/5000 = 5 , and 𝝈c/q = 0.1, from Figure 2.20,  for                     

a/hl = 0 .4,  so the value of  h1 = 6/0.4 = 15 in., which is the minimum thickness of granular base 

required. Note: compare between the two values of h1 

• The allowable vertical stress should depend on the number of load repetitions ,using the 

Shell design criterion and the AASHTO equation, Huang et al. (1984b) developed the  

relationship:  

Example 5: Use the data in example 4 to find the allowable number of repetitions? 

Solution: For a stress of 8 psi (5 kPa) and an elastic modulus of 5000 psi (35 MPa), the allowable 

number of repetitions is 𝑵𝒅 = 3 .7 x 105 . 

𝑵𝒅 = 𝟒. 𝟖𝟕𝟑 × 𝟏𝟎−𝟓 𝝈𝒄
−𝟑.𝟕𝟑𝟒𝑬𝟐

𝟑.𝟓𝟖𝟑 

• Vertical Surface Deflection:  Vertical surface 

deflections have been used as a criterion of 

pavement design. Figure 2.21 can be used to 

determine the surface deflections for two-

layer systems. The deflection is expressed in 

terms of the deflection factor F2 by :  

The deflection factor is a function of E1/E2 
and h1/a. For a homogeneous half-space 
with h1/a = 0, F2 = 1, so Eq. 2.1 is identical to 
Equation for flexible plate when µ = 0 .5 . If 
the load is applied by a rigid plate, then, 
from Eq. 2.2. of rigid plate. 

in which Nd is the allowable number of stress repetitions to limit permanent deformation,𝝈c 

is the vertical compressive stress on the surface of the subgrade in psi, and E2 is the elastic 

modulus of the subgrade in psi. 



Figure 2.21. Vertical surface deflections for  

two-layer systems 

Example.5: A total load of 20,000 lb (89 kN) was 

applied on the surface of a two-layer system 

through a rigid plate 12 in. in diameter, as shown 

in Figure 2.22. Layer 1 has a thickness of 8 in. 

and layer 2 has an elastic modulus of 6400 psi 

(44.2 MPa). Both layers are incompressible with 

a Poisson ratio of 0.5. If the deflection of the 

plate is 0.1 in .  (2.54 mm), determine the elastic 

modulus of layer 1. 

Figure 2.22. Example 5. 

Solution: 

The average pressure on the plate is q = 20,000/(36𝜋) = 176.8 psi (1.22 MPa). From Eq. 2.2,  

find the value of F2= 0.1 × 6400 / (1 .18 × 176.8 × 6) = 0.511. Given h1/a= 8/6 = 1.333,  

from Figure 2.20, EI/E2 = 5, or El = 5 × 6400 = 32,000 psi (221 MPa) . 



Critical Tensile Strain  

Figure 2 .23.Single Wheel chart for the strain factor 

of a two-layer system under a circular loaded area . 

The tensile strains at the bottom of asphalt layer have been used as a design criterion to prevent 

fatigue cracking. Two types of principal strains could be considered. 

1. One is the overall principal strain based on all six components of normal and shear stresses. 

2. The other, which is more popular and was used in KENLAYER, is the horizontal principal 

strain based on the horizontal, normal and shear stresses only. 

Note: The overall principal strain is slightly greater than the horizontal principal strain, so the use of 

overall principal strain is on the safe side . The critical tensile strain is the overall strain and can 

be determined from Eq. 2.3. 

                                                      where: e is the critical tensile strain and 

                                                       Fe is the strain factor, which can be determined from the charts . 

Example 6: Figure 2.24 shows a full-depth asphalt 

pavement 8 in. thick subjected to a single-wheel load of 

9000 lb (40 kN) having contact pressure 67.7 psi. If the 

elastic modulus of the asphalt layer is 150,000 psi and 

that of the subgrade is 15,000 psi, determine the critical 

tensile strain in the asphalt layer . 

Figure 2 .24. Example 6.  

Solution: 

e= 3 .25 x 10-4 



The Figure 2.23 is used for single wheel, in dual wheels,  

•   The strain factor for dual wheels depends on the parameters: contact radius a, dual spacing Sd , 

Sd / a , E1/E2 ,and h1/a. 

•    There are two charts  one for dual wheels with Sd = 24 in. (610 mm) and a = 3 in. and the 

other for Sd = 24 in. (610 mm) and a = 8 in. to determine conversion factors: C1 and C2 as shown 

in Figure 2.24.  

Figure 2.24. Conversion factors. 

For any other different Sd and a values the following procedure can be used: 

1. From the given Sd, h1 , and a, determine the modified radius a' and the modified thickness h1' : 

 

  

2. Using h1' as the pavement thickness, find conversion factors C1 and C2 from Figure 2.24. 

3. Determine the conversion factor for a' by a straight-line interpolation between 3 and 8 in.               

or the formula.  

 

and 



Example 7: 

For the same pavement as in Example 6, if the 9000-lb (40-kN) load is applied over a set of dual 

tires with a center-to-center spacing of 11.5 in. and a contact pressure of 67.7 psi ,as shown in 

Figure 2 .25, determine the critical tensile strain in the asphalt layer. 

Solution: 

Compute  a = 4.6 in., h1 = 8 in. from    

 

and 

Figure 2 .25. Example 7.  

a' = 24 x 4.6/11 .5 = 9 .6 in.  and h'1 = 24 x 8/11.5 = 16.7 in.,  El/E2 = 10 and an asphalt layer 

thickness of 16.7 in. from Figure 2.24, C1 = 1.42 and C2 = 1.46. From interpolation equation, 

C = 1 .42 + 0 .2 (9 .6 – 3) (1 .46 – 1 .42) = 1.473 (C is a modified factor to Fe which is found 

from Figure 2.22). From Figure 2 .22, the strain factor for a single wheel = 0 .47 (E1/E2 = 10 

& h1/a= 1.74) and that for dual wheels = 1.473 x 0 .47 = 0 .692, so the critical tensile strain 

is:   e = 67 .7 X 0.692/150,000 = 3 .12 x 10-4. 



2.1.2.2. Three Layers System. 

Figure 2.26 shows a three-layer system and the stresses at the interfaces on the axis of symmetry. 

These stresses include vertical stress at interface 1, σz1 , vertical stress at interface 2, σz2 , radial 

stress at bottom of layer 1, σr1 , radial stress at top of layer 2, σ'r1 , radial stress at bottom of layer 

2, σr2, and radial stress at top of layer 3, σ'r2 . Note that, on the axis of symmetry, σr = σt and the 

sheer stress is equal to 0. When the Poisson ratio is 0.5, we have: 

Solution Method for Three Layers System Using Jones' Tables (Figure 2.27).  

The stresses in a three-layer system depend on the ratios k1, k2, A, and H, defined as 

Important note: 
µ1 = µ2 =µ3 = 0.5 

……………….….. 2.6 

…………….. 2.4 

…………….. 2.5 

Note:  

   The horizontal strain is equal to one-half of the vertical strain  

    To understand these Eqs. 2.4 to 2.6 go back to slides No. 3 and 5.  Figure 2.26. Three layers system 



Figure 2.27. atypical Jones' Tables  



   Jones developed a Tables to determine the stress factors for three-layer systems.  

   The sign convention is positive in 

compression and negative in tension . 

Four sets of stress factors,ZZ1, ZZ2, 

(ZZ1 – RR1), and (ZZ2 – RR2) are 

shown in tables. The product of the 

contact pressure and the stress factors 

gives the stresses. The tables 

presented by Jones consist of four 

values of k1 and k2 (0.2, 2, 20, and 

200), so solutions for intermediate 

values of k1 and k2 can be obtained 

by interpolation. 

Figure 2 .28. Detailed stresses in three layers system.  

  Where q is the contact pressure (tire inflation in psi), ZZ1,ZZ2,---- etc. are factors found 

from Jones` tables. 



From Figure 2.28. it can be observed, that the presence of friction has a significant influence 

on the radial (horizontal) stress at the bottom of the top layer especially at low values for the 

ratio E1/E2. We also note that the influence on the vertical stress is much smaller. 

If there is full friction or full bond at the interface, the following conditions are satisfied: 

   The vertical stress just below and above the interface are equal because of 

equilibrium, so: 

σz1 at the bottom of the top layer (1) = σz1 at the top of the bottom layer (2) (interface 1) 

σz2 at the bottom of the top layer (2) = σz2 at the top of the bottom layer (3) (interface 2) 

 

   The horizontal displacements just above and below the interface are the same 

because of full friction, so: 

εr1 at the bottom of the top layer (1) = ε`r1 at the top of the bottom layer (2) (interface 1) 

(σr1 = σ`r1 at interface 1) 

εr2 at the bottom of the top layer (2) = ε`r2 at the top of the bottom layer (3) (interface 2) 

(σr2 = σ`r2 at interface 2) 

 

   The vertical displacements just above and below the interface are the same because 

of continuity, so: 

εz1 at the bottom of the top layer (1) = εz1at the top of the bottom layer (2) (interface 1) 

εz2 at the bottom of the top layer (2)= εz2at the top of the bottom layer (3) (interface 2) 

 



Example 8: 

Given the three-layer system shown in Figure 2.29 

with a = 122 mm, q = 828 kPa, h1 = 152 mm), h2 

= 6 in. (203 mm), E1 = 400,000 psi (2.8 GPa), E2 

= 20,000 psi (138 MPa), and E3 = 10,000 psi (69 

MPa), determine all the stresses and strains at the 

two interfaces on the axis of symmetry . 

Figure 2.29. Example 8.  Solution:  

Given kl = 400,000/20,000 = 20, k 2= 20,000/10,000 = 2, A = 4 .8/6 = 0 .8, and  H = 6/6 = 1,  

from Table (….) Find the factors: , ZZ1 = 0 .12173, ZZ2 = 0 .05938, ZZ1 - RR1 = 1 .97428, 

and  ZZ2 - RR2 = 0.09268 .  

From Eq. 2 .11, σz1 = q × ZZ1 = 120 × 0.12173 = 14.61 psi (101 kPa) 

From Eq. 2 .12 σz2 = q × ZZ2 = 120 × 0 .05938 = 7.12 psi (49.1 kPa) 

From Eq. 2 .13 σz1  - σr1 = q × ( ZZ1 – RR1) = 120 × 1 .97428 = 236.91 psi (1 .63 MPa), and 

 σr1  = 14.61-236.91 = -222.31 psi. 

From Eq. 2 . 14 σz2  - σr2 = q × ( ZZ2 – RR2) = 120 × 0.09268 = 11.12 psi, 

σr2 = 7.12 – 11.12 = -4.0 psi 

From Equations 2.9 and 2.10. 

σ`r1 = 2.76 psi, σ`r2 = 1.56 psi  





Solution:  

 

At bottom of layer 1: 

To calculate the strains at the bottom of layer 1 use Equations 2.4 and 2.5. 

 εz1 = (σz1  - σr1 ) / E1 = 236.91 / 400000 = 5 .92 x 10-4  

εr1 = (σr1  - σz1 ) /2 E1 = -236.91 / 2 × 400000 = -2 .96 x 10-4 (or directly, using equation 
2.6 for find εr) 
  

At bottom of layer 2 :  

To calculate the strains at the bottom of layer 2 use Equations 2.4 and 2.5. 

 εz2 = (σz2  - σr2 ) / E2 = 11.12  / 20000 = 5.56x 10-4  

εr2 = (σr2  - σz2 ) /2 E2 = -11.12 / 2 × 20000 = -2 .78 x 10-4 

 At top of layer 3: 

To calculate the strains at the top of layer 3 use Equations 2.4 and 2.5 

 εz3 = (σz2  - σ`r2 ) / E3 = 5.56  / 10000 = 5.56x 10-4 = εz2   At bottom of layer 2  

εr3 = (σ`r2  - σz2 ) /2 E3 = -5.56 / 2 × 10000 = -2 .78 x 10-4 At bottom of layer 2  

At top of layer 2: 

To calculate the strains at the top of layer 2 use Equations 2.4 and 2.5 

 εz1 = (σz1  - σ`r1 ) / E2 = (14.61-2.76)/ 20000 = 5 .92 x 10-4 = εz at bottom of layer 1 

ε`r1 = (σ`r1  - σz1 ) /2 E2 = (2.76-14.61)/ 2 × 20000 = -2 .96 x 10-4 = εr1 at bottom of layer 1 



2.2. Equivalent Thickness Method (OdeMark’s Concept) 

Odemark's equivalent-layer-thickness (ELT) concept is often used as a simple method of 

approximation in pavement structural analysis, since it permits the conversion of a 

multilayered system into a single layer with equivalent thickness. It is based on the principle 

that the equivalent layer has the same stiffness as the original layer, so as to give the same 

pressure distribution beneath the layer as shown in Figures 2.30 to 2.32. 

      

Stiffness of layer 1 =  

      

Stiffness of layer 2 =  

  

   

,  for  b1 = b2= 1 m 

According to Odemark`s theory: 

 
Stiffness of layer 1 = Stiffness of layer 2 

If µ1 = µ2 = 0.5  

Figure 2.30. Moment of inertia of  

simply supported beam.  



      

For f value:  

    In a 2-layer pavement system, use f = 0.9 to 

convert the upper layer. 

    In a multi-layer pavement system, use f = 0.8 to 

convert the rest of the layers. 

Figure 2 .31. Multilayer system.  

Figure 2 .32. Odemark`s concept. 



Figure 2 .33. 

Example 9.  

Example 9: 

The structure as shown in Figure 2.33 represents a 

multilayer pavement system?. By using Odemark`s 

concept, find the equivalent thickness of the structure?. 

Solution: 

As detailed in the Figures  

0.9 

0.9 



Example 10:  
Compute the stresses at the bottom of a flexible pavement surface layer 0.3 m thick 
resting on a semi-infinite subgrade layer. The load consists of a circular tire with a 0.1 m 
radius carrying a uniform pressure of 700 kPa. The stresses are to be computed under 
the centerline of the load. The layer moduli are 1400 MPa and 140 MPa, respectively, and 
μ is 0.5 for both layers. 

Solution: 

Using equivalent thickness equation gives the equivalent 
thickness of the top layer in terms of the modulus of the 
bottom layer as: 

Using one layer system formula to 
compute the stresses in the subgrade. At 
the bottom of the top layer, they are: 



2.3.  Viscoelastic Solutions 

The previous discussion assumed elastic material behavior; however, asphalt concretes 
exhibit viscoelastic behavior, hence their response is time-dependent. Their response to a 
time-dependent (e.g., moving) load is simulated through two general methods for 
characterizing viscoelastic materials: one by a creep-compliance model, the other by a 
mechanical model:   

2.3.1. Creep-Compliance Model 

Boltzmann’s superposition principle, assuming linear viscoelastic behavior. In the time 
domain, this is expressed by the following convolution integral: 

….(2-12) 

where, ε(t) is the strain at time t, D(t − ξ’) 
is the creep compliance of the asphalt 
concrete layer after a lapsed time of (t − 
ξ’), and σ (ξ) is the stress history as a 
function of time 

2.3.2. Mechanical Model 

There are various mechanical models for characterizing viscoelastic materials which are 
formed of two basic elements : a spring and a dashpot as shown in Figure 2.34. 

Creep Compliance (D(t)) can characterize viscoelastic 
materials at various times, D(t), defined as: 

….(2-11) 



Figure 2 .34. Mechanical Model for 
Viscoelastic Materials. 

2.3.2.1. Basic Models An elastic material is 
characterized by a spring (obeys Hooke's 
law, Equation 2.13).  
 
 

While the viscous material is characterized 
by a dashpot (obeys Newton's law, 
Equation 2.14), according to which stress is 
proportional to the time rate of strain : 

𝝈 = 𝑬𝜺 … … … … … … … . (𝟐. 𝟏𝟑) 

𝝈 = 𝝀
𝝏𝜺 
𝝏𝒕

  integration …….. 

                                 𝜺 =
𝝈𝒕

𝝀
   … … (𝟐. 𝟏𝟒) 

2.3.2.2.Maxwell Model 

A Maxwell model is a 
combination of spring and 
dashpot in series, Under a 
constant stress, the total strain is 
the sum of the strains of both 
spring and dashpot, Equation 
(2.15). 

Where: 𝝀 is viscosity and t is time . 

…… (2.15) 

Where: To = 𝝀o/Eo = relaxation time 



 A Kelvin model is a combination of spring and dashpot in parallel, where both have the 
same strain, but the total stress is the sum of the two stresses, Equation (2.16). 

2.3.2.3. Kelvin Model 

….. (2.16) 

2.3.2.4. Burger Model  
… (2.17) 

A Burgers model is a 
combination of Maxwell and 
Kelvin models in series Under a 
constant stress, the 
combinations of both  models 
(Kelvin and Maxwell) to form 
the final calculations (Equation 
2.17). The physical meaning of 
the model terms is illustrated in 
Figure 2.35. 

Figure 2.35. Physical meaning of the Burger model. 



Note: This model explains the effect of load duration on 
pavement responses. Under a single load application, the 
instantaneous and the retarded elastic strains 
predominate, and the viscous strain is negligible. 
However, under a large number of load repetitions, the 
accumulation of viscous strains is the cause of permanent 
deformation . 

• Generalized Model is that can be used to characterize any 
viscoelastic material. Generalized model (Figure 2.36) can be 
written as: Where n is the number of Kelvin models  

2.3.2.5. Generalized Model  

… (2.18) 

• Determination the viscoelastic constants, E0, T0, Ei and Ti for a 
generalized model, the creep compliances at various times 
can be computed from Equation. 2.18. 

Figure 2.36: 
Generalized model. 



Example 11: 
A viscoelastic material is characterized by one Maxwell 
model and three Kelvin models connected in series with 
the viscoelastic constants shown in Figure 2.37. 
Determine the creep compliance at various times, and 
plot the creep-compliance curve . 

Figure 2.37: Example 11. 

Solution: 
Note: All constants are without units. If E is in lb/in2, then 
the creep compliance is in in.2/lb. If E is in kN/m2, then 
the creep compliance is in m2/kN. 
From Eq. 2.18 
 

When: t=0, D=1/E°=1/2=0.5; and 
when t = 0.1; D = 0.5 (1+0.1/5)+0.1(1–e-0.01)+0.2(1 — e-0.1 ) + (1 — e-1) = 1 .162.  
For any farther times D(t) can be calculated using Equation 2.18. So the creep compliances 
at various times are tabulated in Table (1) below and plotted in Figure 2.38.  It can be seen 
that, after t = 5, all the retarded strains have nearly completed and only the viscous strains 
exist, as indicated by a straight line . If the retarded strain lasts much longer, more Kelvin 
models with longer retardation times will be needed . 



Figure 2.38: Creep complain curve. 

Table 2.1: Creep complain data 
calculated based on Equation 2.18. 



Generalized model consist of Maxwell model  and n of Kelvin model as shown in Figure 
2.36, Equation 2.18. To solve this model, several parameters, i.e. viscoelastic constants. Ei, 
Ti and n, are required to be identified; if a creep compliance curve (D(t), t) is given, the 
viscoelastic constants of a generalized model can be determined by several methods:   

Determination Generalized Model Constant 

……. (2.18) 

1. Successive Residuals Method 

This method is an approximate method of collocation method, it is used to determine the 
constants Ei and Ti of a viscoelastic material directly from the creep curve,  
1. The creep compliances D due to retarded strains (Equation 2.19) are determined by 

deducting the instantaneous and viscous strains from the total strains, as shown in 
Figure 2.39. 
 
 
 
 

2. The actual number of Kelvin models required is not known at this time but can be 
determined later . For illustration, it is assumed that three Kelvin models are needed to 
describe retarded strains. 

…. (2.19) 



Figure 2.39: Separation of creep 
compliances . 

Let:  

……. (2.20) 

Where b is the intercept of 
retarded strain as shown in Figure 
2.39, or it can be said as: 

𝒃 = 𝑫𝟏 + 𝑫𝟐 + 𝑫𝟑 …..(2.21) 

 if three Kelvin models are used, so Equation 2.19 can be written as:  

………. (2.21) 

This part of curves 
represented by three 

Kelvin Models 

Notes:  
1. If T1 is much greater than T2 and T3 , then, after a 
sufficient period of time, the last two terms on the 
right side of Equation 2.21  vanish to be Equation 
2.22. This equation shows that a plot of log S1 
versus (t) results in a straight line, as indicated by 
Equation 2.23 and Figure 2.40. 

……. (2.22) 

… (2.23) 



Figure 2.40: Method of 
successive residuals. 

2. The slope of the straight line 
can be used to determine T1, 
and the intercept at t = 0 can 
be used to determine E1. After 
El and T1 are found, Equation 
2.21 can be written as: 

…. (2.24) 

3. in which S2 is the vertical intercept between the curve and the straight line. If T2 is much 
greater than T3, a plot of log S2 versus (t) should also finally become a straight line, so T2 
and E2 can be determined. The process is continued until the intercept becomes negligibly 
small . 



Example 12: 
The creep compliances of a viscoelastic material are shown in Table 2.1. of Example 11. 
Develop a mechanical model and determine its viscoelastic constants. 

Solution:  
• The generalized model is represented by Eq. 2.18. When t = 0, D = 1/Eo.  
• From Table 2.1, D = 0.5 when t = 0, so Eo = (1/D) = 2.  
• At long loading times, only the viscous strains exist (as detailed in Figure 2.35). 
• The rate of change in compliance due to viscous strains is 1/(EoTo), as can be seen from 

Eq. 2.15 or 2.18. At t = 40, D = 5.798 and at t = 50, D = 6.799, so the change in 
compliance per unit time is: 

      [(6 .799 - 5.798)/10 = 0.1],      and       EoTo = 10, or To = 5 . 

Table 2.2 shows the procedure for computing successive residuals.  
• Column 2 is the compliance of the dashed line shown in Figure 2.41 and can be 

computed by [6.799 - (50 - t) x 0.1]. 
• Column 3 is given in Table 2.1. 
• Column 4 is the difference between Columns 2 and 3. 
• A plot of log Sl versus (t) is shown in Figure 2.41 and results in a straight line. The slope 

of the straight line is (0.0455) or Tl = 9.54. 
• The intercept at t = 0 is 1/El = 0.1, or El = 10. 
• Column 5 can be calculated by  [0.1 exp(—t ×19 .54)]. 
• Column 6 is the difference between columns 4 and 5. 



• A plot of S2 versus (t) results in a straight line. The 
slope of the straight line is (0.426) or T2 = 1.02 . 

• The intercept at t = 0 is 1/E2 = 0.2, or E2 = 5. 
• Column 7 can be calculated by [0 .2×exp(—t/1.02)]. 
• Column 8 is the difference between columns 6 and 7 
• A plot of S3 versus (t) results in a straight line.  

The slope of the straight line is (4.424) or T3 = 0.098. 

• The intercept at t = 0 is 1/E3 = 1 or E3 = 1. 
• Because all points on S3 lie practically on a straight line, three Kelvin models are sufficient 

to describe the creep-compliance curve. 
• The equation for predicting the creep compliance is 

Note: 
 The values of E are the same as the original model shown in Figure 2.38, but 

the values of T are slightly different, as a result of plotting error (Figure 2.42) 
 It can be seen that the stress—strain relationship of viscoelastic material can 

be characterized by a mechanical model or a creep curve . When one is 
known, the other can be determined . 



Table 2.2. Computation of Successive Residuals   



Figure 2.41: Example 12. 

Figure 2.42: differences in the 
viscoelastic parameters. 



Example 13 : 
Figure 2.43 shows a viscoelastic two-layer system under a circular loaded area having radius 
10 in. (254 mm) and uniform pressure 100 psi (690 kPa). The thickness of layer 1 is 10 in. 
(254 mm), and both layers are incompressible, with Poisson ratio 0.5. The creep 
compliances of the two materials at five different times are tabulated in Table 2.1. 
Determine the surface deflection under the center of the loaded area at the given times. 

Solution: 
If the modulus ratio is greater than 1, the surface deflection wo at any given time can be 
determined from Figure 2.21. 
Take t = 1 s, for example . The elastic modulus is the reciprocal of creep compliance. 
For layer 1, El = 1/D1 = 1/(2 .683 X 10-6 ) = 3 .727 X 105 psi (2.57 GPa) and; 
for layer 2, E2 = 1/D2 = 1/(19 .52 X 10-6) = 5.123 X 104 psi (353 MPa). 
So  E1/E2 = 3.727 X 105 / (5 .123 X 104) = 7.27. 
From Figure 2.21, F2 = 0.54, so w0 = 1.5 X 100 X 10 X 0.54/(5.123 X104) = 0.016 in. (4.1 mm). 
The same procedure can be applied to other time durations and the results are shown in 
Table 2.4 . 

Figure 2.43. Example 13 

2.3 

2.3 



TABLE 2.3. Creep Compliance and Surface Deflection 

End of 
Chapter II 


