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2. Flexible Pavement

2.1. Analysis of: Stress, Strain and Deflection in Flexible Pavement

A pavement structure is not so easily to accurate structural analysis because the materials
forming the flexible pavement layers and soils supporting the pavement are not same, so
their exhibiting are not similar and their response under loads are different.

2.1.1. One Layer System

Boussinesq (1885) analysed the stresses in flexible pavement as a single layer due to an
applied load based on the assumptions that: the pavement and supporting soils subgrade
below form a homogeneous, isotropic, single elastic layer with the same value of elastic
modulus (E). The first analysis approach represented the load as a point load and then the
load was represented as a circular load which is more realistic than the point load.

Note:
* |Isotropic materials are materials whose properties remain the same when tested in

different directions. Isotropic materials differ from anisotropic materials, which
display varying properties when tested in different directions. Common isotropic
materials include glass, plastics, and metals.

* A half-space has an infinitely large area and an infinite depth with a top plane on
which the loads are applied .



2.1.1.1. Point loading

The closed-form solution for a point
load on an elastic half-space was
originally developed by Boussinesq

(Fig. 2.1.)) as shown in the
following forms:
P Point Load
Material
Vertical Stress o, Eand p
Tor Shlear Stress
Shear Stress 7, _| ¥

Horizontal o,

Radial Stress . .
" ot Horizontal Tangential Stress
1

Figure 2.1. Stresses due to point loading

P = Point Load

U = Poisson's Ratio

o, = Vertical normal stress

0, = Radial normal stress (Horizontal)

o, = Tangential normal stress (Horizontal)

T, = Horizontal Shear stress (radial direction)
€, = Vertical normal strain

€, = Radial normal strain (Horizontal)

€ = Tangential normal strain (Horizontal)

V. = Horizontal Shear strain (radial direction)

w = Vertical Deflection
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2.1.1.2. Circular Loading

For pavement analysis, the equivalent circular contact area of a tire on pavement surface is
taken. For this purposes a uniformly loaded circular area is considered for calculating the
stresses in the soil mass. The equation of vertical stress under point load may be integrated

over the circular area as shown in Figure 2.2.
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Figure 2.2. Stresses under uniformly circular loading



» The response due to a circular load with (a) radius and uniform pressure (g) on an elastic
homogeneous half-space is obtained by integrating the Boussinesq’s components due to a
concentrated load.

» When the load is applied over a single s
circular loaded area, the most critical q | Cireular
stress, strain, and deflection occur under YYyyyy
the center of circular area on the axis of
symmetry, where: t,, = 0 and ¢, = o, SO o, Vertical Stress o,
and o, are the principal stresses. For points
on the centerline of the load (i.e., r = 0), these
stress components are given by: Shear Stress ez
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Flexible and Rigid Plates Loading

Flexible Plate:
The load applied from tire to pavement is similar to a flexible 2(1—p?)qa
plate with a radius (a4) and a uniform pressure (g). The deflection Wo = E
beneath the center of the plate can be determined from:

Rigid Plate:

All the above analyses are based on the assumption that the load is applied on a
flexible plate, such as a rubber tire . If the load is applied on a rigid plate, such as that
used in a plate loading test, the deflection is the same at all points on the plate, but
the pressure distribution under the plate is not uniform. The differences between a
flexible and a rigid plate are shown in Figure 2.4.

Flexible plate: Rigid Plate plate: 1'[(1 — uz)qa
» Unitorm Contact Pressure » Non-Unitorm Contact Pressure Wo = 2E
» Variable Deflection Protile » Equal Detlection
Uniform Pressure q Nonuniform Pressure g(r)
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(a) Flexible plate (b) Rigid plate



d A comparison of these two equations indicates that the surface deflection
under a rigid plate is only 79% of that under the center of a uniformly distributed
load (flexible plate). This is reasonable because the pressure under the rigid plate is
smaller near the center of the loaded area but greater near the edge . The pressure
near the center has a greater effect on the surface deflection at the center . The same
factor, 0 .79, can be applied if the plates are placed on a layer system, as indicated
by Yoder and Witczak (1975), as shown in Figure 2.5..

Rigid vs. Flexible Loading
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Figure 2.5. Deflection induced by rigid and flexible plate loading.



2.1.1.3. Methods of Solution

In addition to using the theoretical formulas suggested by Bossinseq’s method (circular
loading method) , there another two methods as explained in the following articles:

2.1.1.3.1. Foster and Ahlvin Charts (Poisson’s ratio is constant = 0.5)

Foster and Ahlvin (1954) presented charts for determining vertical stress o,, tangential stress
o, radial stress o, shear stress t,., and vertical deflection w, as shown in Figures 2.6 through
2.10. The load is applied over a circular area with radius (a) and an load intensity (q).
Because Poisson ratio has relatively small effect on stresses and deflections, Foster and
Ahlvin assumed the Poisson’s ratio value 0.5.
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1
After the stresses are obtained from the €, = E[U' - — Wo, + oy)]

charts, the strains can be obtained from

& = £l — B(o, + o)
- ~lor ~ W(0, + )]
€ = E Ty {U: “Tr}

Example 1: Figure (2.11) shows a homogeneous half-space subjected to two
circular loads, each 10 in.(254 mm) in diameter and spaced at 20 in.(508 mm)
on centers. The pressure on the circular area is 50 psi (345 kPa (1 psi=6.9
kPa). The half-space has elastic modulus 10,000 psi (69 MPPa) and Poisson’s
ratio 0.5. Determine the vertical stress, strain, and deflection at point A,
which is located 10 in.(254 mm) below the center of one circle.

10in,—+ — 10 in.—~

.| S0psi | 50) psi

B A 'l L L B L J

E=10000psi p=05 |

L0 i \ Figures 2.11. Example 1.
- 20 .
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From Figures 2.7, 2.8, and 2.10, the stresses at point

Due to the left load with r/a =0 and z/a = 10/5 = 2 are;
6, =0.28 x 50 = 14.0 psi (96 .6 kPa), and
6,= o, = 0.016 x 50 = 0.8 psi (5.5 kPa) ;

Due to the right load with r/a=20/5=4

and z/a = 2 are: _ By superposition:

6,=0.0076 x 50 =0.38 psi (2 .6 kPa), ¢,=14.0+0.38 =14 .38 psi (99.2 kPa),
6,=0.026 x 50 =1.3 psi (9.0 kPa), and ¢,=0.8+1.3 =2 .10 psi (14 .5 kPa) , and
o, = 0. (Out of the right load’s range). o, = 0.8 psi (5.5 kPa).

Strain:

g,= [14 .38 - 0 .5(2.10+ 0.8)/10,000 = 0.00129.

From Figure 2.10, the deflection factor at point A due to the left load is 0 .68
and, due to the right load 1s 0.21 .

The total deflection w = (0 .68 + 0 .21) x 50 % 5/10,000 = 0.022 in . (0.56 mm) .
The final answer is ¢, = 14.38 psi (99 .2 kPa), ¢, = 0.00129, and w = 0.022 in .
(0.56 mm) ,,,w,




2.1.1.3.2. Ahlvin and Ulery Tables ( Any value of Poisson’s ratio )

Tables for One-layer Solutions are suggested by Ahlvin and Ulery (1962), to find
stresses, strains, and deflection in one layer system for any value of Poisson’s ratio,
as shown in Figure 2.12 and Tables 2.1. and 2.2.

Figure 2.12. Summary of One-Layer Elastic Equations? {after Ahklvin and Ulery)

Parameter General Case Special Case (u = 0.5)
Yertical stress o, = pld 4+ B} {same}
Radial horizontal stress o = pl2ud + C + (1 — 2p)F] o = pl4 + C]
Tangential horizontal stress o, = p[2ud — D + (1 — 2p)E] oy = pld — D]
Vertical radial shear stress 7o = 70 = pG {same)

1+ p L.3p
Vertical strain £ = 3—5(—--—} [(1 — 2u)4 + B] e, — B
E E;
1 1.5
Radial horizontal strain ¢ = M (1 — 2u)F 4+ €] & = Lo o
.E.-'[ -E'I
1 1.5
Tangential horizontal strain ¢ = 'ﬂ—[-+—p} [(1 — 2u)E — D)) g = — % p
E, Ey
: 1+ z 1.5pa { 2 H
Vertical deflection Ay = u -4+ (1 —pH| A =— (—A + —)
Ey a £ \a 2
Bulk stress 8 =0,4 0. + 0y
Bulk strain € = &+ & + &
Vertical tangential shear
stress Tor = Ti: = 0 5 [o e, is principal stress (strain)]
. . {oe + o0} =+ Ao, — ) + (21"
Principal stresses CLrs = ;
g1 — g
Maximurm shear stress Tiax = — >

2
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Table 2.1. Function A.
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Table 2.2. Function B

Function B
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L0028 —00037 -.00047 00043
00093 - 00002 —00029  .00037
L0141 00035 ~ 00008 —.000235
00178 DO0GS 00012 00012
00199




L R
12" @ 12" @

Example 2: Figure (2.13) shows a homogeneous :

half-space subjected to two circular loads, each ey O ey
12 in. in diameter and spaced at 21 in. on centers.

The pressure on the circular area is 100 psi. The | |
half-space has elastic modulus 9600 psi and l _‘_q ‘ . _’

Assume p = 0.35, E = 9600 psi

Poisson’s ratio 0.35. Determine the vertical stress,
strain, and deflection at point A, which is located
as shown in figure. Find o, A @A

Solution: Figure 2.13. Example 2.

For load (L):a=6,z=12,r=9 - z/a=2,r/a=15.
From table A = 0.06275, B =0.06371, C = -0.00782, D =0.05589,

oA

H.W.... Using Foster and Ahlvin Charts



Equivalent Single Wheel load (ESWL)
* The study of ESWL for dual wheels was first initiated during World War II when

-

@ N SO

the B-29 bombers were introduced into combat missions. Because the design
criteria for flexible airport pavements then available were based on single-wheel
loads, the advent of these dual-wheel planes required the development of new
criteria for this type of loading.

Several theoretical studies have
been develop for converting dual
wheels to equivalent single wheel
such as:

Criterion based on that the single
wheel has the same contact radius
of the dual wheels .

Equal Vertical Stress Criterion
Equal Vertical Deflection Criterion Figure 2.14. Dual wheel vs single
Equal Tensile Strain Criterion wheel loads.

Criterion Based on Equal Contact Pressure with different contact radius.

Criterion Based on Equivalent Contact Radius OR equivalent single-axle
radius (ESAR) .



Equivalent Single Wheel load (ESWL)

Based on Equal Vertical Stress Criterion, From Figure (2.15), the total load of the
dual tire assembly is 2P, with S, being the center to center spacing and d being the
clear distance between tire edges (d=S, - 2a.). It is assumed that for the pavement
thickness () less than or equal to d/2 (t < d/2), no stress overlap occurs. Thus, the
stress depths is due to that of only one wheel of the dual (P,). Likewise, at depth of
approximately 25, the effect of stress overlap is such that it is equivalent to the
stress caused by the total load of the dual tire assembly (2P,). For intermediate
depth between d/2 and 2S,; the wheel load acting is linear when plotted on a log
load versus log thickness diagram as shown in Figure (2.16). This relationship can
be used to find the ESWL for the diagram.

f—— §4 —]

L d —>|

)
o

No stress overlap
if pavement thickness
is smaller than 4

Pd Pd

L)L

I d;?-' ,!,/+ ¥ ¥ (R N i/ A"Complete stress

ESWL (log scale)
a~]

—— i —— :U

overlap if Pq
pavement Lthickness
284 is greater than 28,
l z=dR2 z z =128,
Depth z (log scale)
Figure 2.15. Influence of multiple Figure 2.16. Method of determine

wheels on stresses ESWL for any dual wheel loads.



0.301 log(2z/d) ]
log(4S4/d) IHI

Example 3: Find ESWL at depths of 5 cm, 20 cm and 40cm for a dual wheel L , J

NI,
carrying 2044 kN each. The center to center tire spacing is 20 cm and distance |

log(ESWL) = log Py +

between the walls of the two tyres is 10 cm. |
Solution |

At depth z = 40cm, which is twice the tire spacing (25,;), ESWL = 2P ;= 2 x 2044 = 4088 kN.
For depth, z = 5cm, which is half the distance between walls of the tire (d/2),

ESWL = P = 2044 kN.

For z=20 cm, use the linear relationship: log (ESWL) = 3.511.

Therefore, ESWL = antilog(3.511)= 3244.49 kN

2.1.2. Layard Systems

Flexible pavements are layered systems with better materials on top and cannot be
represented by a homogeneous mass. These layers are subjected to applied stress which
is uniformly distributed over a circular area (radius a) as shown in Figure (2.17). For
this system, the following basic assumptions to be satisfied are :

1. Each layer is: homogeneous, isotropic, linearly elastic , and with an elastic modulus E;
and a Poisson ratio y; (where i for each layer).

2. The material is weightless and infinite in the horizontal direction.

3. Each layer has a finite thickness h, except that for the lowest layer (subgrade) which
has an infinite in thickness .

4. A uniform pressure g is applied on the surface over a circular area of radius a .

5. Continuity conditions are satisfied at the layer interfaces, as indicated by the same
vertical stress, shear stress, vertical displacement, and radial displacement .
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Figure 2.17. An n-layer system. Figure 2.18. A two layers system

2.1.2.1.Two-Layer Systems

The two-layer system is a composed of: hot mix asphalt (HMA) layer which is consisted of
surface, binder, and stabilized layers which are treated as a first layer with E; and the
second layer consists of untreated layer (granular material such as base, sub-base, and
subgrade) with E,, as shown in Figure (2.18). (Note: E;>E,)

Vertical Stress

» The vertical stress on the top of subgrade is an important factor in pavement design.
The function of a pavement is to reduce the vertical stress on the subgrade so that
detrimental pavement deformations will not occur. The allowable vertical stress on a
given subgrade depends on the strength or modulus of the subgrade.



 The stresses in a two-layer system depend on the modulus ratio E,/E, and the
thickness-radius ratio h/a . Figure 2.19 shows the effect of a pavement layer on the
distribution of vertical stresses under the center of a circular loaded area . The chart
is applicable to the case when the thickness h, of the top layer is equal to the

radius of contact area, or h;/a =1 and U is assumed to be 0.5 for both layers. It can
be seen that the vertical stresses decrease significantly with the increase in modulus
ratio. For example: at the pavement-subgrade interface (i.e. contact surface between
layer 1 and 2), the vertical stress is about 68% of the applied pressure if E/E,=1,
and when E/E,=100 the vertical stress distribution reduces to about 8% of the
applied pressure.

Vertical stress influence coefficient = a,p

0 0.2 0.4 0.6 08 1.0
0 ; %T 58
]
fﬁﬁ% hgg
o s 28
% 1 S [~ " [Interface 1-2
2 =
a ) vﬁ‘i' o
5 o A Layer 2 ®
g2 g
s &
P
3

Figure 2.19. Vertical stress distribution in a two layers system.



Figure 2.20 shows the effect of pavement thickness and modulus ratio on the vertical stress
6. at the pavement—subgrade interface under the center of a circular loaded area. For a given
applied pressure (, the vertical stress increases with the increase in contact radius and

decreases with the increase in thickness.

Example 4 : A circular load having radius 6
in. (and uniform pressure 80 psi (552 kPa) is
applied on a two-layer system, as shown in
Figure 2.21 .The subgrade has an elastic
modulus 5000 psi (35 MPa ) and can support
a maximum vertical stress (6.) of 8 psi. If the
HMA has an elastic modulus 500,000 psi,
what is the required thickness of a full-depth
pavement? If a thin surface treatment is
applied( instead of HMA) on a granular base
with an elastic modulus 25,000 psi what is

the thickness of base course required ?

6 in. _

80psi |

"l#"*"nr

ol

E, = 500,000 psi
or 25,000 psi l‘

E, = 5000 psi
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Figure 2.20. Vertical interface
stresses for two-layer system

Figure 2.21. Example 4



Solution: a) Given E/E, = 500,000/5000 = 100 , and o./q = 8/80 = 0.1, from Figure 2.20, find
a/h, = 1.15, so the value of h; = 6/1.15 = 5.2 in ., which represents the minimum thickness for
full depth . b) Given E/E,= 25,000/5000 = 5 , and o./q = 0.1, from Figure 2.20, for
a/h, =0 .4, so the value of h, =6/0.4 = 15 in., which is the minimum thickness of granular base
required. Note: compare between the two values of h;

» The allowable vertical stress should depend on the number of load repetitions ,using the

Shell design criterion and the AASHTO equation, Huang et al. (1984b) developed the
relationship: N;=4.873 x107° Gc_3'734523'583

in which N, is the allowable number of stress repetitions to limit permanent deformation,o,
Is the vertical compressive stress on the surface of the subgrade in psi, and E, is the elastic
modulus of the subgrade in psi.

Example 5: Use the data in example 4 to find the allowable number of repetitions?
Solution: For a stress of 8 psi (5 kPa) and an elastic modulus of 5000 psi (35 MPa), the allowable
number of repetitions is Ng =3 .7 x 10°.

Vertical Surface Deflection: Vertical surface ||| The deflection factor is a function of E,/E,
deflections have been used as a criterion of [| and h,/a. For a homogeneous half-space
pavement design. Figure 2.21 can be used to ||| with hy/a =0, F, =1, so Eq. 2.1 is identical to
determine the surface deflections for two- [| Equation for flexible plate when p =0 .5.If
layer systems. The deflection is expressed in ||| the load is applied by a rigid plate, then,
terms of the deflection factor F, by : from Eq. 2.2. of rigid plate.

1 5 qa 1.18 ga

.22




Example.5: A total load of 20,000 Ib (89 kN) was
applied on the surface of a two-layer system

through a rigid plate 12 in. in diameter, as shown E//E;
. . N . . e NN
in Figure 2.22. Layer 1 has a thickness of 8 in. R S —
and layer 2 has an elastic modulus of 6400 psi NN TS wo= 20
i ible i NN g e % |
(44.2 MPa). Both layers are incompressible with NN TR
a Poisson ratio of 0.5. If the deflection of the Si*i\l ‘%\\ﬂkz_——__
. . . . ™ N :
plate is 0.1 in . (2.54 mm), determine the elastic | i\\::lfk% T
modulus of layer 1. b i}}"t SN ——
M S ——
Td—w TN
A0t Rigid Plate 0.04 \"\i\‘ J\§M\\x-<
'l' Deflects 0.1 in. 0.03 NS O~~~ |
[ _rk ‘ nl 2 —]
B 0.02 ~%0 - P~ —
0 05 10 15 20 3 4 5 6
E =? P =gs ls in. hy/a
| 5, = sivop Y Figure 2.21. Vertical surface deflections for

two-layer systems
Figure 2.22. Example 5.

Solution:

The average pressure on the plate is g = 20,000/(36m) = 176.8 psi (1.22 MPa). From Eq. 2.2,
find the value of F,= 0.1 x 6400/ (1 .18 x 176.8 x 6) = 0.511. Given h,/a= 8/6 = 1.333,
from Figure 2.20, E,/E, = 5, or E; =5 x 6400 = 32,000 psi (221 MPa) .



Critical Tensile Strain

The tensile strains at the bottom of asphalt layer have been used as a design criterion to prevent

fatigue cracking. Two types of principal strains could be considered.

1. One is the overall principal strain based on all six components of normal and shear stresses.

2. The other, which is more popular and was used in KENLAYER, is the horizontal principal
strain based on the horizontal, normal and shear stresses only.

Note: The overall principal strain is slightly greater than the horizontal principal strain, so the use of
overall principal strain is on the safe side . The critical tensile strain is the overall strain and can
be determined from Eq. 2.3.

e = ipe 55 Wwhere:eis the critical tensile strain and
Ey . Is the strain factor, which can be determined from the charts .
% o ] Example 6: Figure 2.24 shows a full-depth asphalt
Y X\ —| pavement 8 in. thick subjected to a single-wheel load of

: ;E-J’E?_ 9000 Ib (40 kN) having contact pressure 67.7 psi. If the
2 WIS — | elastic modulus of the asphalt layer is 150,000 psi and
.{!;,-e'é_m that of the subgrade is 15,000 psi, determine the critical

7

Y SER K%
-

|

L:-:J
Z os S tensile strain in the asphalt layer .
g o ‘ 19‘“’““‘ Solution:
0.1 : S e=3.25x10*
0.05 —— Y Y Yy
40— ]
0.02 — . —_©= %Ft ] E; = 150,000 psi | X Sin.
| o
0ol E, = 15,000 psi |

Figure 2 .23.Single Wheel chart for the strain factor _
of a two-layer system under a circular loaded area . Figure 2 .24. Example 6.



The Figure 2.23 is used for single wheel, in dual wheels,

 The strain factor for dual wheels depends on the parameters: contact radius a, dual spacing S ,
Sy/a, E,/E, ,and h,/a.

* There are two charts one for dual wheels with S; = 24 in. (610 mm) and a = 3 in. and the

other for Sy = 24 in. (610 mm) and a = 8 in. to determine conversion factors: C, and C, as shown
in Figure 2.24.
1.6

L6 TSy =24in. T 1o 1]
137 8m R

=
I
i
!

Sy = 24in.
14a=3m

A

0 4 8 12 16 . | |
Thickness of Asphalt Layer. in. [hickness of Asphalt Layer. in.
Figure 2.24. Conversion factors.

For any other different Sd and a values the following procedure can be used:

1. From the given S, h, , and a, determine the modified radius a' and the modified thickness h," :
24 , 24
P = 20 W, = —h
a Sdﬂ and L= g,
2. Using h," as the pavement thickness, find conversion factors C, and C, from Figure 2.24.
3. Determine the conversion factor for a' by a straight-line interpolation between 3 and 8 in.

or the formula. C=C +02%(a —3)%(C-C)



Example 7:

For the same pavement as in Example 6, if the 9000-Ib (40-kN) load is applied over a set of dual
tires with a center-to-center spacing of 11.5 in. and a contact pressure of 67.7 psi ,as shown in
Figure 2 .25, determine the critical tensile strain in the asphalt layer.

4500 1b 11.5in. 14500 1b
ET?PEi w ¥
l!l 1L 1" \r'lL ¥ ¥ 111
A
E, = 150,000 psi 8 in.
e ="7
s — .
E, = 15000 psi

Figure 2 .25. Example 7.

Solution: 24 24
Compute a=4.6in.,h,=8in.from ¢ = ¢ and " =h
S{J. d

a=24x46/11.5=9.6in. and h'; =24 x 8/11.5=16.7 in., E/E, = 10 and an asphalt layer
thickness of 16.7 in. from Figure 2.24, C, = 1.42 and C, = 1.46. From interpolation equation,
C=142+0.2(9.6-3)(1.46—-1.42)=1.473 (C is a modified factor to F, which is found
from Figure 2.22). From Figure 2 .22, the strain factor for a single wheel = 0 .47 (E,/E, = 10
& h,/a= 1.74) and that for dual wheels = 1.473 x 0 .47 = 0 .692, so the critical tensile strain
is: e=67.7 X0.692/150,000 =3 .12 x 104



2.1.2.2. Three Layers System.

Figure 2.Y1 shows a three-layer system and the stresses at the interfaces on the axis of symmetry.
These stresses include vertical stress at interface 1, a,;, , vertical stress at interface 2, ,, , radial
stress at bottom of layer 1, o, , radial stress at top of layer 2, ¢',, , radial stress at bottom of layer
2, 6,,, and radial stress at top of layer 3, ¢',, . Note that, on the axis of symmetry, o, - o, and the
sheer stress is equal to 0. When the Poisson ratio is 0.5, we have:

—— g
& i 1_(U - ) 2 4 | Important note: 9
. . Pl e . ol T W
2 My = Uy =p3=0.5 X
1 ui Ex o hy
€, = —(0, —0,) iiiiiiiii 2.5 | i
! ZE ( d ‘) — i_'__t gt:l Interface 1
€, = —26 | oo 2.6 2. Ex l | by
T:; fq Interface 2
Note: us Es : h )

» The horizontal strain is equal to one-half of the vertical strain T
> To understand these Eqs. 2.4 to 2.6 go back to slides No. 3and 5. Flgure 2.Y%. Three layers system

Solution Method for Three Layers System Using Jones' Tables (Figure 2.27).
The stresses in a three-layer system depend on the ratios k;, k,, A, and H, defined as

OF.1 — O
kl :% kl = _Eg ............................. 2.7 (}_:] = (_T;l — 1k B 2.9
2 i 1
{T:z — Op
A=£ H=ﬂ ............................. 2.8 (o ) T = —kz W CoomemeSmmmmsmsmesmmmmnmsess 2.10



a o o - o -0 c 0. =0
' 5 Sy Ty 5 r (R 83 Ts T3, Ory

kg = 0.2

0e1 ceb56045 0e12438 062138 De0I557 0600332 0401659
0¢2 0.90249 0e 13546 0.67728 0e06027 0s01278 0.06301
04 0e95295 0, 10428 Os §21412 0e21232 0. 04430 ©0.221%50
0e8 0.99520 0+0901I1 045053 0+56395 010975 0¢54877
I.6 1.00062 0.08977 0043884 0.856243 013755 0.687977
3e3 0« 99970 0e04129 0420643 0s94143 OelO147 0+ 509736

H

Oe1l 066048 0.12285 061424 0.00892 0.01693 0. 00846
Oe3 090157 0e13916 064582 0e03480 0. 064558 0e 03279
04 Ce 95130 0e08i15 0. 40576 0+12656 0e233%57 0. 11639
0e8 0e 99235 0.,01823 0s0QI13 037307 0462863 031432
1.6 0099918 ~ 0.04136 — 0.20680 0.74033 0eg3754 0e¢ 49377
3e2 1.00032 — 0.03804 = 0eI907%§ 0e07137 o.82102 Qs 41051

ka = 20.0

Oul 0.662135 0s 12032 0.60161 0.00256 0. 03667 0+00133
Oe 3 0e QO4IS 0.11787 0.58033 0eOIOII 0.1:336 000717
Oe 4 095135 0403474 0.17370 0.03838 0e52691 0402635
0.8 0498998 = 0.14872 ~ 0.74358 0413049 I.61727 0.03086
1.6 0e¢99407 = 0e50533 ™ 23+5206%50 0e36443 3¢530.24 017647
3.2 0099821 — 0480900 — 4405023 0s 76669 515409 0+25770

k.ﬂ 200,0

Oel 0466266 cel1720 0.58599 0.00057 Ce 05413 0+ 000279
0e2 0e 90370 0+ 10495 0+52477 0s00226 0e2I3I4 0400107
s 4 094715 ™ 0.0I709 — 0.,08523 0.00881 0+30400 0400403
n-A A NATAC =™ O.242127 = T.12T727 Na0?22¢0 2.67074 0.0IL0

Figure 2.27. atypical Jones' Tables



» Jones developed a Tables to determine the stress factors for three-layer systems.

U;l = Q(ZZ]) ......... 211

O — 01 = 4 (ZZ] - RRI) ------

oo = q(ZZ2)

02— 7 = q(ZZ2 - RR2)

» Where g is the contact pressure (tire inflation in psi), ZZ1,Z2Z2,---- etc. are factors found

from Jones' tables.

» The sign convention is positive in
compression and negative in tension .
Four sets of stress factors,ZZ1, ZZ2,
(ZZ1 — RR1), and (ZZ2 — RR2) are
shown in tables. The product of the
contact pressure and the stress factors
gives the stresses. The tables
presented by Jones consist of four
values of k1 and k, (0.2, 2, 20, and
200), so solutions for intermediate
values of k, and k, can be obtained
by interpolation.

~ 22—

q

RERREES

Hi=0.5E:

1(’11
- ' — U

Interface 1

Interface 2

Figure 2 .28. Detailed stresses in three layers system.



From Figure 2.28. it can be observed, that the presence of friction has a significant influence
on the radial (horizontal) stress at the bottom of the top layer especially at low values for the
ratio E,/E,. We also note that the influence on the vertical stress is much smaller.

If there is full friction or full bond at the interface, the following conditions are satisfied:

» The vertical stress just below and above the interface are equal because of
equilibrium, so:

o,, at the bottom of the top layer (1) = ¢,, at the top of the bottom layer (2) (interface 1)
o,, at the bottom of the top layer (2) = o,, at the top of the bottom layer (3) (interface 2)

» The horizontal displacements just above and below the interface are the same
because of full friction, so:

g,, at the bottom of the top layer (1) = &°,, at the top of the bottom layer (2) (interface 1)
(6,,=0",, atinterface 1)

g, at the bottom of the top layer (2) = ¢°,, at the top of the bottom layer (3) (interface 2)
(6,,=0", at interface 2)

» The vertical displacements just above and below the interface are the same because
of continuity, so:

g, at the bottom of the top layer (1) = ¢,,at the top of the bottom layer (2) (interface 1)
&,, at the bottom of the top layer (2)= ¢,,at the top of the bottom layer (3) (interface 2)



Example 8: l—sl
Given the three-layer system shown in Figure 2.29 120 psi |
with a = 122 mm, g = 828 kPa, hl = 152 mm), h2

= 6 in. (203 mm), E1 = 400,000 psi (2.8 GPa), E2 pe— ] fo
= 20,000 psi (138 MPa), and E3 = 10,000 psi (69 I -
MPa), determine all the stresses and strains at the E=20.000psi jall g e="? 6in.
two interfaces on the axis of symmetry . | H i

E; = 10,000 p51- | )
Solution: Figure 2.29. Example 8.

Given k, = 400,000/20,000 = 20, k ,= 20,000/10,000=2, A=4 .8/6 =0.8,and H=6/6=1,
from Table (....) Find the factors: , ZZ1 = 0.12173, ZZ2 = 0 .05938, ZZ1 - RR1 = 1 .97428,
and ZZ2 - RR2 = 0.09268 .

From Eq. 2 .11, 6,, = q x ZZ1 = 120 x 0.12173 = 14.61 psi (101 kPa)

From Eq. 2 .12 6,, = q x ZZ2 = 120 x 0 .05938 = 7.12 psi (49.1 kPa)

From Eq. 2 .13 6,, - 6,, = q % (ZZ1 - RR1) = 120 x 1 .97428 = 236.91 psi (1 .63 MPa), and
c,, =14.61-236.91 = -222.31 psi.

FromEq.2 .14 6,, - 6,,=q x ( ZZ2— RR2) = 120 x 0.09268 = 11.12 psi,

G, = 1.12—-11.12 = -4.0 psi I Sl W 79
From Equations 2.9 and 2.10. T T T
6 =276 psi, o, = 1.56 psi Tp =0y = {Tﬂk_ Or2 e, 2.10
. = ;_(,,: ;) [ 2.4 2
¢, = ] (0, — 0,) | 2.5



E = 1.0

ky = 20,0
a T o =T o =0
' o Bry U8 rs o W T s
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1.3 t.o0bagb 2. 55155 012760 1.00317 o+ 00gob 0s 40525
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0. 00361 Ga 04751 O« 003213 s 00I00 . 1.3 1.7 o= 00088
Oe0I03g 6. 184812 Bs00G3 4 0:00397 o.00637 000319

0.20353

o.f6041 B+9750% 0. 34385 o« 3398 oaBra46 Os 33733
ky = 20,0
G 1 o:001g% 0:05737 0. 00287 Os 0003 4 0s00332 &= 000156
el e G075 1 Ce.233413 Ce.0ITIL C. 00098 c.01387 0. ooo0b g
Oe 0.0371% o.83430 Y- FRET cs003dy os 05063 0. 002573
0s9 | o0.08037 2.50672 n.::gﬂ4 0.01507 o0.15267 o0.00083
- B 1761 6.97014 os338%51 DsDE54D o«bb 326 cs03316
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Os I o.001756 C: 05713 CsB0137 s 00000 Cw 00478 0w 00003
Gs3 c. 00684 Os 36401 c.0lj30 Os 00033 o.01g08 O« 00010
O 4 s 03447 o.081346 CsB4GLT Gs 00008 0. 07557 Gs 0003
.8 o.0bgl 3 Jea3zby cs16158 os00948 Ce3GI04 os0olsb
I+8 O« 14151 GeaBza8 e sbq07 G=0I319 I-0538¢ 0= 00537
I3 0s33655 24.85216 1+34353 oce049I1L 3s 37605% o«01688




Solution:

At bottom of layer 1:

To calculate the strains at the bottom of layer 1 use Equations 2.4 and 2.5.

&, = (0, -0,)/E; =236.91 /400000 =5 .92 x 104

gq = (04 -0, )/2E; =-23691 / 2 x 400000 = -2 .96 x 104 (or directly, using equation

2.6 for find ¢,)
€, = —2€, [ETrrTrr T —— 2.6

At top of layer 2:

To calculate the strains at the top of layer 2 use Equations 2.4 and 2.5

g,= (0, -0 )/ E,=(14.61-2.76)/ 20000 = 5 .92 x 10** = ¢, at bottom of layer 1
gn=(0y -0,)/2E,=(2.76-14.61)/ 2 x 20000 = -2 .96 x 10*= ¢, at bottom of layer 1

At bottom of layer 2 :

To calculate the strains at the bottom of layer 2 use Equations 2.4 and 2.5.
g,,= (0, -0,,)/E,=11.12 / 20000 = 5.56x 104

&, = (0, -0,,)2E,=-11.12 / 2 x 20000 = -2 .78 x 104

At top of layer 3:

To calculate the strains at the top of layer 3 use Equations 2.4 and 2.5

g,3= (0, -0 ,)/E;=556 /10000 =5.56x 104 =¢,, At bottom of layer 2
g3= (0, -0, )[2E;=-556 /2 x 10000 = -2 .78 x 10 At bottom of layer 2




2.2. Equivalent Thickness Method (OdeMark’s Concept)

Odemark's equivalent-layer-thickness (ELT) concept is often used as a simple method of
approximation in pavement structural analysis, since it permits the conversion of a
multilayered system into a single layer with equivalent thickness. It is based on the principle
that the equivalent layer has the same stiffness as the original layer, so as to give the same
pressure distribution beneath the layer as shown in Figures 2.30 to 2.32.

E,l
Stiffness of layer 1 = —— / /

1—ujg

EZ 12 h I ............................................................................................................... /

| | .3

Stiffness of layer 2 =

2

2 1 . #2 |« Lane width -;IA
bh
Iheam = 12 Figure 2.30. Moment of inertia of
simply supported beam.
bih3 b, h3
== L for b, =b,=1
12 12

According to Odemark's theory:

E il E,I
Stiffness of layer 1 = Stiffness of layer2 =~ —1 1 — ~2°2
If g, =, =0.5 1—#% 1‘#%



forlayer1 h, = EJE:: hy  forlayer2 h,= EJE:E h, .~ 23

917171711
. 3 |E; |
forlayeri h,= |— h; Ey My h,
EE‘ 3
Equivelent thickness (h,) of multy layers Ey M, h,
3 |Ey 3 |E, 3 |E; [
hE= E—E hl-l— E—E h2+"'+ E—E hi E3, ps ‘hs
n—1 s E EII. I“l'll
The general formula: h, = fz — h; _ _  O9
o E, Figure 2 .31. Multilayer system.
For f value: For E1> E;
> In a 2-layer pavement system, use f = 0.9 to |
convert the upper layer. : 1 _ heE,
> In a multi-layer pavement system, use f = 0.8t0 Stiﬁne}ssx:‘f—f‘z — I SHess
convert the rest of the layers. - . SR
. Ex 1y ¢ Ex 1y

Note: only valid at or below the layer interface

Figure 2 .32. Odemark's concept.



9000-Ib dual wheel

Example 9: with 90-psi tires
The structure as shown in Figure 2.33 represents a
multilayer pavement system?. By using Odemark's f_ % e
1 H 8 15 1=
concept, find the equivalent thickness of the structure?. : v B
Figure 2.33. [# _
SOIUtion: Example 9. I;Z- 12 5 E, =50 ksi
As detailed in the Figures i
— 11.3" — _ : )
lTl'mle, . =1, -a0ps =1~ g sops
h, = " E, = 500 ksi +_ _ ) _ |T
# JA . - :1-5 ) E, =500 ksi | - |h1e=1.ﬂx8"xﬂ1—0=12.9“
:2-12 . E, = 50 ksi | E, = 50 ksi __l—.A
* E, = 50 ksi
Eq= 10 ksi
he = h-l 3 E
E, 1
11.3" =
}‘i "{ Go= 90 psi }k 113 4_{ 50= 80 psi — 13— 9o psi
A ' T T
I h, =1.Ux6"x310=12.9"
he, =0.8x24.9"x 35 =34.1" — h,=24.9" E, = 50 ksi _ * _______________ A
l h,= 12" E, = 50 ksi
v B B v B

E;= 10 ksi E;= 10 ksl E;= 10 ksi




Example 10:
Compute the stresses at the bottom of a flexible pavement surface layer 0.3 m thick

resting on a semi-infinite subgrade layer. The load consists of a circular tire with a 0.1 m
radius carrying a uniform pressure of 700 kPa. The stresses are to be computed under
the centerline of the load. The layer moduli are 1400 MPa and 140 MPa, respectively, and
u is 0.5 for both layers.

Solution: N
Using equivalent thickness equation gives the equivalent hLo—009 f_l " 7
thickness of the top layer in terms of the modulus of the ™* — ™~ |

4
D

1

bottom layer as: . 5
1400 3
h, = U.Q(—) 0.3 =0.582 m

140
3
Using one layer system formula to 5 —g|1- z —0
5 z 2 2y3/ Tor =
compute the stresses in the subgrade. At (a% +2z%) /2
the bottom of the top layer, they are: P 2(1+ p)z z3
U'r_O't_E( + ﬂ)— ,—a2+zz+(a2+zz)3/2
0.582%
0, ="700| -1+ 59 | = —29.9 kPa
(0.12 + 0.5822)™"
700 2(1 + 0.5)0.582 0.582%
oy =0p = — | — (1 +20.5) + — 57 | = —0.218 kPa
2 V0.12 +0.5827  (0.12 + 0.5822)



2.3. Viscoelastic Solutions

The previous discussion assumed elastic material behavior; however, asphalt concretes
exhibit viscoelastic behavior, hence their response is time-dependent. Their response to a
time-dependent (e.g., moving) load is simulated through two general methods for
characterizing viscoelastic materials: one by a creep-compliance model, the other by a
mechanical model:

2.3.1. Creep-Compliance Model

Creep Compliance (D(t)) can characterize viscoelastic D(f) — E(t) ...(2-11)
materials at various times, D(t), defined as: o

Boltzmann’s superposition principle, assuming linear viscoelastic behavior. In the time
domain, this is expressed by the following convolution integral:

where, €(t) is the strain at time t, D(t - &)
is the creep compliance of the asphalt do (&
concrete layer after a lapsed time of (t - € (1) = fﬂ (f — EF) #fg;'--~(2‘12)
¢’), and o (§) is the stress history as a S

function of time

{

)

2.3.2. Mechanical Model

There are various mechanical models for characterizing viscoelastic materials which are
formed of two basic elements : a spring and a dashpot as shown in Figure 2.34.



ir o ir
1 :
E |_] A %
B
k)
ir &
{2) Elastic (b) Viscous {c) Maxwell E,

{c) Burgers ([} Generalized Model

2.3.2.2.Maxwell Model

A Maxwell model is a
combination of spring and
dashpot in series, Under a
constant stress, the total strain is
the sum of the strains of both
spring and dashpot, Equation
(2.15).

€

a

Eo

Figure 2 .34. Mechanical Model for
Viscoelastic Materials.

2.3.2.1. Basic Models An elastic material is
characterized by a spring (obeys Hooke's
law, Equation 2.13).

6 =FE& o (2.13)

While the viscous material is characterized
by a dashpot (obeys Newton's law,
Equation 2.14), according to which stress is
proportional to the time rate of strain :

L .
o= Aa—i (integration)........

ot o [ f
+ = —(1 g ) ...... (2.15)
’\[} Eﬂ Tﬂ

Where: T, = 4 /E,_ = relaxation time



2.3.2.3. Kelvin Model

A Kelvin model is a combination of spring and dashpot in parallel, where both have the
same strain, but the total stress is the sum of the two stresses, Equation (2.16).

: . ]
o= FEe€+ ,\l—r; by integration ¢ =
ol

— (1
Ey

2.3.2.4. Burger Model

A Burgers model is a
combination of Maxwell and
Kelvin models in series Under a
constant stress, the
combinations of both models
(Kelvin and Maxwell) to form
the final calculations (Equation
2.17). The physical meaning of
the model terms is illustrated in
Figure 2.35.
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Figure 2.35. Physical meaning of the Burger model.



2.3.2.5. Generalized Model

Generalized Model is that can be used to characterize any
viscoelastic material. Generalized model (Figure 2.36) can be
written as: Where n is the number of Kelvin models

o/ f "o t
e=—|1+- ) 3 N - [1 - ex (—)] (2.18)
E(,< I ;Ei g I;

Determination the viscoelastic constants, E,, Ty, E; and T, for a
generalized model, the creep compliances at various times
can be computed from Equation. 2.18.

Note: This model explains the effect of load duration on
pavement responses. Under a single load application, the
instantaneous and the retarded elastic strains
predominate, and the viscous strain is negligible.
However, under a large number of load repetitions, the
accumulation of viscous strains is the cause of permanent
deformation.

o
Figure 2.36:
Generalized model.



Example 11:

A viscoelastic material is characterized by one Maxwell
model and three Kelvin models connected in series with
the viscoelastic constants shown in Figure 2.37.
Determine the creep compliance at various times, and
plot the creep-compliance curve .

Solution:

Note: All constants are without units. If E is in Ib/in%, then
the creep compliance is in in.2/lb. If E is in kN/m?, then
the creep compliance is in m?/kN.

From Eq. 2.18

ol t R o t
TR )
F.(.( )t &E i

When: t=0, D=1/E°=1/2=0.5; and

Ep =2
=T, =5

E,=1l}$--T:I:lT]=1D

E2=5{T}JTE=1

EJ=1% TL:]T;?:{!.I

Figure 2.37: Example 11.

whent=0.1; D=0.5(1+0.1/5)+0.1(1-e%91)+0.2(1 — e%1 ) + (1 — e!) =1 .162.
For any farther times D(t) can be calculated using Equation 2.18. So the creep compliances
at various times are tabulated in Table (1) below and plotted in Figure 2.38. It can be seen
that, after t = 5, all the retarded strains have nearly completed and only the viscous strains
exist, as indicated by a straight line . If the retarded strain lasts much longer, more Kelvin

models with longer retardation times will be needed .



Creep Compliance at Various Times

Table 2.1: Creep complain data Creep Creep
calculated based on Equation 2.18.  Time  compliance  Time compliance
0 0.500 2 1.891
0.05 0.909 3 2016
0.1 1.162 4 2.129
02 1.423 5 2238
0.4 1592 10 2763
06 1654 20 3.786
038 1.697 30 4795
1.0 1736 40 5.798
1.5 1.819 50 6.799
8

i
—
2
E,=35 T, =1 %‘
E
a8
o
e 1 —
O ——1"
0
0 1 2 3 4 5 6

Figure 2.38: Creep complain curve. Time, t



Determination Generalized Model Constant

Generalized model consist of Maxwell model and n of Kelvin model as shown in Figure
2.36, Equation 2.18. To solve this model, several parameters, i.e. viscoelastic constants. Ei,
Ti and n, are required to be identified; if a creep compliance curve (D(t), t) is given, the
viscoelastic constants of a generalized model can be determined by several methods:

o/ t s t
g=—l1 % ) 4 {l - X (—--)} ....... (2.18)
En( I zsz g T;

1. Successive Residuals Method

This method is an approximate method of collocation method, it is used to determine the

constants Ei and Ti of a viscoelastic material directly from the creep curve,

1. The creep compliances D due to retarded strains (Equation 2.19) are determined by
deducting the instantaneous and viscous strains from the total strains, as shown in
Figure 2.39.

D= ;1[1 - exp( 1:‘1)] ;[1 - exp( ;2)] ;[1 - cxp(--,;f_;)]....(2.19)

2. The actual number of Kelvin models required is not known at this time but can be
determined later . For illustration, it is assumed that three Kelvin models are needed to
describe retarded strains.



Figure 2.39: Separation of creep
compliances .

This part of curves

. - |
Let: g A I represented by three :
1 1 ] _E Kelvin Models :
b=-—+—+- &
E, E, E° .- (2.20) g b
=
Where b is the intercept of o y
retarded strain as shown in Figure “ 11
2.39, or it can be said as: E_n
b = D1 + DZ + D3 .....(2.21) X ) -
time
if three Kelvin models are used, so Equation 2.19 can be written as:
1 t 1 t 1 f
S=b—-D= ex( ) Ex( )+'_'Ex( ) .......... (2.21)
1 E, P Ez P T, p T
Notes:
1. If T, is much greater than T, and T;, then, after a
sufficient period of time, the last two terms on the S; = 1 e:{p( ; ) ,,,,,,, (2.22)
right side of Equation 2.21 vanish to be Equation E, 1

2.22. This equation shows that a plot of log S1 1 0.434¢
versus (t) results in a straight line, as indicated by log $; = Iﬁg(*ﬁ‘r) “Tp T (2.23)
Equation 2.23 and Figure 2.40. . 1



Figure 2.40: Method of 1
successive residuals.

log §;,10g S,, or log S,

2. The slope of the straight line
can be used to determine T,,
and the intercept at t = 0 can
be used to determine E;. After
E, and T, are found, Equation
2.21 can be written as: 0 >

1 f 1 t ] [
= — —_— .+. R
S,=b-D E, exp( ﬂ) E, exp( Tz) E, exp( ﬂ> ee (2.24)

3. in which S, is the vertical intercept between the curve and the straight line. If T, is much
greater than T;, a plot of log S, versus (t) should also finally become a straight line, so T,

and E, can be determined. The process is continued until the intercept becomes negligibly
small .




Example 12:
The creep compliances of a viscoelastic material are shown in Table 2.1. of Example 11.
Develop a mechanical model and determine its viscoelastic constants.

Solution:

* The generalized model is represented by Eq. 2.18. When t =0, D = 1/E,.

* From Table 2.1, D=0.5when t=0, so E, =(1/D) = 2.

* At long loading times, only the viscous strains exist (as detailed in Figure 2.35).

* The rate of change in compliance due to viscous strains is 1/(E_T,), as can be seen from
Eq. 2.15 or 2.18. At t = 40, D = 5.798 and at t = 50, D = 6.799, so the change in
compliance per unit time is:

[(6.799-5.798)/10=0.1], and ET,=10,0rT =5.

Table 2.2 shows the procedure for computing successive residuals.

e Column 2 is the compliance of the dashed line shown in Figure 2.41 and can be
computed by [6.799 - (50 - t) x 0.1].

e Column 3is given in Table 2.1.

* Column 4 is the difference between Columns 2 and 3.

* A plot of log S, versus (t) is shown in Figure 2.41 and results in a straight line. The slope
of the straight line is (0.0455) or T, = 9.54. 0434 log0.1 — log 0.01

* Theinterceptatt=0is 1/E =0.1, or E, = 10. 7 = %

« Column 5 can be calculated by [0.1 exp(—t x19 .54)]. !

* Column 6 is the difference between columns 4 and 5.

= (.0455



A plot of S, versus (t) results in a straight line. The 0434 log 0.2 — log 0.0015

slope of the straight line is (0.426) or T, = 1.02.. T, 5 = 0426
The interceptatt=0is 1/E, =0.2, or E, = 5.

Column 7 can be calculated by [0 .2xexp(—t/1.02)].

Column 8 is the difference between columns 6and 7 0434 _ log1 — 1og0.017 _ 4.404

A plot of S; versus (t) results in a straight line. I; 0.4
The slope of the straight line is (4.424) or T3 = 0.098.

The interceptatt=0is 1/E; =1 or E; = 1.

Because all points on S, lie practically on a straight line, three Kelvin models are sufficient
to describe the creep-compliance curve.

The equation for predicting the creep compliance is

D“):%(H%) 110[1_“"( 9;4)} H [IF“F’( 0598) [““p( 0593)]

Note:

v" The values of E are the same as the original model shown in Figure 2.38, but
the values of T are slightly different, as a result of plotting error (Figure 2.42)

v It can be seen that the stress—strain relationship of viscoelastic material can
be characterized by a mechanical model or a creep curve . When one is
known, the other can be determined .




Table 2.2. Computation of Successive Residuals

Compliance
Time (1) Dashedline (2) Total(3) § (@) ¢ Eﬂ (5) S (6) w 7 S (8)
0 1799 0.500  1.299 0.100 1.199 0.200 0.999
0.05 1.804 0.000 0895 0.099 0.796 0.190 0.606
0.1 1.809 1162 0647 0.099 0.548 0181 0.367
0.2 1.819 1423 039 0.098 0.298 0.164 0.134
0.4 1.839 1592 0247 0.096 0.151 0.135 0.016
0.6 1.859 1654 0205 0.094 0.111 0111 0.000
0.8 1.879 1697 0182 0.092 0.090
1.0 1.899 1736 0.163 0.090 0.073
15 1.949 1819 0130 0.085 0.045
2 1.999 1891  0.108 0.081 0.027
3 2.099 2016 0.083 0.073 0.010
4 2109 2129 0.070 0.066 0.004
S 2,299 2238  0.061 0.059 0.002
10 2799 2763 0.036 0.035 0.001
20 3.799 378 0013
30 4.799 4795  0.004
40 5799 5798 0001
50 6.799 6799  0.000




Figure 2.41: Example 12.

Figure 2.42: differences in the
viscoelastic parameters.
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Example 13 :

Figure 2.43 shows a viscoelastic two-layer system under a circular loaded area having radius
10 in. (254 mm) and uniform pressure 100 psi (690 kPa). The thickness of layer 1 is 10 in.
(254 mm), and both layers are incompressible, with Poisson ratio 0.5. The creep
compliances of the two materials at five different times are tabulated in Table 2.1.
Determine the surface deflection under the center of the loaded area at the given times.

TABLE 2.3, Crcep Compliances and Surface Deflections 0 I_mi_
Titne (s) .0l 0.1 | 10 100 T TR EEEEE
Layer 1 D(r) (10 %psi) 1021 1.203 2.683 9273 18.320 Creep Tog =2 $
Layer 2 D{r) (10 psi) 1,052 7316 19,520 73210 110000 [aper Eﬁ:f:,’f,!i?,?““ I v, = 0.5 ] 10in
Nore.1pai = 6.9%Pa, 1in. = 2534 mm. Tahle 2.3
Cn:::p_ ];\;
A Figure 2.43. Example 13 e ;E:F“I’J‘l'l?“rm w
Solution: able2.3

If the modulus ratio is greater than 1, the surface deflection w, at any given time can be
determined from Figure 2.21.

Take t =1 s, for example . The elastic modulus is the reciprocal of creep compliance.

For layer 1, E,=1/D; = 1/(2 .683 X 10-6 ) = 3 .727 X 10° psi (2.57 GPa) and;

for layer 2, E, =1/D, = 1/(19 .52 X 10-6) = 5.123 X 10* psi (353 MPa).

So E,/E,=3.727 X10° /(5 .123 X 10%) = 7.27.

From Figure 2.21, F, = 0.54, so w, = 1.5 X 100 X 10 X 0.54/(5.123 X10%) = 0.016 in. (4.1 mm).
The same procedure can be applied to other time durations and the results are shown in
Table 2.4 .



TABLE 2.3. Creep Compliance and Surface Deflection

Time (%) (L1 (0.1 1 10 100

Layer 1 D(r) (10 %/psi) 1.021 1.205 2.683 9,273 18.320
Layer 2 D{r) (107%/psi) 1.052 7316 19.520 73210 110,000
Detlection wy (in.) 0.0016 (0064 0.01& .05 0.096

Nore. 1 psi = 6% kPa, 1in. = 25.4 mm,

End of

Chapter 11



