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Preface

Audience

This is an introductory textbook dealing with the design and analysis of experiments. It is based on college-level
courses in design of experiments that I have taught for over 40 years at Arizona State University, the University of
Washington, and the Georgia Institute of Technology. It also reflects the methods that I have found useful in my own
professional practice as an engineering and statistical consultant in many areas of science and engineering, including
the research and development activities required for successful technology commercialization and product realization.

The book is intended for students who have completed a first course in statistical methods. This background
course should include at least some techniques of descriptive statistics, the standard sampling distributions, and an
introduction to basic concepts of confidence intervals and hypothesis testing for means and variances. Chapters 10, 11,
and 12 require some familiarity with matrix algebra.

Because the prerequisites are relatively modest, this book can be used in a second course on statistics focusing
on statistical design of experiments for undergraduate students in engineering, the physical and chemical sciences,
statistics, mathematics, and other fields of science. For many years I have taught a course from the book at the first-year
graduate level in engineering. Students in this course come from all of the fields of engineering, materials science,
physics, chemistry, mathematics, operations research life sciences, and statistics. I have also used this book as the
basis of an industrial short course on design of experiments for practicing technical professionals with a wide variety
of backgrounds. There are numerous examples illustrating all of the design and analysis techniques. These examples
are based on real-world applications of experimental design and are drawn from many different fields of engineering
and the sciences. This adds a strong applications flavor to an academic course for engineers and scientists and makes
the book useful as a reference tool for experimenters in a variety of disciplines.

About the Book

The ninth edition is a significant revision of the book. I have tried to maintain the balance between design and analysis
topics of previous editions; however, there are many new topics and examples, and I have reorganized some of the
material. There continues to be a lot of emphasis on the computer in this edition.
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iv Preface

Design-Expert, JMP, and Minitab Software

During the last few years a number of excellent software products to assist experimenters in both the design and
analysis phases of this subject have appeared. I have included output from three of these products, Design-Expert,
JMP, and Minitab at many points in the text. Minitab and JMP are widely available general-purpose statistical software
packages that have good data analysis capabilities and that handles the analysis of experiments with both fixed and
random factors (including the mixed model). Design-Expert is a package focused exclusively on experimental design.
All three of these packages have many capabilities for construction and evaluation of designs and extensive analysis
features. I urge all instructors who use this book to incorporate computer software into your course. (In my course, I
bring a laptop computer, and every design or analysis topic discussed in class is illustrated with the computer.)

Empirical Model

I have continued to focus on the connection between the experiment and the model that the experimenter can develop
from the results of the experiment. Engineers (and physical, chemical and life scientists to a large extent) learn about
physical mechanisms and their underlying mechanistic models early in their academic training, and throughout much
of their professional careers they are involved with manipulation of these models. Statistically designed experiments
offer the engineer a valid basis for developing an empirical model of the system being investigated. This empirical
model can then be manipulated (perhaps through a response surface or contour plot, or perhaps mathematically) just
as any other engineering model. I have discovered through many years of teaching that this viewpoint is very effective
in creating enthusiasm in the engineering community for statistically designed experiments. Therefore, the notion of
an underlying empirical model for the experiment and response surfaces appears early in the book and continues to
receive emphasis.

Factorial Designs

I have expanded the material on factorial and fractional factorial designs (Chapters 5–9) in an effort to make the
material flow more effectively from both the reader’s and the instructor’s viewpoint and to place more emphasis on
the empirical model. There is new material on a number of important topics, including follow-up experimentation
following a fractional factorial, nonregular and nonorthogonal designs, and small, efficient resolution IV andV designs.
Nonregular fractions as alternatives to traditional minimum aberration fractions in 16 runs and analysis methods for
these design are discussed and illustrated.

Additional Important Changes

I have added material on optimal designs and their application. The chapter on response surfaces (Chapter 11) has
several new topics and problems. I have expanded Chapter 12 on robust parameter design and process robustness
experiments. Chapters 13 and 14 discuss experiments involving random effects and some applications of these concepts
to nested and split-plot designs. The residual maximum likelihood method is now widely available in software and I
have emphasized this technique throughout the book. Because there is expanding industrial interest in nested and
split-plot designs, Chapters 13 and 14 have several new topics. Chapter 15 is an overview of important design and
analysis topics: nonnormality of the response, the Box–Coxmethod for selecting the form of a transformation, and other
alternatives; unbalanced factorial experiments; the analysis of covariance, including covariates in a factorial design,
and repeated measures. I have also added new examples and problems from various fields, including biochemistry and
biotechnology.

Experimental Design

Throughout the book I have stressed the importance of experimental design as a tool for engineers and scientists to use
for product design and development as well as process development and improvement. The use of experimental design
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Preface v

in developing products that are robust to environmental factors and other sources of variability is illustrated. I believe
that the use of experimental design early in the product cycle can substantially reduce development lead time and cost,
leading to processes and products that perform better in the field and have higher reliability than those developed using
other approaches.

The book contains more material than can be covered comfortably in one course, and I hope that instructors will
be able to either vary the content of each course offering or discuss some topics in greater depth, depending on class
interest. There are problem sets at the end of each chapter. These problems vary in scope from computational exercises,
designed to reinforce the fundamentals, to extensions or elaboration of basic principles.

Course Suggestions

My own course focuses extensively on factorial and fractional factorial designs. Consequently, I usually cover Chapter
1, Chapter 2 (very quickly), most of Chapter 3, Chapter 4 (excluding the material on incomplete blocks and only
mentioning Latin squares briefly), and I discuss Chapters 5 through 8 on factorials and two-level factorial and fractional
factorial designs in detail. To conclude the course, I introduce response surface methodology (Chapter 11) and give
an overview of random effects models (Chapter 13) and nested and split-plot designs (Chapter 14). I always require
the students to complete a term project that involves designing, conducting, and presenting the results of a statistically
designed experiment. I require them to do this in teams because this is the way that much industrial experimentation
is conducted. They must present the results of this project, both orally and in written form.

The Supplemental Text Material

For this edition I have provided supplemental text material for each chapter of the book. Often, this supplemental
material elaborates on topics that could not be discussed in greater detail in the book. I have also presented some
subjects that do not appear directly in the book, but an introduction to them could prove useful to some students and
professional practitioners. Some of this material is at a higher mathematical level than the text. I realize that instructors
use this book with a wide array of audiences, and some more advanced design courses could possibly benefit from
including several of the supplemental text material topics. This material is in electronic form on the World Wide
Website for this book, located at www.wiley.com/college/montgomery.

Website

Current supporting material for instructors and students is available at the website www.wiley.com/college/
montgomery. This site will be used to communicate information about innovations and recommendations for
effectively using this text. The supplemental text material described above is available at the site, along with electronic
versions of data sets used for examples and homework problems, a course syllabus, and some representative student
term projects from the course at Arizona State University.

Student Companion Site

The student’s section of the textbook website contains the following:

1. The supplemental text material described above

2. Data sets from the book examples and homework problems, in electronic form

3. Sample Student Projects

http://www.wiley.com/college/montgomery
http://www.wiley.com/college/montgomery
http://www.wiley.com/college/montgomery


�

� �

�

vi Preface

Instructor Companion Site

The instructor’s section of the textbook website contains the following:

1. Solutions to the text problems

2. The supplemental text material described above

3. PowerPoint lecture slides
4. Figures from the text in electronic format, for easy inclusion in lecture slides

5. Data sets from the book examples and homework problems, in electronic form

6. Sample Syllabus

7. Sample Student Projects

The instructor’s section is for instructor use only, and is password-protected. Visit the Instructor Companion Site
portion of the website, located at www.wiley.com/college/montgomery, to register for a password.

Student Solutions Manual

The purpose of the Student Solutions Manual is to provide the student with an in-depth understanding of how to apply
the concepts presented in the textbook. Along with detailed instructions on how to solve the selected chapter exercises,
insights from practical applications are also shared.

Solutions have been provided for problems selected by the author of the text. Occasionally a group of “continued
exercises” is presented and provides the student with a full solution for a specific data set. Problems that are included
in the Student Solutions Manual are indicated by an icon appearing in the text margin next to the problem statement.

This is an excellent study aid that many text users will find extremely helpful. The Student Solutions Manual
may be ordered in a set with the text, or purchased separately. Contact your local Wiley representative to request the
set for your bookstore, or purchase the Student Solutions Manual from the Wiley website.
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C H A P T E R 1

I n t r o d u c t i o n

CHAPTER OUTLINE
1.1 STRATEGY OF EXPERIMENTATION

1.2 SOME TYPICAL APPLICATIONS
OF EXPERIMENTAL DESIGN

1.3 BASIC PRINCIPLES

1.4 GUIDELINES FOR DESIGNING EXPERIMENTS

1.5 A BRIEF HISTORY OF STATISTICAL DESIGN

1.6 SUMMARY: USING STATISTICAL TECHNIQUES IN
EXPERIMENTATION

SUPPLEMENTAL MATERIAL FOR CHAPTER 1
S1.1 More about Planning Experiments
S1.2 Blank Guide Sheets to Assist in Pre-Experimental

Planning
S1.3 Montgomery’s Theorems on Designed Experiments

The supplemental material is on the textbook website www.wiley.com/college/montgomery.

CHAPTER LEARNING OBJECTIVES
1. Learn about the objectives of experimental design and the role it plays in the knowledge discovery

process.

2. Learn about different strategies of experimentation.

3. Understand the role that statistical methods play in designing and analyzing experiments.

4. Understand the concepts of main effects of factors and interaction between factors.

5. Know about factorial experiments.

6. Know the practical guidelines for designing and conducting experiments.

1.1 Strategy of Experimentation

Observing a system or process while it is in operation is an important part of the learning process and is an integral
part of understanding and learning about how systems and processes work. The great New York Yankees catcher
Yogi Berra said that “ . . . you can observe a lot just by watching.” However, to understand what happens to a process
when you change certain input factors, you have to do more than just watch—you actually have to change the factors.
This means that to really understand cause-and-effect relationships in a system you must deliberately change the
input variables to the system and observe the changes in the system output that these changes to the inputs produce.
In other words, you need to conduct experiments on the system. Observations on a system or process can lead to
theories or hypotheses about what makes the system work, but experiments of the type described above are required
to demonstrate that these theories are correct.

Investigators perform experiments in virtually all fields of inquiry, usually to discover something about a partic-
ular process or system or to confirm previous experience or theory. Each experimental run is a test. More formally,

1
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we can define an experiment as a test or series of runs in which purposeful changes are made to the input variables of
a process or system so that we may observe and identify the reasons for changes that may be observed in the output
response. We may want to determine which input variables are responsible for the observed changes in the response,
develop a model relating the response to the important input variables, and use this model for process or system
improvement or other decision-making.

This book is about planning and conducting experiments and about analyzing the resulting data so that valid and
objective conclusions are obtained. Our focus is on experiments in engineering and science. Experimentation plays
an important role in technology commercialization and product realization activities, which consist of new product
design and formulation, manufacturing process development, and process improvement. The objective in many cases
may be to develop a robust process, that is, a process affected minimally by external sources of variability. There are
also many applications of designed experiments in a nonmanufacturing or non-product-development setting, such
as marketing, service operations, and general business operations. Designed experiments are a key technology for
innovation. Both break through innovation and incremental innovation activities can benefit from the effective use
of designed experiments.

As an example of an experiment, suppose that a metallurgical engineer is interested in studying the effect of
two different hardening processes, oil quenching and saltwater quenching, on an aluminum alloy. Here the objective
of the experimenter (the engineer) is to determine which quenching solution produces the maximum hardness for
this particular alloy. The engineer decides to subject a number of alloy specimens or test coupons to each quenching
medium and measure the hardness of the specimens after quenching. The average hardness of the specimens treated
in each quenching solution will be used to determine which solution is best.

As we consider this simple experiment, a number of important questions come to mind:

1. Are these two solutions the only quenching media of potential interest?
2. Are there any other factors that might affect hardness that should be investigated or controlled in this

experiment (such as the temperature of the quenching media)?
3. How many coupons of alloy should be tested in each quenching solution?
4. How should the test coupons be assigned to the quenching solutions, and in what order should the data be

collected?
5. What method of data analysis should be used?
6. What difference in average observed hardness between the two quenching media will be considered

important?

All of these questions, and perhaps many others, will have to be answered satisfactorily before the experiment is
performed.

Experimentation is a vital part of the scientific (or engineering) method. Now there are certainly situations
where the scientific phenomena are so well understood that useful results including mathematical models can be devel-
oped directly by applying these well-understood principles. The models of such phenomena that follow directly from
the physical mechanism are usually called mechanistic models. A simple example is the familiar equation for cur-
rent flow in an electrical circuit, Ohm’s law, E = IR. However, most problems in science and engineering require
observation of the system at work and experimentation to elucidate information about why and how it works.
Well-designed experiments can often lead to a model of system performance; such experimentally determined models
are called empirical models. Throughout this book, we will present techniques for turning the results of a designed
experiment into an empirical model of the system under study. These empirical models can be manipulated by a
scientist or an engineer just as a mechanistic model can.

A well-designed experiment is important because the results and conclusions that can be drawn from the experi-
ment depend to a large extent on the manner in which the data were collected. To illustrate this point, suppose that the
metallurgical engineer in the above experiment used specimens from one heat in the oil quench and specimens from
a second heat in the saltwater quench. Now, when the mean hardness is compared, the engineer is unable to say how
much of the observed difference is the result of the quenching media and howmuch is the result of inherent differences
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◾ F I GURE 1 . 1 General model of a process or system

between the heats.1 Thus, the method of data collection has adversely affected the conclusions that can be drawn from
the experiment.

In general, experiments are used to study the performance of processes and systems. The process or system can
be represented by the model shown in Figure 1.1. We can usually visualize the process as a combination of oper-
ations, machines, methods, people, and other resources that transforms some input (often a material) into an output
that has one ormore observable response variables. Some of the process variables andmaterial properties x1, x2, . . . , xp
are controllable, whereas other variables such as environmental factors or some material properties z1, z2, . . . , zq are
uncontrollable (although they may be controllable for purposes of a test). The objectives of the experiment may
include the following:

1. Determining which variables are most influential on the response y
2. Determining where to set the influential x’s so that y is almost always near the desired nominal value
3. Determining where to set the influential x’s so that variability in y is small
4. Determining where to set the influential x’s so that the effects of the uncontrollable variables z1, z2, . . . , zq

are minimized.

As you can see from the foregoing discussion, experiments often involve several factors. Usually, an objective of
the experimenter is to determine the influence that these factors have on the output response of the system. The general
approach to planning and conducting the experiment is called the strategy of experimentation. An experimenter can
use several strategies. We will illustrate some of these with a very simple example.

I really like to play golf. Unfortunately, I do not enjoy practicing, so I am always looking for a simpler solution
to lowering my score. Some of the factors that I think may be important, or that may influence my golf score, are as
follows:

1. The type of driver used (oversized or regular sized)
2. The type of ball used (balata or three piece)
3. Walking and carrying the golf clubs or riding in a golf cart
4. Drinking water or drinking “something else” while playing
5. Playing in the morning or playing in the afternoon
6. Playing when it is cool or playing when it is hot
7. The type of golf shoe spike worn (metal or soft)
8. Playing on a windy day or playing on a calm day.

Obviously, many other factors could be considered, but let’s assume that these are the ones of primary interest.
Furthermore, based on long experience with the game, I decide that factors 5 through 8 can be ignored; that is, these

1 A specialist in experimental design would say that the effects of quenching media and heat were confounded; that is, the effects of these two factors cannot be separated.
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factors are not important because their effects are so small that they have no practical value. Engineers, scientists,
and business analysts often must make these types of decisions about some of the factors they are considering in
real experiments.

Now, let’s consider how factors 1 through 4 could be experimentally tested to determine their effect on my golf
score. Suppose that a maximum of eight rounds of golf can be played over the course of the experiment. One approach
would be to select an arbitrary combination of these factors, test them, and see what happens. For example, suppose
the oversized driver, balata ball, golf cart, and water combination is selected, and the resulting score is 87. During the
round, however, I noticed several wayward shots with the big driver (long is not always good in golf), and, as a result,
I decide to play another round with the regular-sized driver, holding the other factors at the same levels used previously.
This approach could be continued almost indefinitely, switching the levels of one or two (or perhaps several) factors for
the next test, based on the outcome of the current test. This strategy of experimentation, which we call the best-guess
approach, is frequently used in practice by engineers and scientists. It often works reasonably well, too, because
the experimenters often have a great deal of technical or theoretical knowledge of the system they are studying, as
well as considerable practical experience. The best-guess approach has at least two disadvantages. First, suppose the
initial best-guess does not produce the desired results. Now the experimenter has to take another guess at the correct
combination of factor levels. This could continue for a long time, without any guarantee of success. Second, suppose
the initial best-guess produces an acceptable result. Now the experimenter is tempted to stop testing, although there is
no guarantee that the best solution has been found.

Another strategy of experimentation that is used extensively in practice is the one-factor-at-a-time (OFAT)
approach. The OFAT method consists of selecting a starting point, or baseline set of levels, for each factor, and then
successively varying each factor over its range with the other factors held constant at the baseline level. After all tests
are performed, a series of graphs are usually constructed showing how the response variable is affected by varying
each factor with all other factors held constant. Figure 1.2 shows a set of these graphs for the golf experiment, using
the oversized driver, balata ball, walking, and drinking water levels of the four factors as the baseline. The interpre-
tation of these graphs is straightforward; for example, because the slope of the mode of travel curve is negative, we
would conclude that riding improves the score. Using these one-factor-at-a-time graphs, we would select the optimal
combination to be the regular-sized driver, riding, and drinking water. The type of golf ball seems unimportant.

The major disadvantage of the OFAT strategy is that it fails to consider any possible interaction between the fac-
tors. An interaction is the failure of one factor to produce the same effect on the response at different levels of another
factor. Figure 1.3 shows an interaction between the type of driver and the beverage factors for the golf experiment.
Notice that if I use the regular-sized driver, the type of beverage consumed has virtually no effect on the score, but if
I use the oversized driver, much better results are obtained by drinking water instead of “something else.” Interactions
between factors are very common, and if they occur, the one-factor-at-a-time strategy will usually produce poor results.
Many people do not recognize this, and, consequently, OFAT experiments are run frequently in practice. (Some indi-
viduals actually think that this strategy is related to the scientific method or that it is a “sound” engineering principle.)
One-factor-at-a-time experiments are always less efficient than other methods based on a statistical approach to design.
We will discuss this in more detail in Chapter 5.

The correct approach to dealing with several factors is to conduct a factorial experiment. This is an experimental
strategy in which factors are varied together, instead of one at a time. The factorial experimental design concept is
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◾ F I GURE 1 . 2 Results of the one-factor-at-a-time strategy for the golf experiment
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◾ F I GURE 1 . 4 A two-factor
factorial experiment involving type
of driver and type of ball

extremely important, and several chapters in this book are devoted to presenting basic factorial experiments and a
number of useful variations and special cases.

To illustrate how a factorial experiment is conducted, consider the golf experiment and suppose that only two
factors, type of driver and type of ball, are of interest. Figure 1.4 shows a two-factor factorial experiment for studying
the joint effects of these two factors on my golf score. Notice that this factorial experiment has both factors at two
levels and that all possible combinations of the two factors across their levels are used in the design. Geometrically, the
four runs form the corners of a square. This particular type of factorial experiment is called a 22 factorial design (two
factors, each at two levels). Because I can reasonably expect to play eight rounds of golf to investigate these factors,
a reasonable plan would be to play two rounds of golf at each combination of factor levels shown in Figure 1.4.
An experimental designer would say that we have replicated the design twice. This experimental design would enable
the experimenter to investigate the individual effects of each factor (or themain effects) and to determine whether the
factors interact.

Figure 1.5a shows the results of performing the factorial experiment in Figure 1.4. The scores from each round
of golf played at the four test combinations are shown at the corners of the square. Notice that there are four rounds of
golf that provide information about using the regular-sized driver and four rounds that provide information about using
the oversized driver. By finding the average difference in the scores on the right- and left-hand sides of the square (as in
Figure 1.5b), we have a measure of the effect of switching from the oversized driver to the regular-sized driver, or

Driver effect = 92 + 94 + 93 + 91
4

− 88 + 91 + 88 + 90
4

= 3.25

That is, on average, switching from the oversized to the regular-sized driver increases the score by 3.25 strokes per
round. Similarly, the average difference in the four scores at the top of the square and the four scores at the bottom
measures the effect of the type of ball used (see Figure 1.5c):

Ball effect = 88 + 91 + 92 + 94
4

− 88 + 90 + 93 + 91
4

= 0.75

Finally, a measure of the interaction effect between the type of ball and the type of driver can be obtained by subtracting
the average scores on the left-to-right diagonal in the square from the average scores on the right-to-left diagonal (see
Figure 1.5d), resulting in

Ball–driver interaction effect = 92 + 94 + 88 + 90
4

− 88 + 91 + 93 + 91
4

= 0.25
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◾ F I GURE 1 . 5 Scores from the golf experiment in Figure 1.4 and calculation of the factor effects

The results of this factorial experiment indicate that driver effect is larger than either the ball effect or the inter-
action. Statistical testing could be used to determine whether any of these effects differ from zero. In fact, it turns out
that there is reasonably strong statistical evidence that the driver effect differs from zero and the other two effects do
not. Therefore, this experiment indicates that I should always play with the oversized driver.

One very important feature of the factorial experiment is evident from this simple example; namely, factorials
make the most efficient use of the experimental data. Notice that this experiment included eight observations, and all
eight observations are used to calculate the driver, ball, and interaction effects. No other strategy of experimentation
makes such an efficient use of the data. This is an important and useful feature of factorials.

We can extend the factorial experiment concept to three factors. Suppose that I wish to study the effects of type
of driver, type of ball, and the type of beverage consumed on my golf score. Assuming that all three factors have two
levels, a factorial design can be set up as shown in Figure 1.6. Notice that there are eight test combinations of these
three factors across the two levels of each and that these eight trials can be represented geometrically as the corners of
a cube. This is an example of a 23 factorial design. Because I only want to play eight rounds of golf, this experiment
would require that one round be played at each combination of factors represented by the eight corners of the cube in
Figure 1.6. However, if we compare this to the two-factor factorial in Figure 1.4, the 23 factorial design would provide
the same information about the factor effects. For example, there are four tests in both designs that provide information
about the regular-sized driver and four tests that provide information about the oversized driver, assuming that each
run in the two-factor design in Figure 1.4 is replicated twice.

◾ F I GURE 1 . 6 A three-factor factorial experiment involving
type of driver, type of ball, and type of beverage
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◾ F I GURE 1 . 7 A four-factor factorial
experiment involving type of driver, type of ball,
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◾ F I GURE 1 . 8 A four-factor fractional
factorial experiment involving type of driver,
type of ball, type of beverage, and mode of travel

Figure 1.7 illustrates how all four factors—driver, ball, beverage, and mode of travel (walking or riding)—could
be investigated in a 24 factorial design. As in any factorial design, all possible combinations of the levels of the factors
are used. Because all four factors are at two levels, this experimental design can still be represented geometrically as
a cube (actually a hypercube).

Generally, if there are k factors, each at two levels, the factorial design would require 2k runs. For example, the
experiment in Figure 1.7 requires 16 runs. Clearly, as the number of factors of interest increases, the number of runs
required increases rapidly; for instance, a 10-factor experiment with all factors at two levels would require 1024 runs.
This quickly becomes infeasible from a time and resource viewpoint. In the golf experiment, I can only play eight
rounds of golf, so even the experiment in Figure 1.7 is too large.

Fortunately, if there are four to five or more factors, it is usually unnecessary to run all possible combinations of
factor levels. A fractional factorial experiment is a variation of the basic factorial design in which only a subset of
the runs is used. Figure 1.8 shows a fractional factorial design for the four-factor version of the golf experiment. This
design requires only 8 runs instead of the original 16 and would be called a one-half fraction. If I can play only eight
rounds of golf, this is an excellent design in which to study all four factors. It will provide good information about the
main effects of the four factors as well as some information about how these factors interact.

Fractional factorial designs are used extensively in industrial research and development, and for process
improvement. These designs will be discussed in Chapters 8 and 9.

1.2 Some Typical Applications of Experimental Design

Experimental design methods have found broad application in many disciplines. As noted previously, we may view
experimentation as part of the scientific process and as one of the ways by which we learn about how systems or
processes work. Generally, we learn through a series of activities in which we make conjectures about a process,
perform experiments to generate data from the process, and then use the information from the experiment to establish
new conjectures, which lead to new experiments, and so on.

Experimental design is a critically important tool in the scientific and engineering world for driving innovation
in the product realization process. Critical components of these activities are in new manufacturing process design and
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development and process management. The application of experimental design techniques early in process develop-
ment can result in

1. Improved process yields
2. Reduced variability and closer conformance to nominal or target requirements
3. Reduced development time
4. Reduced overall costs.

Experimental design methods are also of fundamental importance in engineering design activities, where new
products are developed and existing ones improved. Some applications of experimental design in engineering design
include

1. Evaluation and comparison of basic design configurations
2. Evaluation of material alternatives
3. Selection of design parameters so that the product will work well under a wide variety of field conditions,

that is, so that the product is robust
4. Determination of key product design parameters that impact product performance
5. Formulation of new products.

The use of experimental design in product realization can result in products that are easier to manufacture and that
have enhanced field performance and reliability, lower product cost, and shorter product design and development
time. Designed experiments also have extensive applications in marketing, market research, transactional and service
operations, and general business operations. We now present several examples that illustrate some of these ideas.

EXAMPLE 1 . 1 Characterizing a Process

A flow solder machine is used in the manufacturing process
for printed circuit boards. The machine cleans the boards in
a flux, preheats the boards, and then moves them along a
conveyor through a wave of molten solder. This solder pro-
cess makes the electrical andmechanical connections for the
leaded components on the board.

The process currently operates around the 1 percent
defective level. That is, about 1 percent of the solder joints
on a board are defective and require manual retouching.
However, because the average printed circuit board contains
over 2000 solder joints, even a 1 percent defective level
results in far too many solder joints requiring rework.
The process engineer responsible for this area would like
to use a designed experiment to determine which machine
parameters are influential in the occurrence of solder
defects and which adjustments should be made to those
variables to reduce solder defects.

The flow solder machine has several variables that can
be controlled. They include

1. Solder temperature
2. Preheat temperature
3. Conveyor speed
4. Flux type
5. Flux specific gravity

6. Solder wave depth
7. Conveyor angle.

In addition to these controllable factors, several other factors
cannot be easily controlled during routine manufacturing,
although they could be controlled for the purposes of a test.
They are

1. Thickness of the printed circuit board
2. Types of components used on the board
3. Layout of the components on the board
4. Operator
5. Production rate.

In this situation, engineers are interested in characteriz-
ing the flow solder machine; that is, they want to determine
which factors (both controllable and uncontrollable) affect
the occurrence of defects on the printed circuit boards.
To accomplish this, they can design an experiment that
will enable them to estimate the magnitude and direction
of the factor effects; that is, how much does the response
variable (defects per unit) change when each factor is
changed, and does changing the factors together produce
different results than are obtained from individual factor
adjustments—that is, do the factors interact? Sometimes
we call an experiment such as this a screening experiment.
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Typically, screening or characterization experiments
involve using fractional factorial designs, such as in the
golf example in Figure 1.8.

The information from this screening or characterization
experiment will be used to identify the critical process fac-
tors and to determine the direction of adjustment for these
factors to reduce further the number of defects per unit.
The experiment may also provide information about which
factors should be more carefully controlled during routine

manufacturing to prevent high defect levels and erratic pro-
cess performance. Thus, one result of the experiment could
be the application of techniques such as control charts to
one or more process variables (such as solder temperature),
in addition to control charts on process output. Over time,
if the process is improved enough, it may be possible to
base most of the process control plan on controlling process
input variables instead of control charting the output.

EXAMPLE 1 . 2 Optimizing a Processf

In a characterization experiment, we are usually interested
in determining which process variables affect the response.
A logical next step is to optimize, that is, to determine the
region in the important factors that leads to the best possible
response. For example, if the response is yield, we would
look for a region of maximum yield, whereas if the response
is variability in a critical product dimension, we would seek
a region of minimum variability.

Suppose that we are interested in improving the yield
of a chemical process. We know from the results of a
characterization experiment that the two most important
process variables that influence the yield are operating
temperature and reaction time. The process currently
runs at 145∘F and 2.1 hours of reaction time, producing
yields of around 80 percent. Figure 1.9 shows a view of the
time–temperature region from above. In this graph, the lines
of constant yield are connected to form response contours,
and we have shown the contour lines for yields of 60, 70,
80, 90, and 95 percent. These contours are projections on
the time–temperature region of cross sections of the yield
surface corresponding to the aforementioned percent yields.
This surface is sometimes called a response surface. The
true response surface in Figure 1.9 is unknown to the pro-
cess personnel, so experimental methods will be required
to optimize the yield with respect to time and temperature.

To locate the optimum, it is necessary to perform an
experiment that varies both time and temperature together,
that is, a factorial experiment. The results of an initial
factorial experiment with both time and temperature run at
two levels is shown in Figure 1.9. The responses observed
at the four corners of the square indicate that we should
move in the general direction of increased temperature
and decreased reaction time to increase yield. A few
additional runs would be performed in this direction, and
this additional experimentation would lead us to the region
of maximum yield.

Once we have found the region of the optimum, a second
experiment would typically be performed. The objective of

this second experiment is to develop an empirical model of
the process and to obtain a more precise estimate of the opti-
mum operating conditions for time and temperature. This
approach to process optimization is called response surface
methodology, and it is explored in detail in Chapter 11. The
second design illustrated in Figure 1.9 is a central compos-
ite design, one of the most important experimental designs
used in process optimization studies.

75

80

60%

0.5

140

150

Te
m

p
e

ra
tu

re
 (

°
F

)

160

170

180

190

200

1.0 1.5

Time (hours)

2.0 2.5

90%

95%

70

78

Path leading
to region of
higher yield

Second optimization experiment

Current
operating

conditions

Initial
optimization
experiment

80%

82

70%

◾ F I GURE 1 . 9 Contour plot of yield as a function
of reaction time and reaction temperature, illustrating
experimentation to optimize a process



�

� �

�

10 Chapter 1 Introduction

EXAMPLE 1 . 3 Designing a Product—I

A biomedical engineer is designing a new pump for the
intravenous delivery of a drug. The pump should deliver
a constant quantity or dose of the drug over a specified
period of time. She must specify a number of variables
or design parameters. Among these are the diameter and
length of the cylinder, the fit between the cylinder and the
plunger, the plunger length, the diameter and wall thickness
of the tube connecting the pump and the needle inserted
into the patient’s vein, the material to use for fabricating

both the cylinder and the tube, and the nominal pressure
at which the system must operate. The impact of some of
these parameters on the design can be evaluated by building
prototypes in which these factors can be varied over
appropriate ranges. Experiments can then be designed and
the prototypes tested to investigate which design parameters
are most influential on pump performance. Analysis of this
information will assist the engineer in arriving at a design
that provides reliable and consistent drug delivery.

EXAMPLE 1 . 4 Designing a Product—II

An engineer is designing an aircraft engine. The engine is
a commercial turbofan, intended to operate in the cruise
configuration at 40,000 ft and 0.8 Mach. The design
parameters include inlet flow, fan pressure ratio, overall
pressure, stator outlet temperature, and many other factors.
The output response variables in this system are specific
fuel consumption and engine thrust. In designing this
system, it would be prohibitive to build prototypes or actual

test articles early in the design process, so the engineers use
a computer model of the system that allows them to focus
on the key design parameters of the engine and to vary
them in an effort to optimize the performance of the engine.
Designed experiments can be employed with the computer
model of the engine to determine the most important design
parameters and their optimal settings.

Designers frequently use computer models to assist them in carrying out their activities. Examples include finite
element models for many aspects of structural and mechanical design, electrical circuit simulators for integrated circuit
design, factory or enterprise-level models for scheduling and capacity planning or supply chain management, and
computer models of complex chemical processes. Statistically designed experiments can be applied to these models
just as easily and successfully as they can to actual physical systems and will result in reduced development lead time
and better designs.

EXAMPLE 1 . 5 Formulating a Product

A biochemist is formulating a diagnostic product to detect
the presence of a certain disease. The product is a mixture
of biological materials, chemical reagents, and other materi-
als that when combined with human blood react to provide
a diagnostic indication. The type of experiment used here
is a mixture experiment, because various ingredients that
are combined to form the diagnostic make up 100 percent
of the mixture composition (on a volume, weight, or mole

ratio basis), and the response is a function of the mixture
proportions that are present in the product. Mixture exper-
iments are a special type of response surface experiment
that we will study in Chapter 11. They are very useful in
designing biotechnology products, pharmaceuticals, foods
and beverages, paints and coatings, consumer products such
as detergents, soaps, and other personal care products, and
a wide variety of other products.
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EXAMPLE 1 . 6 Designing a Web Page

A lot of business today is conducted via the World Wide
Web. Consequently, the design of a business’ web page
has potentially important economic impact. Suppose that
the website has the following components: (1) a photoflash
image, (2) a main headline, (3) a subheadline, (4) a main
text copy, (5) a main image on the right side, (6) a back-
ground design, and (7) a footer. We are interested in finding
the factors that influence the click-through rate; that is,
the number of visitors who click through into the site
divided by the total number of visitors to the site. Proper
selection of the important factors can lead to an optimal
web page design. Suppose that there are four choices for
the photoflash image, eight choices for the main headline,
six choices for the subheadline, five choices for the main

text copy, four choices for the main image, three choices
for the background design, and seven choices for the footer.
If we use a factorial design, web pages for all possible
combinations of these factor levels must be constructed and
tested. This is a total of 4 × 8 × 6 × 5 × 4 × 3 × 7 = 80,640
web pages. Obviously, it is not feasible to design and
test this many combinations of web pages, so a complete
factorial experiment cannot be considered. However, a
fractional factorial experiment that uses a small number of
the possible web page designs would likely be successful.
This experiment would require a fractional factorial where
the factors have different numbers of levels. We will discuss
how to construct these designs in Chapter 9.

1.3 Basic Principles

If an experiment such as the ones described in Examples 1.1 through 1.6 is to be performed most efficiently, a scientific
approach to planning the experiment must be employed. Statistical design of experiments refers to the process of
planning the experiment so that appropriate data will be collected and analyzed by statistical methods, resulting in valid
and objective conclusions. The statistical approach to experimental design is necessary if we wish to draw meaningful
conclusions from the data. When the problem involves data that are subject to experimental errors, statistical methods
are the only objective approach to analysis. Thus, there are two aspects to any experimental problem: the design of
the experiment and the statistical analysis of the data. These two subjects are closely related because the method of
analysis depends directly on the design employed. Both topics will be addressed in this book.

The three basic principles of experimental design are randomization, replication, and blocking. Sometimes
we add the factorial principle to these three. Randomization is the cornerstone underlying the use of statistical meth-
ods in experimental design. By randomization we mean that both the allocation of the experimental material and the
order in which the individual runs of the experiment are to be performed are randomly determined. Statistical methods
require that the observations (or errors) be independently distributed random variables. Randomization usually makes
this assumption valid. By properly randomizing the experiment, we also assist in “averaging out” the effects of extra-
neous factors that may be present. For example, suppose that the specimens in the hardness experiment are of slightly
different thicknesses and that the effectiveness of the quenching medium may be affected by specimen thickness. If all
the specimens subjected to the oil quench are thicker than those subjected to the saltwater quench, we may be introduc-
ing systematic bias into the experimental results. This bias handicaps one of the quenching media and consequently
invalidates our results. Randomly assigning the specimens to the quenching media alleviates this problem.

Computer software programs are widely used to assist experimenters in selecting and constructing experimental
designs. These programs often present the runs in the experimental design in random order. This random order is
created by using a random number generator. Even with such a computer program, it is still often necessary to assign
units of experimental material (such as the specimens in the hardness example mentioned above), operators, gauges or
measurement devices, and so forth for use in the experiment.

Sometimes experimenters encounter situations where randomization of some aspect of the experiment is
difficult. For example, in a chemical process, temperature may be a very hard-to-change variable as we may want to
change it less often than we change the levels of other factors. In an experiment of this type, complete randomization
would be difficult because it would add time and cost. There are statistical design methods for dealing with restrictions
on randomization. Some of these approaches will be discussed in subsequent chapters (see in particular Chapter 14).
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By replicationwe mean an independent repeat run of each factor combination. In the metallurgical experiment
discussed in Section 1.1, replication would consist of treating a specimen by oil quenching and treating a specimen by
saltwater quenching. Thus, if five specimens are treated in each quenching medium, we say that five replicates have
been obtained. Each of the 10 observations should be run in random order. Replication has two important properties.
First, it allows the experimenter to obtain an estimate of the experimental error. This estimate of error becomes a basic
unit of measurement for determining whether observed differences in the data are really statistically different. Second,
if the sample mean (y) is used to estimate the true mean response for one of the factor levels in the experiment, repli-
cation permits the experimenter to obtain a more precise estimate of this parameter. For example, if 𝜎2 is the variance
of an individual observation and there are n replicates, the variance of the sample mean is

𝜎
2
y
= 𝜎

2

n

The practical implication of this is that if we had n = 1 replicates and observed y1 = 145 (oil quench) and
y2 = 147 (saltwater quench), we would probably be unable to make satisfactory inferences about the effect of the
quenching medium—that is, the observed difference could be the result of experimental error. The point is that without
replication we have no way of knowing why the two observations are different. On the other hand, if n was reasonably
large and the experimental error was sufficiently small and if we observed sample averages y1 < y2, we would be rea-
sonably safe in concluding that saltwater quenching produces a higher hardness in this particular aluminum alloy than
does oil quenching.

Often when the runs in an experiment are randomized, two (or more) consecutive runs will have exactly the same
levels for some of the factors. For example, suppose we have three factors in an experiment: pressure, temperature,
and time. When the experimental runs are randomized, we find the following:

Run number Pressure (psi) Temperature (∘C) Time (min)

i 30 100 30

i + 1 30 125 45

i + 2 40 125 45

Notice that between runs i and i + 1, the levels of pressure are identical and between runs i + 1 and i + 2, the levels of
both temperature and time are identical. To obtain a true replicate, the experimenter needs to “twist the pressure knob”
to an intermediate setting between runs i and i + 1, and reset pressure to 30 psi for run i + 1. Similarly, temperature
and time should be reset to intermediate levels between runs i + 1 and i + 2 before being set to their design levels for
run i + 2. Part of the experimental error is the variability associated with hitting and holding factor levels.

There is an important distinction between replication and repeated measurements. For example, suppose that
a silicon wafer is etched in a single-wafer plasma etching process, and a critical dimension (CD) on this wafer is
measured three times. These measurements are not replicates; they are a form of repeated measurements, and in this
case the observed variability in the three repeated measurements is a direct reflection of the inherent variability in the
measurement system or gauge and possibly the variability in this CD at different locations on the wafer where the
measurements were taken. As another illustration, suppose that as part of an experiment in semiconductor manufac-
turing four wafers are processed simultaneously in an oxidation furnace at a particular gas flow rate and time and then
a measurement is taken on the oxide thickness of each wafer. Once again, the measurements on the four wafers are not
replicates but repeated measurements. In this case, they reflect differences among the wafers and other sources of vari-
ability within that particular furnace run. Replication reflects sources of variability both between runs and (potentially)
within runs.

Blocking is a design technique used to improve the precision with which comparisons among the factors of
interest are made. Often blocking is used to reduce or eliminate the variability transmitted from nuisance factors—that
is, factors that may influence the experimental response but in which we are not directly interested. For example,
an experiment in a chemical process may require two batches of raw material to make all the required runs.
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However, there could be differences between the batches due to supplier-to-supplier variability, and if we are not
specifically interested in this effect, we would think of the batches of raw material as a nuisance factor. Generally,
a block is a set of relatively homogeneous experimental conditions. In the chemical process example, each batch
of raw material would form a block, because the variability within a batch would be expected to be smaller than
the variability between batches. Typically, as in this example, each level of the nuisance factor becomes a block.
Then the experimenter divides the observations from the statistical design into groups that are run in each block.
We study blocking in detail in several places in the text, including Chapters 4, 5, 7, 8, 9, 11, and 13. A simple example
illustrating the blocking principal is given in Section 2.5.1.

The three basic principles of experimental design, randomization, replication, and blocking are part of every
experiment. We will illustrate and emphasize them repeatedly throughout this book.

1.4 Guidelines for Designing Experiments

To use the statistical approach in designing and analyzing an experiment, it is necessary for everyone involved in the
experiment to have a clear idea in advance of exactly what is to be studied, how the data are to be collected, and at least
a qualitative understanding of how these data are to be analyzed. An outline of the recommended procedure is shown
in Table 1.1. We now give a brief discussion of this outline and elaborate on some of the key points. For more details,
see Coleman and Montgomery (1993), and the references therein. The supplemental text material for this chapter is
also useful.

1. Recognition of and statement of the problem. This may seem to be a rather obvious point, but in prac-
tice often neither is it simple to realize that a problem requiring experimentation exists, nor is it simple to
develop a clear and generally accepted statement of this problem. It is necessary to develop all ideas about
the objectives of the experiment. Usually, it is important to solicit input from all concerned parties: engi-
neering, quality assurance, manufacturing, marketing, management, customer, and operating personnel (who
usually have much insight and who are too often ignored). For this reason, a team approach to designing
experiments is recommended.

It is usually helpful to prepare a list of specific problems or questions that are to be addressed by the
experiment. A clear statement of the problem often contributes substantially to better understanding of the
phenomenon being studied and the final solution of the problem.

It is also important to keep the overall objectives of the experiment in mind. There are several broad
reasons for running experiments and each type of experiment will generate its own list of specific questions
that need to be addressed. Some (but by no means all) of the reasons for running experiments include:

a. Factor screening or characterization. When a system or process is new, it is usually important
to learn which factors have the most influence on the response(s) of interest. Often there are a
lot of factors. This usually indicates that the experimenters do not know much about the system

◾ TABLE 1 . 1
Guidelines for Designing an Experiment

1. Recognition of and statement of the problem
]

Pre-experimental
2. Selection of the response variablea Planning
3. Choice of factors, levels, and rangesa

4. Choice of experimental design

5. Performing the experiment

6. Statistical analysis of the data

7. Conclusions and recommendations

aIn practice, steps 2 and 3 are often done simultaneously or in reverse order.
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so screening is essential if we are to efficiently get the desired performance from the system.
Screening experiments are extremely important when working with new systems or technologies
so that valuable resources will not be wasted using best guess and OFAT approaches.

b. Optimization. After the system has been characterized and we are reasonably certain that the
important factors have been identified, the next objective is usually optimization, that is, find
the settings or levels of the important factors that result in desirable values of the response.
For example, if a screening experiment on a chemical process results in the identification of time
and temperature as the two most important factors, the optimization experiment may have as its
objective finding the levels of time and temperature that maximize yield, or perhaps maximize
yield while keeping some product property that is critical to the customer within specifications.
An optimization experiment is usually a follow-up to a screening experiment. It would be very
unusual for a screening experiment to produce the optimal settings of the important factors.

c. Confirmation. In a confirmation experiment, the experimenter is usually trying to verify that the
system operates or behaves in a manner that is consistent with some theory or past experience.
For example, if theory or experience indicates that a particular new material is equivalent to
the one currently in use and the new material is desirable (perhaps less expensive, or easier
to work with in some way), then a confirmation experiment would be conducted to verify that
substituting the new material results in no change in product characteristics that impact its use.
Moving a new manufacturing process to full-scale production based on results found during
experimentation at a pilot plant or development site is another situation that often results in
confirmation experiments—that is, are the same factors and settings that were determined during
development work appropriate for the full-scale process?

d. Discovery. In discovery experiments, the experimenters are usually trying to determine what
happens when we explore new materials, or new factors, or new ranges for factors. Discovery
experiments often involve screening of several (perhaps many) factors. In the pharmaceutical
industry, scientists are constantly conducting discovery experiments to find new materials or
combinations of materials that will be effective in treating disease.

e. Robustness. These experiments often address questions such as under what conditions do the
response variables of interest seriously degrade? Or what conditions would lead to unacceptable
variability in the response variables? A variation of this is determining how we can set the fac-
tors in the system that we can control to minimize the variability transmitted into the response
from factors that we cannot control very well. We will discuss some experiments of this type in
Chapter 12.

Obviously, the specific questions to be addressed in the experiment relate directly to the overall
objectives. An important aspect of problem formulation is the recognition that one large comprehensive
experiment is unlikely to answer the key questions satisfactorily. A single comprehensive experiment
requires the experimenters to know the answers to a lot of questions, and if they are wrong, the results
will be disappointing. This leads to wasting time, materials, and other resources and may result in never
answering the original research questions satisfactorily. A sequential approach employing a series of
smaller experiments, each with a specific objective, such as factor screening, is a better strategy.

2. Selection of the response variable. In selecting the response variable, the experimenter should be certain
that this variable really provides useful information about the process under study. Most often, the average or
standard deviation (or both) of the measured characteristic will be the response variable. Multiple responses
are not unusual. The experimenters must decide how each response will be measured, and address issues
such as how will any measurement system be calibrated and how this calibration will be maintained during
the experiment. The gauge or measurement system capability (or measurement error) is also an important
factor. If gauge capability is inadequate, only relatively large factor effects will be detected by the experiment
or perhaps additional replication will be required. In some situations where gauge capability is poor, the
experimenter may decide to measure each experimental unit several times and use the average of the repeated
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measurements as the observed response. It is usually critically important to identify issues related to defining
the responses of interest and how they are to be measured before conducting the experiment. Sometimes
designed experiments are employed to study and improve the performance of measurement systems. For an
example, see Chapter 13.

3. Choice of factors, levels, and range. (As noted in Table 1.1, steps 2 and 3 are often done simultaneously or
in the reverse order.)When considering the factors that may influence the performance of a process or system,
the experimenter usually discovers that these factors can be classified as either potential design factors or
nuisance factors. The potential design factors are those factors that the experimenter may wish to vary in the
experiment. Often we find that there are a lot of potential design factors, and some further classification of
them is helpful. Some useful classifications are design factors, held-constant factors, and allowed-to-vary
factors. The design factors are the factors actually selected for study in the experiment. Held-constant factors
are variables that may exert some effect on the response, but for purposes of the present experiment these
factors are not of interest, so they will be held at a specific level. For example, in an etching experiment in
the semiconductor industry, there may be an effect that is unique to the specific plasma etch tool used in the
experiment. However, this factor would be very difficult to vary in an experiment, so the experimenter may
decide to perform all experimental runs on one particular (ideally “typical”) etcher. Thus, this factor has been
held constant. As an example of allowed-to-vary factors, the experimental units or the “materials” to which
the design factors are applied are usually nonhomogeneous, yet we often ignore this unit-to-unit variability
and rely on randomization to balance out any material or experimental unit effect. We often assume that the
effects of held-constant factors and allowed-to-vary factors are relatively small.

Nuisance factors, on the other hand, may have large effects that must be accounted for, yet we may
not be interested in them in the context of the present experiment. Nuisance factors are often classified as
controllable, uncontrollable, or noise factors. A controllable nuisance factor is one whose levels may be set
by the experimenter. For example, the experimenter can select different batches of raw material or different
days of the week when conducting the experiment. The blocking principle, discussed in the previous section,
is often useful in dealing with controllable nuisance factors. If a nuisance factor is uncontrollable in the
experiment, but it can be measured, an analysis procedure called the analysis of covariance can often be
used to compensate for its effect. For example, the relative humidity in the process environment may affect
process performance, and if the humidity cannot be controlled, it probably can be measured and treated
as a covariate. When a factor that varies naturally and uncontrollably in the process can be controlled for
purposes of an experiment, we often call it a noise factor. In such situations, our objective is usually to
find the settings of the controllable design factors that minimize the variability transmitted from the noise
factors. This is sometimes called a process robustness study or a robust design problem. Blocking, analysis
of covariance, and process robustness studies are discussed later in the text.

Once the experimenter has selected the design factors, he or she must choose the ranges over which
these factors will be varied and the specific levels at which runs will be made. Thought must also be given
to how these factors are to be controlled at the desired values and how they are to be measured. For instance,
in the flow solder experiment, the engineer has defined 12 variables that may affect the occurrence of solder
defects. The experimenter will also have to decide on a region of interest for each variable (that is, the range
over which each factor will be varied) and on how many levels of each variable to use. Process knowledge
is required to do this. This process knowledge is usually a combination of practical experience and theoret-
ical understanding. It is important to investigate all factors that may be of importance and to be not overly
influenced by past experience, particularly when we are in the early stages of experimentation or when the
process is not very mature.

When the objective of the experiment is factor screening or process characterization, it is usually
best to keep the number of factor levels low. Generally, two levels work very well in factor screening
studies. Choosing the region of interest is also important. In factor screening, the region of interest should
be relatively large—that is, the range over which the factors are varied should be broad. As we learn more
about which variables are important and which levels produce the best results, the region of interest in
subsequent experiments will usually become narrower.
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◾ F I GURE 1 . 10 A cause-and-
effect diagram for the etching process
experiment Charge monitor
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The cause-and-effect diagram can be a useful technique for organizing some of the information gen-
erated in pre-experimental planning. Figure 1.10 is the cause-and-effect diagram constructed while planning
an experiment to resolve problems with wafer charging (a charge accumulation on the wafers) encountered
in an etching tool used in semiconductor manufacturing. The cause-and-effect diagram is also known as a
fishbone diagram because the “effect” of interest or the response variable is drawn along the spine of the
diagram and the potential causes or design factors are organized in a series of ribs. The cause-and-effect dia-
gram uses the traditional causes of measurement, materials, people, environment, methods, and machines to
organize the information and potential design factors. Notice that some of the individual causes will prob-
ably lead directly to a design factor that will be included in the experiment (such as wheel speed, gas flow,
and vacuum), while others represent potential areas that will need further study to turn them into design
factors (such as operators following improper procedures), and still others will probably lead to either fac-
tors that will be held constant during the experiment or blocked (such as temperature and relative humidity).
Figure 1.11 is a cause-and-effect diagram for an experiment to study the effect of several factors on the turbine
blades produced on a computer-numerical-controlled (CNC) machine. This experiment has three response

◾ F I GURE 1 . 11 A cause-and-effect diagram for
the CNC machine experiment
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variables: blade profile, blade surface finish, and surface finish defects in the finished blade. The causes
are organized into groups of controllable factors from which the design factors for the experiment may be
selected, uncontrollable factors whose effects will probably be balanced out by randomization, nuisance fac-
tors that may be blocked, and factors that may be held constant when the experiment is conducted. It is not
unusual for experimenters to construct several different cause-and-effect diagrams to assist and guide them
during pre-experimental planning. For more information on the CNC machine experiment and further dis-
cussion of graphical methods that are useful in pre-experimental planning, see the supplemental text material
for this chapter.

We reiterate how crucial it is to bring out all points of view and process information in steps 1 through 3.
We refer to this as pre-experimental planning. Coleman and Montgomery (1993) provide worksheets that
can be useful in pre-experimental planning. Also see the supplemental text material for more details and
an example of using these worksheets. It is unlikely that one person has all the knowledge required to do this
adequately in many situations. Therefore, we strongly argue for a team effort in planning the experiment.
Most of your success will hinge on how well the pre-experimental planning is done.

4. Choice of experimental design. If the above pre-experimental planning activities are done correctly, this
step is relatively easy. Choice of design involves consideration of sample size (number of replicates), selec-
tion of a suitable run order for the experimental trials, and determination of whether or not blocking or
other randomization restrictions are involved. This book discusses some of the more important types of
experimental designs, and it can ultimately be used as a guide for selecting an appropriate experimental
design for a wide variety of problems.

There are also several interactive statistical software packages that support this phase of experimental
design. The experimenter can enter information about the number of factors, levels, and ranges, and these
programs will either present a selection of designs for consideration or recommend a particular design.
(We usually prefer to see several alternatives instead of relying entirely on a computer recommendation in
most cases.) Most software packages also provide some diagnostic information about how each design will
perform. This is useful in evaluation of different design alternatives for the experiment. These programs
will usually also provide a worksheet (with the order of the runs randomized) for use in conducting the
experiment.

Design selection also involves thinking about and selecting a tentative empirical model to describe
the results. The model is just a quantitative relationship (equation) between the response and the important
design factors. In many cases, a low-order polynomial model will be appropriate. A first-order model in
two variables is

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝜀

where y is the response, the x’s are the design factors, the 𝛽’s are unknown parameters that will be estimated
from the data in the experiment, and 𝜀 is a random error term that accounts for the experimental error in
the system that is being studied. The first-order model is also sometimes called a main effects model.
First-order models are used extensively in screening or characterization experiments. A common extension
of the first-order model is to add an interaction term, say

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝜀

where the cross-product term x1x2 represents the two-factor interaction between the design factors. Because
interactions between factors is relatively common, the first-order model with interaction is widely used.
Higher-order interactions can also be included in experiments with more than two factors if necessary.
Another widely used model is the second-order model

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝛽11x
2
11 + 𝛽22x

2
2 + 𝜀

Second-order models are often used in optimization experiments.
In selecting the design, it is important to keep the experimental objectives inmind. Inmany engineering

experiments, we already know at the outset that some of the factor levels will result in different values for the
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response. Consequently, we are interested in identifyingwhich factors cause this difference and in estimating
themagnitude of the response change. In other situations, we may be more interested in verifying uniformity.
For example, two production conditions A and B may be compared, A being the standard and B being a
more cost-effective alternative. The experimenter will then be interested in demonstrating that, say, there is
no difference in yield between the two conditions.

5. Performing the experiment. When running the experiment, it is vital to monitor the process carefully to
ensure that everything is being done according to plan. Errors in experimental procedure at this stage will
usually destroy experimental validity. One of the most common mistakes that I have encountered is that the
people conducting the experiment failed to set the variables to the proper levels on some runs. Someone
should be assigned to check factor settings before each run. Up-front planning to prevent mistakes like this
is crucial to success. It is easy to underestimate the logistical and planning aspects of running a designed
experiment in a complex manufacturing or research and development environment.

Coleman and Montgomery (1993) suggest that prior to conducting the experiment a few trial runs or
pilot runs are often helpful. These runs provide information about consistency of experimental material, a
check on the measurement system, a rough idea of experimental error, and a chance to practice the over-
all experimental technique. This also provides an opportunity to revisit the decisions made in steps 1–4,
if necessary.

6. Statistical analysis of the data. Statistical methods should be used to analyze the data so that results and
conclusions are objective rather than judgmental in nature. If the experiment has been designed correctly
and performed according to the design, the statistical methods required are not elaborate. There are many
excellent software packages designed to assist in data analysis, and many of the programs used in step 4
to select the design provide a seamless, direct interface to the statistical analysis. Often we find that simple
graphical methods play an important role in data analysis and interpretation. Because many of the questions
that the experimenter wants to answer can be cast into an hypothesis-testing framework, hypothesis testing
and confidence interval estimation procedures are very useful in analyzing data from a designed experiment.
It is also usually very helpful to present the results of many experiments in terms of an empirical model,
that is, an equation derived from the data that express the relationship between the response and the impor-
tant design factors. Residual analysis and model adequacy checking are also important analysis techniques.
We will discuss these issues in detail later.

Remember that statistical methods cannot prove that a factor (or factors) has a particular effect.
They only provide guidelines as to the reliability and validity of results. When properly applied, statistical
methods do not allow anything to be proved experimentally, but they do allow us to measure the likely
error in a conclusion or to attach a level of confidence to a statement. The primary advantage of statistical
methods is that they add objectivity to the decision-making process. Statistical techniques coupled with
good engineering or process knowledge and common sense will usually lead to sound conclusions.

7. Conclusions and recommendations. Once the data have been analyzed, the experimenter must draw
practical conclusions about the results and recommend a course of action. Graphical methods are often
useful in this stage, particularly in presenting the results to others. Follow-up runs and confirmation
testing should also be performed to validate the conclusions from the experiment.

Throughout this entire process, it is important to keep in mind that experimentation is an important
part of the learning process, where we tentatively formulate hypotheses about a system, perform experi-
ments to investigate these hypotheses, and on the basis of the results formulate new hypotheses, and so
on. This suggests that experimentation is iterative. It is usually a major mistake to design a single, large,
comprehensive experiment at the start of a study. A successful experiment requires knowledge of the impor-
tant factors, the ranges over which these factors should be varied, the appropriate number of levels to use,
and the proper units of measurement for these variables. Generally, we do not perfectly know the answers
to these questions, but we learn about them as we go along. As an experimental program progresses, we
often drop some input variables, add others, change the region of exploration for some factors, or add new
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response variables. Consequently, we usually experiment sequentially, and as a general rule, no more than
about 25 percent of the available resources should be invested in the first experiment. This will ensure that
sufficient resources are available to perform confirmation runs and ultimately accomplish the final objective
of the experiment.

Finally, it is important to recognize that all experiments are designed experiments. The important
issue is whether they are well designed or not. Good pre-experimental planning will usually lead to a good,
successful experiment. Failure to do such planning usually leads to wasted time, money, and other resources
and often poor or disappointing results.

1.5 A Brief History of Statistical Design

Experimentation is an important part of the knowledge discovery process. An early record of a designed experiment in
the medical field is the study of scurvy by James Lind on board the Royal Navy ship Salisbury in 1747. Lind conducted
a study to determine the effect of diet on scurvy and discovered the importance of fruit as a preventative measure. Today
we would call the type of experiment he conducted as a completely randomized single-factor design. Experiments of
this type are discussed in Chapters 2 and 3. Between 1843 and 1846 several agricultural field trials were begun at the
Rothamsted Agricultural Research Station outside of London. These experiments were not carried out using modern
techniques but they laid the foundation for the pioneering work of Sir Ronald A. Fisher starting about 1920. This led
to the first of the four eras in the modern development of experimental design, the agricultural era.

Fisher was responsible for statistics and data analysis at Rothamsted. Fisher recognized that flaws in the way
the experiment that generated the data had been performed often hampered the analysis of data from systems (in this
case, agricultural systems). By interacting with scientists and researchers in many fields, he developed the insights that
led to the three basic principles of experimental design that we discussed in Section 1.3: randomization, replication,
and blocking. Fisher systematically introduced statistical thinking and principles into designing experimental investi-
gations, including the factorial design concept and the analysis of variance. His two books [the most recent editions
are Fisher (1958, 1966)] had profound influence on the use of statistics, particularly in agricultural and related life
sciences. For an excellent biography of Fisher, see Box (1978).

Although applications of statistical design in industrial settings certainly began in the 1930s, the second,
or industrial, era was catalyzed by the development of response surface methodology (RSM) by Box and Wilson
(1951). They recognized and exploited the fact that many industrial experiments are fundamentally different from
their agricultural counterparts in two ways: (1) the response variable can usually be observed (nearly) immediately,
and (2) the experimenter can quickly learn crucial information from a small group of runs that can be used to plan
the next experiment. Box (1999) calls these two features of industrial experiments immediacy and sequentiality.
Over the next 30 years, RSM and other design techniques spread throughout the chemical and the process industries,
mostly in research and development work. George Box was the intellectual leader of this movement. However, the
application of statistical design at the plant or manufacturing process level was still not extremely widespread. Some
of the reasons for this include an inadequate training in basic statistical concepts and methods for engineers and other
process specialists and the lack of computing resources and user-friendly statistical software to support the application
of statistically designed experiments.

It was during this second or industrial era that work on optimal design of experiments began. Kiefer (1959, 1961)
and Kiefer and Wolfowitz (1959) proposed a formal approach to selecting a design based on specific objective opti-
mality criteria. Their initial approach was to select a design that would result in the model parameters being estimated
with the best possible precision. This approach did not find much application because of the lack of computer tools for
its implementation. However, there have been great advances in both algorithms for generating optimal designs and
computing capability over the last 25 years. Optimal designs have great application and are discussed at several places
in the book.

The increasing interest of Western industry in quality improvement that began in the late 1970s ushered in
the third era of statistical design. The work of Genichi Taguchi [Taguchi and Wu (1980), Kackar (1985), and Taguchi
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(1987, 1991)] had a significant impact on expanding the interest in and use of designed experiments. Taguchi advocated
using designed experiments for what he termed robust parameter design, or

1. Making processes insensitive to environmental factors or other factors that are difficult to control
2. Making products insensitive to variation transmitted from components
3. Finding levels of the process variables that force the mean to a desired value while simultaneously reducing

variability around this value.

Taguchi suggested highly fractionated factorial designs and other orthogonal arrays along with some novel statistical
methods to solve these problems. The resulting methodology generated much discussion and controversy. Part of the
controversy arose because Taguchi’s methodologywas advocated in theWest initially (and primarily) by entrepreneurs,
and the underlying statistical science had not been adequately peer reviewed. By the late 1980s, the results of peer
review indicated that although Taguchi’s engineering concepts and objectives were well founded, there were substantial
problems with his experimental strategy and methods of data analysis. For specific details of these issues, see Box
(1988), Box, Bisgaard, and Fung (1988), Hunter (1985, 1989), Myers, Montgomery, and Anderson-Cook (2016), and
Pignatiello and Ramberg (1992). Many of these concerns were also summarized in the extensive panel discussion in
the May 1992 issue of Technometrics [see Nair et al. (1992)].

There were several positive outcomes of the Taguchi controversy. First, designed experiments became more
widely used in the discrete parts industries, including automotive and aerospace manufacturing, electronics and semi-
conductors, and many other industries that had previously made little use of the technique. Second, the fourth era
of statistical design began. This era has included a renewed general interest in statistical design by both researchers
and practitioners and the development of many new and useful approaches to experimental problems in the industrial
world, including alternatives to Taguchi’s technical methods that allow his engineering concepts to be carried into
practice efficiently and effectively. Some of these alternatives will be discussed and illustrated in subsequent chapters,
particularly in Chapter 12. Third, computer software for construction and evaluation of designs has improved greatly
with many new features and capability. Forth, formal education in statistical experimental design is becoming part of
many engineering programs in universities, at both undergraduate and graduate levels. The successful integration of
good experimental design practice into engineering and science is a key factor in future industrial competitiveness.

Applications of designed experiments have grown far beyond the agricultural origins. There is not a single area
of science and engineering that has not successfully employed statistically designed experiments. In recent years,
there has been a considerable utilization of designed experiments in many other areas, including the service sector of
business, financial services, government operations, andmany nonprofit business sectors. An article appeared inForbes
magazine onMarch 11, 1996, entitled “The NewMantra: MVT,” whereMVT stands for “multivariable testing,” a term
some authors use to describe factorial designs. The article notes the many successes that a diverse group of companies
have had through their use of statistically designed experiments. Today e-commerce companies routinely conduct
on-line experiments when users access their websites and email marketing services conduct on-line experiments for
their clients.

1.6 Summary: Using Statistical Techniques in Experimentation

Much of the research in engineering, science, and industry is empirical and makes extensive use of experimentation.
Statistical methods can greatly increase the efficiency of these experiments and often strengthen the conclusions so
obtained. The proper use of statistical techniques in experimentation requires that the experimenter keep the following
points in mind:

1. Use your nonstatistical knowledge of the problem. Experimenters are usually highly knowledgeable in
their fields. For example, a civil engineer working on a problem in hydrology typically has considerable
practical experience and formal academic training in this area. In some fields, there is a large body of physical
theory onwhich to draw in explaining relationships between factors and responses. This type of nonstatistical
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knowledge is invaluable in choosing factors, determining factor levels, deciding how many replicates to run,
interpreting the results of the analysis, and so forth. Using a designed experiment is no substitute for thinking
about the problem.

2. Keep the design and analysis as simple as possible. Don’t be overzealous in the use of complex, sophis-
ticated statistical techniques. Relatively simple design and analysis methods are almost always best. This
is a good place to reemphasize steps 1–3 of the procedure recommended in Section 1.4. If you do the
pre-experimental planning carefully and select a reasonable design, the analysis will almost always be rela-
tively straightforward. In fact, a well-designed experiment will sometimes almost analyze itself! However, if
you botch the pre-experimental planning and execute the experimental design badly, it is unlikely that even
the most complex and elegant statistics can save the situation.

3. Recognize the difference between practical and statistical significance. Just because two experimental
conditions produce mean responses that are statistically different, there is no assurance that this difference is
large enough to have any practical value. For example, an engineer may determine that a modification to an
automobile fuel injection system may produce a true mean improvement in gasoline mileage of 0.1 mi/gal
and be able to determine that this is a statistically significant result. However, if the cost of the modification
is $1000, the 0.1 mi/gal difference is probably too small to be of any practical value.

4. Experiments are usually iterative. Remember that in most situations it is unwise to design too compre-
hensive an experiment at the start of a study. Successful design requires the knowledge of important factors,
the ranges over which these factors are varied, the appropriate number of levels for each factor, and the
proper methods and units of measurement for each factor and response. Generally, we are not well equipped
to answer these questions at the beginning of the experiment, but we learn the answers as we go along.
This argues in favor of the iterative, or sequential, approach discussed previously. Of course, there are sit-
uations where comprehensive experiments are entirely appropriate, but as a general rule most experiments
should be iterative. Consequently, we usually should not invest more than about 25 percent of the resources
of experimentation (runs, budget, time, and so forth) in the initial experiment. Often these first efforts
are just learning experiences, and some resources must be available to accomplish the final objectives of
the experiment.

1.7 Problems

1.1 Suppose that you want to design an experiment to
study the proportion of unpopped kernels of popcorn. Com-
plete steps 1–3 of the guidelines for designing experiments
in Section 1.4. Are there any major sources of variation that
would be difficult to control?

1.2 Suppose that you want to investigate the factors that
potentially affect cooking rice.

(a) What would you use as a response variable in this
experiment? How would you measure the response?

(b) List all of the potential sources of variability that could
impact the response.

(c) Complete the first three steps of the guidelines for
designing experiments in Section 1.4.

1.3 Suppose that you want to compare the growth of
garden flowers with different conditions of sunlight, water,

fertilizer, and soil conditions. Complete steps 1–3 of the guide-
lines for designing experiments in Section 1.4.

1.4 Select an experiment of interest to you. Complete
steps 1–3 of the guidelines for designing experiments in
Section 1.4.

1.5 Search the World Wide Web for information about
Sir Ronald A. Fisher and his work on experimental design in
agricultural science at the Rothamsted Experimental Station.

1.6 Find a website for a business that you are interested in.
Develop a list of factors that you would use in an experiment
to improve the effectiveness of this website.

1.7 Almost everyone is concerned about the price of
gasoline. Construct a cause-and-effect diagram identifying the
factors that potentially influence the gasoline mileage that
you get in your car. How would you go about conducting an
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experiment to determine any of these factors actually affect
your gasoline mileage?

1.8 What is replication? Why do we need replication in an
experiment? Present an example that illustrates the difference
between replication and repeated measurements.

1.9 Why is randomization important in an experiment?

1.10 What are the potential risks of a single, large, compre-
hensive experiment in contrast to a sequential approach?

1.11 Have you received an offer to obtain a credit card in
the mail? What “factors” were associated with the offer, such
as an introductory interest rate? Do you think the credit card
company is conducting experiments to investigate which fac-
tors produce the highest positive response rate to their offer?
What potential factors in this experiment can you identify?

1.12 What factors do you think an e-commerce company
could use in an experiment involving their web page to encour-
age more people to “click-through” into their site?
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CHAPTER OUTLINE
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2.3 SAMPLING AND SAMPLING DISTRIBUTIONS

2.4 INFERENCES ABOUT THE DIFFERENCES
IN MEANS, RANDOMIZED DESIGNS
2.4.1 Hypothesis Testing
2.4.2 Confidence Intervals
2.4.3 Choice of Sample Size
2.4.4 The Case Where 𝜎2

1 ≠ 𝜎
2
2

2.4.5 The Case Where 𝜎2
1 and 𝜎

2
2 Are Known

2.4.6 Comparing a Single Mean to
a Specified Value

2.4.7 Summary

2.5 INFERENCES ABOUT THE DIFFERENCES
IN MEANS, PAIRED COMPARISON DESIGNS
2.5.1 The Paired Comparison Problem
2.5.2 Advantages of the Paired Comparison Design

2.6 INFERENCES ABOUT THE VARIANCES
OF NORMAL DISTRIBUTIONS

SUPPLEMENTAL MATERIAL FOR CHAPTER 2
S2.1 Models for the Data and the t-Test
S2.2 Estimating the Model Parameters
S2.3 A Regression Model Approach to the t-Test
S2.4 Constructing Normal Probability Plots
S2.5 More about Checking Assumptions in the t-Test
S2.6 Some More Information about the Paired t-Test

The supplemental material is on the textbook website www.wiley.com/college/montgomery.

CHAPTER LEARNING OBJECTIVES
1. Know the importance of obtaining a random sample.

2. Be familiar with the standard sampling distributions: normal, t, chi-square, and F.

3. Know how to interpret the P-value for a statistical test.

4. Know how to use the Z test and t-test to compare means.

5. Know how to construct and interpret confidence intervals involving means.

6. Know how the paired t-test incorporates the blocking principle.

In this chapter, we consider experiments to compare two conditions (sometimes called treatments). These are often
called simple comparative experiments. We begin with an example of an experiment performed to determine

whether two different formulations of a product give equivalent results. The discussion leads to a review of several
basic statistical concepts, such as random variables, probability distributions, random samples, sampling distributions,
and tests of hypotheses.

23
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2.1 Introduction

An engineer is studying the formulation of a Portland cement mortar. He has added a polymer latex emulsion during
mixing to determine if this impacts the curing time and tension bond strength of the mortar. The experimenter prepared
10 samples of the original formulation and 10 samples of the modified formulation. We will refer to the two different
formulations as two treatments or as two levels of the factor formulations. When the cure process was completed, the
experimenter did find a very large reduction in the cure time for the modified mortar formulation. Then he began to
address the tension bond strength of the mortar. If the new mortar formulation has an adverse effect on bond strength,
this could impact its usefulness.

The tension bond strength data from this experiment are shown in Table 2.1 and plotted in Figure 2.1. The graph
is called a dot diagram. Visual examination of these data gives the impression that the strength of the unmodified
mortar may be greater than the strength of the modified mortar. This impression is supported by comparing the average
tension bond strengths y1 = 16.76 kgf∕cm2 for themodifiedmortar and y2 = 17.04 kgf∕cm2 for the unmodifiedmortar.
The average tension bond strengths in these two samples differ by what seems to be a modest amount. However, it
is not obvious that this difference is large enough to imply that the two formulations really are different. Perhaps
this observed difference in average strengths is the result of sampling fluctuation and the two formulations are really
identical. Possibly another two samples would give opposite results, with the strength of the modified mortar exceeding
that of the unmodified formulation.

A technique of statistical inference called hypothesis testing can be used to assist the experimenter in comparing
these two formulations. Hypothesis testing allows the comparison of the two formulations to be made on objective
terms, with knowledge of the risks associated with reaching the wrong conclusion. Before presenting procedures for
hypothesis testing in simple comparative experiments, we will briefly summarize some elementary statistical concepts.

◾ TABLE 2 . 1
Tension Bond Strength Data for the Portland
Cement Formulation Experiment

j

Modified
Mortar

y1j

Unmodified
Mortar

y2j

1 16.85 16.62
2 16.40 16.75
3 17.21 17.37
4 16.35 17.12
5 16.52 16.98
6 17.04 16.87
7 16.96 17.34
8 17.15 17.02
9 16.59 17.08

10 16.57 17.27

17.0816.9416.8016.6616.5216.38 17.22 17.36

Strength (kgf/cm2)

y1 = 16.76 y2 = 17.04

Modified

Unmodified

◾ F I GURE 2 . 1 Dot diagram for the tension bond strength data in Table 2.1
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2.2 Basic Statistical Concepts

Each of the observations in the Portland cement experiment described above would be called a run. Notice that the
individual runs differ, so there is fluctuation, or noise, in the observed bond strengths. This noise is usually called
experimental error or simply error. It is a statistical error, meaning that it arises from variation that is uncontrolled
and generally unavoidable. The presence of error or noise implies that the response variable, tension bond strength,
is a random variable. A random variable may be either discrete or continuous. If the set of all possible values of
the random variable is either finite or countably infinite, then the random variable is discrete, whereas if the set of all
possible values of the random variable is an interval, then the random variable is continuous.

Graphical Description of Variability. We often use simple graphical methods to assist in analyzing the
data from an experiment. The dot diagram, illustrated in Figure 2.1, is a very useful device for displaying a small
body of data (say up to about 20 observations). The dot diagram enables the experimenter to see quickly the general
location or central tendency of the observations and their spread or variability. For example, in the Portland cement
tension bond experiment, the dot diagram reveals that the two formulations may differ in mean strength but that both
formulations produce about the same variability in strength.

If the data are fairly numerous, the dots in a dot diagram become difficult to distinguish and a histogram may
be preferable. Figure 2.2 presents a histogram for 200 observations on the metal recovery, or yield, from a smelting
process. The histogram shows the central tendency, spread, and general shape of the distribution of the data. Recall that
a histogram is constructed by dividing the horizontal axis into bins (usually of equal length) and drawing a rectangle
over the jth bin with the area of the rectangle proportional to nj, the number of observations that fall in that bin. The
histogram is a large-sample tool. When the sample size is small, the shape of the histogram can be very sensitive to
the number of bins, the width of the bins, and the starting value for the first bin. Histograms should not be used with
fewer than 75–100 observations.

The box plot (or box-and-whisker plot) is a very useful way to display data. A box plot displays the minimum,
the maximum, the lower and upper quartiles (the 25th percentile and the 75th percentile, respectively), and the median
(the 50th percentile) on a rectangular box aligned either horizontally or vertically. The box extends from the lower
quartile to the upper quartile, and a line is drawn through the box at the median. Lines (or whiskers) extend from the
ends of the box to (typically) the minimum and maximum values. [There are several variations of box plots that have
different rules for denoting the extreme sample points. See Montgomery and Runger (2011) for more details.]

Figure 2.3 presents the box plots for the two samples of tension bond strength in the Portland cement mortar
experiment. This display indicates some difference in mean strength between the two formulations. It also indicates
that both formulations produce reasonably symmetric distributions of strength with similar variability or spread.
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◾ F I GURE 2 . 2 Histogram
for 200 observations on metal
recovery (yield) from
a smelting process



�

� �

�

26 Chapter 2 Simple Comparative Experiments

◾ F I GURE 2 . 3 Box plots for the Portland cement
tension bond strength experiment
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Dot diagrams, histograms, and box plots are useful for summarizing the information in a sample of data. To
describe the observations that might occur in a sample more completely, we use the concept of the probability distri-
bution.

Probability Distributions. The probability structure of a random variable, say y, is described by its probabil-
ity distribution. If y is discrete, we often call the probability distribution of y, say p(y), the probability mass function
of y. If y is continuous, the probability distribution of y, say f (y), is often called the probability density function for y.

Figure 2.4 illustrates hypothetical discrete and continuous probability distributions. Notice that in the discrete
probability distribution Figure 2.4a, it is the height of the function p(yj) that represents probability, whereas in the con-
tinuous case Figure 2.4b, it is the area under the curve f (y) associated with a given interval that represents probability.
The properties of probability distributions may be summarized quantitatively as follows:

y discrete: 0 ≤ p(yj) ≤ 1 all values of yj
P(y = yj) = p(yj) all values of yj∑
all values
of yj

p(yj) = 1

y continuous: 0 ≤ f (y)

P(a ≤ y ≤ b) =
∫

b

a
f (y) dy

∫

∞

−∞
f (y) dy = 1

(a) A discrete distribution

p
(y

j)

f(
y)

y1 y3
y2 y4 y6 y8 y10 y12 y14

y5 y7 y9 y11 y13

P(y = yj )  = p(yj )

 yj

(b) A continuous distribution

a b

P(a     y    b)

 y

◾ F I GURE 2 . 4 Discrete and continuous probability distributions
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Mean, Variance, and Expected Values. Themean, 𝜇, of a probability distribution is a measure of its central
tendency or location. Mathematically, we define the mean as

𝜇 =
⎧⎪⎨⎪⎩
∫

∞

−∞
yf (y) dy y continuous

∑
all y

yp(yj) y discrete
(2.1)

We may also express the mean in terms of the expected value or the long-run average value of the random variable y
as

𝜇 = E(y) =
⎧⎪⎨⎪⎩
∫

∞

−∞
yf (y) dy y continuous

∑
all y

yp(yj) y discrete
(2.2)

where E denotes the expected value operator.
The variability or dispersion of a probability distribution can be measured by the variance, defined as

𝜎
2 =
⎧⎪⎨⎪⎩
∫

∞

−∞
(y − 𝜇)2f (y) dy y continuous

∑
all y

(y − 𝜇)2p(yj) y discrete
(2.3)

Note that the variance can be expressed entirely in terms of expectation because

𝜎
2 = E[(y − 𝜇)2] (2.4)

Finally, the variance is used so extensively that it is convenient to define a variance operator V such that

V(y) = E[(y − 𝜇)2] = 𝜎
2 (2.5)

The concepts of expected value and variance are used extensively throughout this book, and it may be helpful to
review several elementary results concerning these operators. If y is a random variable with mean 𝜇 and variance 𝜎2

and c is a constant, then

1. E(c) = c

2. E(y) = 𝜇

3. E(cy) = cE(y) = c𝜇

4. V(c) = 0

5. V(y) = 𝜎
2

6. V(cy) = c2V(y) = c2𝜎2

If there are two random variables, say, y1 with E(y1) = 𝜇1 and V(y1) = 𝜎
2
1 and y2 with E(y2) = 𝜇2 and V(y2) = 𝜎

2
2 ,

we have

7. E(y1 + y2) = E(y1) + E(y2) = 𝜇1 + 𝜇2

It is possible to show that

8. V(y1 + y2) = V(y1) + V(y2) + 2 Cov(y1, y2)

where

Cov(y1, y2) = E[(y1 − 𝜇1)(y2 − 𝜇2)] (2.6)
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is the covariance of the random variables y1 and y2. The covariance is a measure of the linear association between y1
and y2. More specifically, we may show that if y1 and y2 are independent,

1 then Cov(y1, y2) = 0. We may also show
that

9. V(y1 − y2) = V(y1) + V(y2) − 2 Cov(y1, y2)

If y1 and y2 are independent, we have

10. V(y1 ± y2) = V(y1) + V(y2) = 𝜎
2
1 + 𝜎

2
2

and

11. E(y1 ⋅ y2) = E(y1) ⋅ E(y2) = 𝜇1 ⋅ 𝜇2

However, note that, in general

12. E
(
y1
y2

)
≠

E(y1)
E(y2)

regardless of whether or not y1 and y2 are independent.

2.3 Sampling and Sampling Distributions

Random Samples, Sample Mean, and Sample Variance. The objective of statistical inference is to draw con-
clusions about a population using a sample from that population. Most of the methods that we will study assume that
random samples are used. A random sample is a sample that has been selected from the population in such a way
that every possible sample has an equal probability of being selected. In practice, it is sometimes difficult to obtain
random samples, and random numbers generated by a computer program may be helpful.

Statistical inference makes considerable use of quantities computed from the observations in the sample. We
define a statistic as any function of the observations in a sample that does not contain unknown parameters. For
example, suppose that y1, y2, . . . , yn represents a sample. Then the sample mean

y =

n∑
i=1

yi

n
(2.7)

and the sample variance

S2 =

n∑
i=1

(yi − y)2

n − 1
(2.8)

are both statistics. These quantities are measures of the central tendency and dispersion of the sample, respectively.
Sometimes S =

√
S2, called the sample standard deviation, is used as a measure of dispersion. Experimenters often

prefer to use the standard deviation to measure dispersion because its units are the same as those for the variable of
interest y.

Properties of the Sample Mean and Variance. The sample mean y is a point estimator of the population
mean 𝜇, and the sample variance S2 is a point estimator of the population variance 𝜎2. In general, an estimator of an

1 Note that the converse of this is not necessarily so; that is, we may have Cov(y1, y2) = 0 and yet this does not imply independence. For an example, see Hines et al.
(2003).
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unknown parameter is a statistic that corresponds to that parameter. Note that a point estimator is a random variable.
A particular numerical value of an estimator, computed from sample data, is called an estimate. For example, suppose
we wish to estimate the mean and variance of the suspended solid material in the water of a lake. A random sample of
n = 25 observations is tested, and the mg/l of suspended solid material is measured and recorded for each. The sample
mean and variance are computed according to Equations 2.7 and 2.8, respectively, and are y = 18.6 and S2 = 1.20.
Therefore, the estimate of 𝜇 is y = 18.6 mg/l, and the estimate of 𝜎2 is S2 = 1.20 (mg/l)2.

Several properties are required of good point estimators. Two of the most important are the following:

1. The point estimator should be unbiased. That is, the long-run average or expected value of the point estimator
should be equal to the parameter that is being estimated. Although unbiasedness is desirable, this property
alone does not always make an estimator a good one.

2. An unbiased estimator should have minimum variance. This property states that the minimum variance
point estimator has a variance that is smaller than the variance of any other estimator of that parameter.

We may easily show that y and S2 are unbiased estimators of 𝜇 and 𝜎
2, respectively. First consider y. Using the

properties of expectation, we have

E(y) = E
⎛⎜⎜⎝

n∑
i=1

yi

n

⎞⎟⎟⎠
= 1

n

n∑
i=1

E(yi)

= 1
n

n∑
i=1

𝜇

= 𝜇

because the expected value of each observation yi is 𝜇. Thus, y is an unbiased estimator of 𝜇.
Now consider the sample variance S2. We have

E(S2) = E
⎡⎢⎢⎣

n∑
i=1

(yi − y)2

n−1

⎤⎥⎥⎦
= 1

n − 1
E

[
n∑
i=1

(yi − y)2
]

= 1
n − 1

E(SS)

where SS =
∑n

i=1 (yi − y)2 is the corrected sum of squares of the observations yi. Now

E(SS) = E

[
n∑
i=1

(yi − y)2
]

(2.9)

= E

[
n∑
i=1

y2i − ny2
]

=
n∑
i=1

(𝜇2 + 𝜎
2) − n(𝜇2 + 𝜎

2∕n)

= (n − 1)𝜎2 (2.10)
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Therefore,

E(S2) = 1
n − 1

E(SS) = 𝜎
2

Therefore S2 is an unbiased estimator of 𝜎2.

Degrees of Freedom. The quantity n − 1 in Equation 2.10 is called the number of degrees of freedom of the
sum of squares SS. This is a very general result; that is, if y is a random variable with variance 𝜎2 and SS =

∑
(yi − y)2

has 𝑣 degrees of freedom, then

E
(SS
𝑣

)
= 𝜎

2 (2.11)

The number of degrees of freedom of a sum of squares is equal to the number of independent elements in that sum
of squares. For example, SS =

∑n
i=1 (yi − y)2 in Equation 2.9 consists of the sum of squares of the n elements y1 −

y, y2 − y, . . . , yn − y. These elements are not all independent because
∑n

i=1(yi − y) = 0; in fact, only n − 1 of them are
independent, implying that SS has n − 1 degrees of freedom.

The Normal and Other Sampling Distributions. Often we are able to determine the probability distribu-
tion of a particular statistic if we know the probability distribution of the population from which the sample was drawn.
The probability distribution of a statistic is called a sampling distribution. We will now briefly discuss several useful
sampling distributions.

One of the most important sampling distributions is the normal distribution. If y is a normal random variable,
the probability distribution of y is

f (y) = 1

𝜎

√
2𝜋

e−(1∕2)[(y−𝜇)∕𝜎]
2 −∞ < y < ∞ (2.12)

where −∞ < 𝜇 < ∞ is the mean of the distribution and 𝜎
2
> 0 is the variance. The normal distribution is shown in

Figure 2.5.
Because sample observations that differ as a result of experimental error often are well described by the normal

distribution, the normal plays a central role in the analysis of data from designed experiments.Many important sampling
distributions may also be defined in terms of normal random variables.We often use the notation y ∼ N(𝜇, 𝜎2) to denote
that y is distributed normally with mean 𝜇 and variance 𝜎2.

An important special case of the normal distribution is the standard normal distribution; that is, 𝜇 = 0 and
𝜎
2 = 1. We see that if y ∼ N(𝜇, 𝜎2), the random variable

z =
y − 𝜇

𝜎
(2.13)

follows the standard normal distribution, denoted z ∼ N(0, 1). The operation demonstrated in Equation 2.13 is often
called standardizing the normal random variable y. The cumulative standard normal distribution is given in Table I
of the Appendix.

◾ F I GURE 2 . 5 The normal distribution

μ

σ2
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Many statistical techniques assume that the random variable is normally distributed. The central limit theorem
is often a justification of approximate normality.

THEOREM 2-1
The Central Limit Theorem

If y1, y2, . . . , yn is a sequence of n independent and identically distributed random variables with E(yi) = 𝜇 and
V(yi) = 𝜎

2 (both finite) and x = y1 + y2 + · · · + yn, then the limiting form of the distribution of

zn =
x − n𝜇√

n𝜎2

as n → ∞, is the standard normal distribution.

This result states essentially that the sum of n independent and identically distributed random variables is approx-
imately normally distributed. In many cases, this approximation is good for very small n, say n < 10, whereas in other
cases large n is required, say n > 100. Frequently, we think of the error in an experiment as arising in an additive
manner from several independent sources; consequently, the normal distribution becomes a plausible model for the
combined experimental error.

An important sampling distribution that can be defined in terms of normal random variables is the chi-square
or 𝜒2 distribution. If z1, z2, . . . , zk are normally and independently distributed random variables with mean 0 and
variance 1, abbreviated NID(0, 1), then the random variable

x = z21 + z22 + · · · + z2k

follows the chi-square distribution with k degrees of freedom. The density function of chi-square is

f (x) = 1

2k∕2Γ
(

k
2

)x(k∕2)−1e−x∕2 x > 0 (2.14)

Several chi-square distributions are shown in Figure 2.6. The distribution is asymmetric, or skewed, with mean
and variance

𝜇 = k

𝜎
2 = 2k

respectively. Percentage points of the chi-square distribution are given in Table III of the Appendix.

k = 1

k = 5

k = 15

◾ F I GURE 2 . 6 Several chi-square distributions
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As an example of a random variable that follows the chi-square distribution, suppose that y1, y2, . . . , yn is a
random sample from an N(𝜇, 𝜎2) distribution. Then

SS
𝜎2

=

n∑
i=1

(yi − y)2

𝜎2
∼ 𝜒

2
n−1 (2.15)

That is, SS∕𝜎2 is distributed as chi-square with n − 1 degrees of freedom.
Many of the techniques used in this book involve the computation andmanipulation of sums of squares. The result

given in Equation 2.15 is extremely important and occurs repeatedly; a sum of squares in normal random variables
when divided by 𝜎2 follows the chi-square distribution.

Examining Equation 2.8, note the sample variance can be written as

S2 = SS
n − 1

(2.16)

If the observations in the sample are NID(𝜇, 𝜎2), then the distribution of S2 is [𝜎2∕(n − 1)]𝜒2
n−1. Thus, the sampling

distribution of the sample variance is a constant times the chi-square distribution if the population is normally dis-
tributed.

If z and 𝜒2
k are independent standard normal and chi-square random variables, respectively, the random variable

tk =
z√
𝜒
2
k∕k

(2.17)

follows the t distribution with k degrees of freedom, denoted tk. The density function of t is

f (t) =
Γ[(k + 1)∕2]√

k𝜋Γ(k∕2)
1

[(t2∕k) + 1](k+1)∕2
−∞ < t < ∞ (2.18)

and the mean and variance of t are 𝜇 = 0 and 𝜎2 = k∕(k − 2) for k > 2, respectively. Several t distributions are shown
in Figure 2.7. Note that if k = ∞, the t distribution becomes the standard normal distribution. The percentage points
of the t distribution are given in Table II of the Appendix. If y1, y2, . . . , yn is a random sample from the N(𝜇, 𝜎2)
distribution, then the quantity

t =
y − 𝜇

S∕
√
n

(2.19)

is distributed as t with n − 1 degrees of freedom.
The final sampling distribution that we will consider is the F distribution. If 𝜒2

u and 𝜒
2
𝑣
are two independent

chi-square random variables with u and 𝑣 degrees of freedom, respectively, then the ratio

Fu,𝑣 =
𝜒
2
u∕u

𝜒
2
𝑣∕𝑣

(2.20)

◾ F I GURE 2 . 7 Several t distributions
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◾ F I GURE 2 . 8 Several F distributions

follows the F distribution with u numerator degrees of freedom and 𝒗 denominator degrees of freedom. If x is
an F random variable with u numerator and 𝑣 denominator degrees of freedom, then the probability distribution of x is

h(x) =
Γ
(u + 𝑣

2

)(u
𝑣

)u∕2
x(u∕2)−1

Γ
(u
x

)
Γ
(
𝑣

2

) [(u
𝑣

)
x + 1
](u+𝑣)∕2 0 < x < ∞ (2.21)

Several F distributions are shown in Figure 2.8. This distribution is very important in the statistical analysis of designed
experiments. Percentage points of the F distribution are given in Table IV of the Appendix.

As an example of a statistic that is distributed as F, suppose we have two independent normal populations
with common variance 𝜎2. If y11, y12, . . . , y1n1 is a random sample of n1 observations from the first population, and
if y21, y22, . . . , y2n2 is a random sample of n2 observations from the second, then

S21
S22

∼ Fn1−1, n2−1
(2.22)

where S21 and S22 are the two sample variances. This result follows directly from Equations 2.15 and 2.20.

2.4 Inferences About the Differences in Means, Randomized Designs

We are now ready to return to the Portland cement mortar problem posed in Section 2.1. Recall that two different
formulations of mortar were being investigated to determine if they differ in tension bond strength. In this section,
we discuss how the data from this simple comparative experiment can be analyzed using hypothesis testing and
confidence interval procedures for comparing two treatment means.

Throughout this section, we assume that a completely randomized experimental design is used. In such a
design, the data are viewed as a random sample from a normal distribution. The random sample assumption is very
important.

2.4.1 Hypothesis Testing

We now reconsider the Portland cement experiment introduced in Section 2.1. Recall that we are interested in compar-
ing the strength of two different formulations: an unmodified mortar and a modified mortar. In general, we can think of
these two formulations as two levels of the factor “formulations.” Let y11, y12, . . . , y1n1 represent the n1 observations
from the first factor level and y21, y22, . . . , y2n2 represent the n2 observations from the second factor level. We assume
that the samples are drawn at random from two independent normal populations. Figure 2.9 illustrates the situation.
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Factor level 1

Sample 1: y11, y12,..., y1n1

N(1, 1
2)

Factor level 2

Sample 2: y21, y22,..., y2n2

1 2

1

N(2, 2
2)

2

◾ F I GURE 2 . 9 The sampling situation for the two-sample t-test

A Model for the Data. We often describe the results of an experiment with a model. A simple statistical
model that describes the data from an experiment such as we have just described is

yij = 𝜇i + 𝜖ij

{
i = 1, 2

j = 1, 2, . . . , ni
(2.23)

where yij is the jth observation from factor level i, 𝜇i is the mean of the response at the ith factor level, and 𝜖ij is a normal
random variable associated with the ijth observation. We assume that 𝜖ij are NID(0, 𝜎2

i ), i = 1, 2. It is customary to refer
to 𝜖ij as the random error component of the model. Because the means 𝜇1 and 𝜇2 are constants, we see directly from
the model that yij are NID(𝜇i, 𝜎

2
i ), i = 1, 2, just as we previously assumed. For more information about models for the

data, refer to the supplemental text material.

Statistical Hypotheses. A statistical hypothesis is a statement either about the parameters of a probability
distribution or the parameters of a model. The hypothesis reflects some conjecture about the problem situation. For
example, in the Portland cement experiment, we may think that the mean tension bond strengths of the two mortar
formulations are equal. This may be stated formally as

H0∶𝜇1 = 𝜇2

H1∶𝜇1 ≠ 𝜇2

where 𝜇1 is the mean tension bond strength of the modified mortar and 𝜇2 is the mean tension bond strength of the
unmodified mortar. The statement H0∶𝜇1 = 𝜇2 is called the null hypothesis and H1∶𝜇1 ≠ 𝜇2 is called the alternative
hypothesis. The alternative hypothesis specified here is called a two-sided alternative hypothesis because it would
be true if 𝜇1 < 𝜇2 or if 𝜇1 > 𝜇2.

To test a hypothesis, we devise a procedure for taking a random sample, computing an appropriate test statistic,
and then rejecting or failing to reject the null hypothesis H0 based on the computed value of the test statistic. Part of
this procedure is specifying the set of values for the test statistic that leads to rejection of H0. This set of values is
called the critical region or rejection region for the test.

Two kinds of errors may be committed when testing hypotheses. If the null hypothesis is rejected when it is true,
a type I error has occurred. If the null hypothesis is not rejected when it is false, a type II error has been made. The
probabilities of these two errors are given special symbols

𝛼 = P(type I error) = P(reject H0|H0 is true)
𝛽 = P(type II error) = P(fail to reject H0|H0 is false)

Sometimes it is more convenient to work with the power of the test, where

Power = 1 − 𝛽 = P(reject H0|H0 is false)
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The general procedure in hypothesis testing is to specify a value of the probability of type I error 𝛼, often called the
significance level of the test, and then design the test procedure so that the probability of type II error 𝛽 has a suitably
small value.

The Two-Sample t-Test. Suppose that we could assume that the variances of tension bond strengths were
identical for both mortar formulations. Then the appropriate test statistic to use for comparing two treatment means in
the completely randomized design is

t0 =
y1 − y2

Sp

√
1
n1

+ 1
n2

(2.24)

where y1 and y2 are the sample means, n1 and n2 are the sample sizes, S2p is an estimate of the common variance
𝜎
2
1 = 𝜎

2
2 = 𝜎

2 computed from

S2p =
(n1 − 1)S21 + (n2 − 1)S22

n1 + n2 − 2
(2.25)

and S21 and S
2
2 are the two individual sample variances. The quantity Sp

√
1
n1

+ 1
n2

in the denominator of Equation 2.24

is often called the standard error of the difference in means in the numerator, abbreviated se(y1 − y2). To determine
whether to reject H0 ∶ 𝜇1 = 𝜇2, we would compare t0 to the t distribution with n1 + n2 − 2 degrees of freedom. If|t0| > t

𝛼∕2,n1+n2−2
, where t

𝛼∕2,n1+n2−2
is the upper 𝛼∕2 percentage point of the t distribution with n1 + n2 − 2 degrees of

freedom, we would reject H0 and conclude that the mean strengths of the two formulations of Portland cement mortar
differ. This test procedure is usually called the two-sample t-test.

This procedure may be justified as follows. If we are sampling from independent normal distributions, then the
distribution of y1 − y2 is N[𝜇1 − 𝜇2, 𝜎

2(1∕n1 + 1∕n2)]. Thus, if 𝜎2 were known, and if H0 ∶ 𝜇1 = 𝜇2 were true, the
distribution of

Z0 =
y1 − y2

𝜎

√
1
n1

+ 1
n2

(2.26)

would beN(0, 1). However, in replacing 𝜎 in Equation 2.26 by Sp, the distribution of Z0 changes from standard normal to
twith n1 + n2 − 2 degrees of freedom. Now ifH0 is true, t0 in Equation 2.24 is distributed as tn1+n2−2 and, consequently,
we would expect 100(1 − 𝛼) percent of the values of t0 to fall between−t𝛼∕2,n1+n2−2 and t𝛼∕2,n1+n2−2. A sample producing
a value of t0 outside these limits would be unusual if the null hypothesis were true and is evidence that H0 should be
rejected. Thus the t distribution with n1 + n2 − 2 degrees of freedom is the appropriate reference distribution for the
test statistic t0. That is, it describes the behavior of t0 when the null hypothesis is true. Note that 𝛼 is the probability of
type I error for the test. Sometimes 𝛼 is called the significance level of the test.

In some problems, one may wish to reject H0 only if one mean is larger than the other. Thus, one would
specify a one-sided alternative hypothesis H1∶𝜇1 > 𝜇2 and would reject H0 only if t0 > t

𝛼,n1+n2−2
. If one wants

to reject H0 only if 𝜇1 is less than 𝜇2, then the alternative hypothesis is H1∶𝜇1 < 𝜇2, and one would reject H0 if
t0 < −t

𝛼,n1+n2−2
.

To illustrate the procedure, consider the Portland cement data in Table 2.1. For these data, we find that

Modified Mortar Unmodified Mortar

y1 = 16.76 kgf∕cm2 y2 = 17.04 kgf∕cm2

S21 = 0.100 S22 = 0.061

S1 = 0.316 S2 = 0.248

n1 = 10 n2 = 10
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Because the sample standard deviations are reasonably similar, it is not unreasonable to conclude that the population
standard deviations (or variances) are equal. Therefore, we can use Equation 2.24 to test the hypotheses

H0∶𝜇1 = 𝜇2

H1∶𝜇1 ≠ 𝜇2

Furthermore, n1 + n2 − 2 = 10 + 10 − 2 = 18, and if we choose 𝛼 = 0.05, then we would reject H0∶𝜇1 = 𝜇2 if the
numerical value of the test statistic t0 > t0.025,18 = 2.101, or if t0 < −t0.025,18 = −2.101. These boundaries of the critical
region are shown on the reference distribution (t with 18 degrees of freedom) in Figure 2.10.

Using Equation 2.25 we find that

S2p =
(n1 − 1)S21 + (n2 − 1)S22

n1 + n2 − 2

= 9(0.100) + 9(0.061)
10 + 10 − 2

= 0.081

Sp = 0.284

and the test statistic is

t0 =
y1 − y2

Sp

√
1
n1

+ 1
n2

= 16.76 − 17.04

0.284

√
1
10

+ 1
10

= −0.28
0.127

= −2.20

Because t0 = −2.20 < −t0.025,18 = −2.101, we would reject H0 and conclude that the mean tension bond strengths of
the two formulations of Portland cement mortar are different. This is a potentially important engineering finding. The
change in mortar formulation had the desired effect of reducing the cure time, but there is evidence that the change
also affected the tension bond strength. One can conclude that the modified formulation reduces the bond strength (just
because we conducted a two-sided test, this does not preclude drawing a one-sided conclusion when the null hypothesis
is rejected). If the reduction inmean bond strength is of practical importance (or has engineering significance in addition
to statistical significance), then more development work and further experimentation will likely be required.

The Use of P-Values in Hypothesis Testing. One way to report the results of a hypothesis test is to state
that the null hypothesis was or was not rejected at a specified 𝛼-value or level of significance. This is often called fixed
significance level testing. For example, in the Portland cement mortar formulation above, we can say thatH0∶𝜇1 = 𝜇2

◾ F I GURE 2 . 10 The t distribution with 18
degrees of freedom with the critical region ±t0.025,18
= ±2.101
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was rejected at the 0.05 level of significance. This statement of conclusions is often inadequate because it gives the
decision maker no idea about whether the computed value of the test statistic was just barely in the rejection region
or whether it was very far into this region. Furthermore, stating the results this way imposes the predefined level of
significance on other users of the information. This approach may be unsatisfactory because some decision makers
might be uncomfortable with the risks implied by 𝛼 = 0.05.

To avoid these difficulties, the P-value approach has been adopted widely in practice. The P-value is the proba-
bility that the test statistic will take on a value that is at least as extreme as the observed value of the statistic when the
null hypothesis H0 is true. Thus, a P-value conveys much information about the weight of evidence against H0, and so
a decision maker can draw a conclusion at any specified level of significance. More formally, we define the P-value
as the smallest level of significance that would lead to rejection of the null hypothesis H0.

It is customary to call the test statistic (and the data) significant when the null hypothesisH0 is rejected; therefore,
we may think of the P-value as the smallest level 𝛼 at which the data are significant. Once the P-value is known, the
decision maker can determine how significant the data are without the data analyst formally imposing a preselected
level of significance.

It is not always easy to compute the exact P-value for a test. However, most modern computer programs for
statistical analysis report P-values, and they can be obtained on some handheld calculators. We will show how to
approximate the P-value for the Portland cement mortar experiment. Because |t0| = 2.20 > t0.025,18 = 2.101, we know
that the P-value is less than 0.05. From Appendix Table II, for a t distribution with 18 degrees of freedom, and tail area
probability 0.01 we find t0.01,18 = 2.552. Now |t0| = 2.20 < 2.552, so because the alternative hypothesis is two sided,
we know that the P-value must be between 0.05 and 2(0.01) = 0.02. Some handheld calculators have the capability
to calculate P-values. One such calculator is the HP-48. From this calculator, we obtain the P-value for the value
t0 = −2.20 in the Portland cement mortar formulation experiment as P = 0.0411. Thus, the null hypothesisH0∶𝜇1 = 𝜇2

would be rejected at any level of significance 𝛼 > 0.0411.

Computer Solution. Many statistical software packages have capability for statistical hypothesis testing. The
output from both the Minitab and the JMP two-sample t-test procedure applied to the Portland cement mortar formula-
tion experiment is shown in Table 2.2. Notice that the output includes some summary statistics about the two samples
(the abbreviation “SE mean” in the Minitab section of the table refers to the standard error of the mean, s∕

√
n) as well

as some information about confidence intervals on the difference in the two means (which we will discuss in the next
section). The programs also test the hypothesis of interest, allowing the analyst to specify the nature of the alternative
hypothesis (“not =” in the Minitab output implies H1∶𝜇1 ≠ 𝜇2).

The output includes the computed value of t0, the value of the test statistic t0 (JMP reports a positive value of t0
because of how the sample means are subtracted in the numerator of the test statistic), and the P-value. Notice that the
computed value of the t statistic differs slightly from our manually calculated value and that the P-value is reported to
be P = 0.042. JMP also reports the P-values for the one-sided alternative hypothesis. Many software packages will not
report an actual P-value less than some predetermined value such as 0.0001 and instead will return a “default” value
such as “< 0.001” or, in some cases, zero.

Checking Assumptions in the t-Test. In using the t-test procedure we make the assumptions that both sam-
ples are random samples that are drawn from independent populations that can be described by a normal distribution
and that the standard deviation or variances of both populations are equal. The assumption of independence is critical,
and if the run order is randomized (and, if appropriate, other experimental units and materials are selected at random),
this assumption will usually be satisfied. The equal variance and normality assumptions are easy to check using a
normal probability plot.

Generally, probability plotting is a graphical technique for determiningwhether sample data conform to a hypoth-
esized distribution based on a subjective visual examination of the data. The general procedure is very simple and
can be performed quickly with most statistics software packages. The supplemental text material discusses manual
construction of normal probability plots.
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◾ TABLE 2 . 2
Computer Output for the Two-Sample t-Test

Minitab
Two-sample T for Modified vs Unmodified

N Mean Std. Dev. SE Mean
Modified 10 16.764 0.316 0.10
Unmodified 10 17.042 0.248 0.078

Difference = mu (Modified) - mu (Unmodified)
Estimate for difference: -0.278000
95% CI for difference: (-0.545073, -0.010927)

T-Test of difference = 0 (vs not = ): T-Value = -2.19
P-Value = 0.042 DF = 18
Both use Pooled Std. Dev. = 0.2843

JMP t-test

Unmodified-Modified

Assuming equal variances

Difference 0.278000 t Ratio 2.186876
Std Err Dif 0.127122 DF 18
Upper CL Dif 0.545073 Prob>|t| 0.0422

Lower CL Dif 0.010927 Prob>t 0.0211
Confidence 0.95 Prob<t 0.9789 –0.4 –0.2 0.0 0.1 0.3

To construct a probability plot, the observations in the sample are first ranked from smallest to largest. That
is, the sample y1, y2, . . . , yn is arranged as y(1), y(2), . . . , y(n), where y(1) is the smallest observation, y(2) is the second
smallest observation, and so forth, with y(n) being the largest. The ordered observations y(j) are then plotted against
their observed cumulative frequency (j − 0.5)∕n. The cumulative frequency scale has been arranged so that if the
hypothesized distribution adequately describes the data, the plotted points will fall approximately along a straight line;
if the plotted points deviate significantly from a straight line, the hypothesized model is not appropriate. Usually, the
determination of whether or not the data plot as a straight line is subjective.

To illustrate the procedure, suppose that we wish to check the assumption that tension bond strength in the Port-
land cement mortar formulation experiment is normally distributed. We initially consider only the observations from
the unmodified mortar formulation. A computer-generated normal probability plot is shown in Figure 2.11. Most nor-
mal probability plots present 100(j − 0.5)∕n on the left vertical scale (and occasionally 100[1 − (j − 0.5)∕n] is plotted
on the right vertical scale), with the variable value plotted on the horizontal scale. Some computer-generated normal
probability plots convert the cumulative frequency to a standard normal z score. A straight line, chosen subjectively,
has been drawn through the plotted points. In drawing the straight line, you should be influenced more by the points
near the middle of the plot than by the extreme points. A good rule of thumb is to draw the line approximately between
the 25th and 75th percentile points. This is how the lines in Figure 2.11 for each sample were determined. In assessing
the “closeness” of the points to the straight line, imagine a fat pencil lying along the line. If all the points are covered
by this imaginary pencil, a normal distribution adequately describes the data. Because the points for each sample in
Figure 2.11 would pass the fat pencil test, we conclude that the normal distribution is an appropriate model for tension
bond strength for both the modified and the unmodified mortar.

We can obtain an estimate of the mean and standard deviation directly from the normal probability plot. The
mean is estimated as the 50th percentile on the probability plot, and the standard deviation is estimated as the difference
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◾ F I GURE 2 . 11 Normal probability plots of tension
bond strength in the Portland cement experiment

between the 84th and 50th percentiles. This means that we can verify the assumption of equal population variances
in the Portland cement experiment by simply comparing the slopes of the two straight lines in Figure 2.11. Both lines
have very similar slopes, and so the assumption of equal variances is a reasonable one. If this assumption is violated,
you should use the version of the t-test described in Section 2.4.4. The supplemental text material has more information
about checking assumptions on the t-test.

When assumptions are badly violated, the performance of the t-test will be affected. Generally, small to mod-
erate violations of assumptions are not a major concern, but any failure of the independence assumption and strong
indications of nonnormality should not be ignored. Both the significance level of the test and the ability to detect
differences between the means will be adversely affected by departures from assumptions. Transformations are one
approach to dealing with this problem. We will discuss this in more detail in Chapter 3. Nonparametric hypothesis
testing procedures can also be used if the observations come from nonnormal populations. Refer to Montgomery and
Runger (2011) for more details.

An Alternate Justification to the t-Test. The two-sample t-test we have just presented depends in theory
on the underlying assumption that the two populations from which the samples were randomly selected are normal.
Although the normality assumption is required to develop the test procedure formally, as we discussed above, moderate
departures from normality will not seriously affect the results. It can be argued that the use of a randomized design
enables one to test hypotheses without any assumptions regarding the form of the distribution. Briefly, the reasoning is
as follows. If the treatments have no effect, all [20!∕(10!10!)] = 184,756 possible ways that the 20 observations could
occur are equally likely. Corresponding to each of these 184,756 possible arrangements is a value of t0. If the value of
t0 actually obtained from the data is unusually large or unusually small with reference to the set of 184,756 possible
values, it is an indication that 𝜇1 ≠ 𝜇2.

This type of procedure is called a randomization test. It can be shown that the t-test is a good approximation
of the randomization test. Thus, we will use t-tests (and other procedures that can be regarded as approximations
of randomization tests) without extensive concern about the assumption of normality. This is one reason a simple
procedure such as normal probability plotting is adequate to check the assumption of normality.

2.4.2 Confidence Intervals

Although hypothesis testing is a useful procedure, it sometimes does not tell the entire story. It is often prefer-
able to provide an interval within which the value of the parameter or parameters in question would be expected
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to lie. These interval statements are called confidence intervals. In many engineering and industrial experiments, the
experimenter already knows that the means 𝜇1 and 𝜇2 differ; consequently, hypothesis testing on 𝜇1 = 𝜇2 is of little
interest. The experimenter would usually be more interested in knowing how much the means differ. A confidence
interval on the difference in means 𝜇1 − 𝜇2 is used in answering this question. It is good practice to accompany every
test of a hypothesis with a confidence interval whenever possible.

To define a confidence interval, suppose that 𝜃 is an unknown parameter. To obtain an interval estimate of 𝜃, we
need to find two statistics L and U such that the probability statement

P(L ⩽ 𝜃 ⩽ U) = 1 − 𝛼 (2.27)

is true. The interval
L ⩽ 𝜃 ⩽ U (2.28)

is called a 𝟏𝟎𝟎(𝟏−𝜶) percent confidence interval for the parameter 𝜃. The interpretation of this interval is that if, in
repeated random samplings, a large number of such intervals are constructed, 100(1 − 𝛼) percent of them will contain
the true value of 𝜃. The statistics L and U are called the lower and upper confidence limits, respectively, and 1 − 𝛼 is
called the confidence coefficient. If 𝛼 = 0.05, Equation 2.28 is called a 95 percent confidence interval for 𝜃. Note that
confidence intervals have a frequency interpretation; that is, we do not know if the statement is true for this specific
sample, but we do know that the method used to produce the confidence interval yields correct statements 100(1 − 𝛼)
percent of the time.

Suppose that we wish to find a 100(1 − 𝛼) percent confidence interval on the true difference in means 𝜇1 − 𝜇2
for the Portland cement problem. The interval can be derived in the following way. The statistic

y1 − y2 − (𝜇1 − 𝜇2)

Sp

√
1
n1

+ 1
n2

is distributed as tn1+n2−2. Thus,

P

⎛⎜⎜⎜⎝
−t

𝛼∕2,n1+n2−2
≤

y1 − y2 − (𝜇1 − 𝜇2)

Sp

√
1
n1

+ 1
n2

≤ t
𝛼∕2,n1+n2−2

⎞⎟⎟⎟⎠
= 1 − 𝛼

or

P

(
y1 − y2 − t

𝛼∕2,n1+n2−2
Sp

√
1
n1

+ 1
n2

≤ 𝜇1 − 𝜇2

≤ y1 − y2 + t
𝛼∕2,n1+n2−2

Sp

√
1
n1

+ 1
n2

)
= 1 − 𝛼 (2.29)

Comparing Equations 2.29 and 2.27, we see that

y1 − y2 − t
𝛼∕2,n1+n2−2

Sp

√
1
n1

+ 1
n2

≤ 𝜇1 − 𝜇2

≤ y1 − y2 + t
𝛼∕2,n1+n2−2

Sp

√
1
n1

+ 1
n2

(2.30)

is a 100(1 − 𝛼) percent confidence interval for 𝜇1 − 𝜇2.
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The actual 95 percent confidence interval estimate for the difference in mean tension bond strength for the
formulations of Portland cement mortar is found by substituting in Equation 2.30 as follows:

16.76 − 17.04 − (2.101)0.284
√

1
10

+ 1
10

≤ 𝜇1 − 𝜇2

≤ 16.76 − 17.04 + (2.101)0.284
√

1
10

+ 1
10

−0.28 − 0.27 ≤ 𝜇1 − 𝜇2 ≤ −0.28 + 0.27

−0.55 ≤ 𝜇1 − 𝜇2 ≤ −0.01

Thus, the 95 percent confidence interval estimate on the difference in means extends from −0.55 to −0.01 kgf∕cm2.
Put another way, the confidence interval is 𝜇1 − 𝜇2 = −0.28 ± 0.27 kgf∕cm2, or the difference in mean strengths is
−0.28 kgf∕cm2, and the accuracy of this estimate is ±0.27 kgf∕cm2. Note that because 𝜇1 − 𝜇2 = 0 is not included
in this interval, the data do not support the hypothesis that 𝜇1 = 𝜇2 at the 5 percent level of significance (recall that
the P-value for the two-sample t-test was 0.042, just slightly less than 0.05). It is likely that the mean strength of
the unmodified formulation exceeds the mean strength of the modified formulation. Notice from Table 2.2 that both
Minitab and JMP reported this confidence interval when the hypothesis testing procedure was conducted.

2.4.3 Choice of Sample Size

Selection of an appropriate sample size is one of themost important parts of any experimental design problem. Oneway
to do this is to consider the impact of sample size on the estimate of the difference in two means. From Equation 2.30
we know that the 100(1 − 𝛼)% confidence interval on the difference in two means is a measure of the precision of
estimation of the difference in the two means. The length of this interval is determined by

t
𝛼∕2,n1+n2−2

Sp

√
1
n1

+ 1
n2

We consider the case where the sample sizes from the two populations are equal, so that n1 = n2 = n. Then the length
of the CI is determined by

t
𝛼∕2,2n−2Sp

√
2
n

Consequently, the precision with which the difference in the two means is estimated depends on two quantities—Sp,

over which we have no control, and t
𝛼∕2,2n−2

√
2∕n, which we can control by choosing the sample size n. Figure 2.12 is

a plot of t
𝛼∕2,2n−2

√
2∕n versus n for 𝛼 = 0.05. Notice that the curve descends rapidly as n increases up to about n = 10

and less rapidly beyond that. Since Sp is relatively constant and t
𝛼∕2,2n−2

√
2∕n isn’t going to change much for sample

sizes beyond n = 10 or 12, we can conclude that choosing a sample size of n = 10 or 12 from each population in a
two-sample 95 percent CI will result in a CI that results in about the best precision of estimation for the difference in
the two means that is possible given the amount of inherent variability that is present in the two populations.

We can also use a hypothesis testing framework to determine sample size. The choice of sample size and the
probability of type II error 𝛽 are closely connected. Suppose that we are testing the hypotheses

H0∶𝜇1 = 𝜇2

H1∶𝜇1 ≠ 𝜇2

and that the means are not equal so that 𝛿 = 𝜇1 − 𝜇2. Because H0 ∶ 𝜇1 = 𝜇2 is not true, we are concerned about
wrongly failing to reject H0. The probability of type II error depends on the true difference in means 𝛿. A graph
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◾ F I GURE 2 . 12 Plot of t
𝜶∕2,2n−2

√
2∕n

versus sample size in each population n for
𝜶 = 0.05.
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of 𝛽 versus 𝛿 for a particular sample size is called the operating characteristic curve, or OC curve for the
test. The 𝛽 error is also a function of sample size. Generally, for a given value of 𝛿, the 𝛽 error decreases as the
sample size increases. That is, a specified difference in means is easier to detect for larger sample sizes than for
smaller ones.

An alternative to the OC curve is a power curve, which typically plots power or 1 − 𝛽, versus sample size for a
specified difference in the means. Some software packages perform power analysis and will plot power curves. A set
of power curves constructed using JMP for the hypotheses

H0∶𝜇1 = 𝜇2

H1∶𝜇1 ≠ 𝜇2

is shown in Figure 2.13 for the case where the two population variances 𝜎2
1 and 𝜎

2
2 are unknown but equal (𝜎

2
1 = 𝜎

2
2 =

𝜎
2) and for a level of significance of 𝛼 = 0.05. These power curves also assume that the sample sizes from the two

populations are equal and that the sample size shown on the horizontal scale (say n) is the total sample size, so that the
sample size in each population is n∕2. Also notice that the difference in means is expressed as a ratio to the common
standard deviation; that is

𝛿 =
|𝜇1 − 𝜇2|

𝜎

From examining these curves, we observe the following:

1. The greater the difference in means 𝜇1 − 𝜇2, the higher the power (smaller type II error probability). That
is, for a specified sample size and significance level 𝛼, the test will detect large differences in means more
easily than small ones.

2. As the sample size gets larger, the power of the test gets larger (the type II error probability gets smaller) for
a given difference in means and significance level 𝛼. That is, to detect a specified difference in means we
may make the test more powerful by increasing the sample size.

Operating curves and power curves are often helpful in selecting a sample size to use in an experiment. For example,
consider the Portland cement mortar problem discussed previously. Suppose that a difference in mean strength of
0.5 kgf∕cm2 has practical impact on the use of the mortar, so if the difference in means is at least this large, we would
like to detect it with a high probability. Thus, because 𝜇1 − 𝜇2 = 0.5 kgf∕cm2 is the “critical” difference in means
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◾ F I GURE 2 . 13 Power curves (from JMP) for
the two-sample t-test assuming equal variances and
𝜶 = 0.05. The sample size on the horizontal axis is the
total sample size, so the sample size in each population
is n = sample size from graph/2

that we wish to detect, we find that the power curve parameter would be 𝛿 = 0.5∕𝜎. Unfortunately, 𝛿 involves the
unknown standard deviation 𝜎. However, suppose on the basis of past experience we think that it is very unlikely that
the standard deviation will exceed 0.25 kgf∕cm2. Then substituting 𝜎 = 0.25 kgf∕cm2 into the expression for 𝛿 results
in 𝛿 = 2. If we wish to reject the null hypothesis when the difference in means 𝜇1 − 𝜇2 = 0.5 with probability at least
0.95 (power = 0.95)with 𝛼 = 0.05, then referring to Figure 2.13 we find that the required sample size on the horizontal
axis is 16 approximately. This is the total sample size, so the sample size in each population should be

n = 16∕2 = 8.

In our example, the experimenter actually used a sample size of 10. The experimenter could have elected to increase
the sample size slightly to guard against the possibility that the prior estimate of the common standard deviation 𝜎 was
too conservative and was likely to be somewhat larger than 0.25.

Operating characteristic curves often play an important role in the choice of sample size in experimental design
problems. Their use in this respect is discussed in subsequent chapters. For a discussion of the uses of operating
characteristic curves for other simple comparative experiments similar to the two-sample t-test, see Montgomery and
Runger (2011).

Many statistics software packages can also assist the experimenter in performing power and sample size calcu-
lations. The following boxed display illustrates several computations for the Portland cement mortar problem from
the power and sample size routine for the two-sample t-test in Minitab. The first section of output repeats the anal-
ysis performed with the OC curves; find the sample size necessary for detecting the critical difference in means of
0.5 kgf∕cm2, assuming that the standard deviation of strength is 0.25 kgf∕cm2. Notice that the answer obtained from
Minitab, n1 = n2 = 8, is identical to the value obtained from the OC curve analysis. The second section of the output
computes the power for the case where the critical difference in means is much smaller, only 0.25 kgf∕cm2. The power
has dropped considerably, from over 0.95 to 0.562. The final section determines the sample sizes that would be nec-
essary to detect an actual difference in means of 0.25 kgf∕cm2 with a power of at least 0.9. The required sample size
turns out to be considerably larger, n1 = n2 = 23.
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Power and Sample Size

2-Sample t-Test

Testing mean 1 = mean 2 (versus not = )

Calculating power for mean 1 = mean 2 + difference

Alpha = 0.05 Sigma = 0.25

Sample Target Actual

Difference Size Power Power

0.5 8 0.9500 0.9602

Power and Sample Size

2-Sample t-Test

Testing mean 1 = mean 2 (versus not =)

Calculating power for mean 1 = mean 2 + difference

Alpha = 0.05 Sigma = 0.25

Sample

Difference Size Power

0.25 10 0.5620

Power and Sample Size

2-Sample t-Test

Testing mean 1 = mean 2 (versus not =)

Calculating power for mean 1 = mean 2 + difference

Alpha = 0.05 Sigma = 0.25

Sample Target Actual

Difference Size Power Power

0.25 23 0.9000 0.9125

2.4.4 The Case Where 𝝈2
1
≠ 𝝈

2
2

If we are testing

H0∶𝜇1 = 𝜇2

H1∶𝜇1 ≠ 𝜇2

and cannot reasonably assume that the variances 𝜎2
1 and 𝜎

2
2 are equal, then the two-sample t-test must be modified

slightly. The test statistic becomes

t0 =
y1 − y2√
S21
n1

+
S22
n2

(2.31)

This statistic is not distributed exactly as t. However, the distribution of t0 is well approximated by t if we use

𝑣 =

(
S21
n1

+
S22
n2

)2

(S21∕n1)
2

n1 − 1
+

(S22∕n2)
2

n2 − 1

(2.32)
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as the number of degrees of freedom. A strong indication of unequal variances on a normal probability plot would be
a situation calling for this version of the t-test. You should be able to develop an equation for finding the confidence
interval on the difference in mean for the unequal variances case easily.

EXAMPLE 2 . 1

Nerve preservation is important in surgery because acci-
dental injury to the nerve can lead to post-surgical prob-
lems such as numbness, pain, or paralysis. Nerves are
usually identified by their appearance and relationship to
nearby structures or detected by local electrical stimula-
tion (electromyography), but it is relatively easy to over-
look them. An article inNature Biotechnology (“Fluorescent

Peptides Highlight Peripheral Nerves During Surgery in

Mice,” Vol. 29, 2011) describes the use of a fluorescently

labeled peptide that binds to nerves to assist in identifica-

tion. Table 2.3 shows the normalized fluorescence after two

hours for nerve and muscle tissue for 12 mice (the data were

read from a graph in the paper).

We would like to test the hypothesis that the mean normalized fluorescence after two hours is greater for nerve
tissue than for muscle tissue. That is, if 𝜇1 is the mean normalized fluorescence for nerve tissue and 𝜇2 is the mean
normalized fluorescence for muscle tissue, we want to test

H0∶𝜇1 = 𝜇2

H1∶𝜇1 > 𝜇2

The descriptive statistics output from Minitab is shown below:

Variable N Mean StDev Minimum Median Maximum

Nerve 12 4228 1918 450 4825 6625

Non-nerve 12 2534 961 1130 2650 3900

◾ TABLE 2 . 3
Normalized Fluorescence After Two Hours

Observation Nerve Muscle

1 6625 3900

2 6000 3500

3 5450 3450

4 5200 3200

5 5175 2980

6 4900 2800

7 4750 2500

8 4500 2400

9 3985 2200

10 900 1200

11 450 1150

12 2800 1130
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◾ F I GURE 2 . 14 Normalized
fluorescence data from Table 2.3
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Notice that the two sample standard deviations are quite different, so the assumption of equal variances in the
pooled t-test may not be appropriate. Figure 2.14 is the normal probability plot fromMinitab for the two samples. This
plot also indicates that the two population variances are probably not the same.

Because the equal variance assumption is not appropriate here, we will use the two-sample t-test described in
this section to test the hypothesis of equal means. The test statistic, Equation 2.31, is

t0 =
y1 − y2√
S21
n1

+
S22
n2

= 4228 − 2534√
(1918)2

12
+ (961)2

12

= 2.7354

The number of degrees of freedom are calculated from Equation 2.32:

𝑣 =

(
S21
n1

+
S22
n2

)2

(S21∕n1)
2

n1 − 1
+

(S22∕n2)
2

n2 − 1

=

(
(1918)2

12
+ (961)2

12

)2

[(1918)2∕12]2

11
+

[(961)2∕12]2

11

= 16.1955

If we are going to find a P-value from a table of the t-distribution, we should round the degrees of freedom down to 16.
Most computer programs interpolate to determine the P-value. The Minitab output for the two-sample t-test is shown
below. Since the P-value reported is small (0.007), we would reject the null hypothesis and conclude that the mean
normalized fluorescence for nerve tissue is greater than the mean normalized fluorescence for muscle tissue.

Difference = mu (Nerve) - mu (Non-nerve)

Estimate for difference: 1694

95% lower bound for difference: 613

T-Test of difference = 0 (vs >): T-Value = 2.74 P-Value = 0.007 DF = 16
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2.4.5 The Case Where 𝝈2
1
and 𝝈

2
2
Are Known

If the variances of both populations are known, then the hypotheses

H0∶𝜇1 = 𝜇2

H1∶𝜇1 ≠ 𝜇2

may be tested using the statistic

Z0 =
y1 − y2√
𝜎
2
1

n1
+

𝜎
2
2

n2

(2.33)

If both populations are normal, or if the sample sizes are large enough so that the central limit theorem applies, the
distribution of Z0 is N(0, 1) if the null hypothesis is true. Thus, the critical region would be found using the normal dis-
tribution rather than the t. Specifically, we would rejectH0 if |Z0| > Z

𝛼∕2, where Z𝛼∕2 is the upper 𝛼∕2 percentage point
of the standard normal distribution. This procedure is sometimes called the two-sampleZ-test. AP-value approach can
also be used with this test. The P-value would be found as P = 2[1 − Φ(|Z0|)], where Φ(x) is the cumulative standard
normal distribution evaluated at the point x.

Unlike the t-test of the previous sections, the test on means with known variances does not require the assump-
tion of sampling from normal populations. One can use the central limit theorem to justify an approximate normal
distribution for the difference in sample means y1 − y2.

The 100(1 − 𝛼) percent confidence interval on 𝜇1 − 𝜇2 where the variances are known is

y1 − y2 − Z
𝛼∕2

√
𝜎
2
1

n1
+

𝜎
2
2

n2
≤ 𝜇1 − 𝜇2 ≤ y1 − y2 + Z

𝛼∕2

√
𝜎
2
1

n1
+

𝜎
2
2

n2
(2.34)

As noted previously, the confidence interval is often a useful supplement to the hypothesis testing procedure.

2.4.6 Comparing a Single Mean to a Specified Value

Some experiments involve comparing only one population mean 𝜇 to a specified value, say, 𝜇0. The hypotheses are

H0∶𝜇 = 𝜇0

H1∶𝜇 ≠ 𝜇0

If the population is normal with known variance, or if the population is nonnormal but the sample size is large enough
so that the central limit theorem applies, then the hypothesis may be tested using a direct application of the normal
distribution. The one-sample Z-test statistic is

Z0 =
y − 𝜇0

𝜎∕
√
n

(2.35)

If H0 ∶ 𝜇 = 𝜇0 is true, then the distribution of Z0 is N(0, 1). Therefore, the decision rule for H0 ∶ 𝜇 = 𝜇0 is to reject
the null hypothesis if |Z0| > Z

𝛼∕2. A P-value approach could also be used.
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The value of the mean 𝜇0 specified in the null hypothesis is usually determined in one of three ways. It may
result from past evidence, knowledge, or experimentation. It may be the result of some theory or model describing the
situation under study. Finally, it may be the result of contractual specifications.

The 100(1 − 𝛼) percent confidence interval on the true population mean is

y − Z
𝛼∕2𝜎∕

√
n ≤ 𝜇 ≤ y + Z

𝛼∕2𝜎∕
√
n (2.36)

EXAMPLE 2 . 2

A supplier submits lots of fabric to a textile manufacturer.
The customer wants to know if the lot average breaking
strength exceeds 200 psi. If so, she wants to accept the lot.
Past experience indicates that a reasonable value for the vari-
ance of breaking strength is 100(psi)2. The hypotheses to be
tested are

H0∶𝜇 = 200

H1∶𝜇 > 200

Note that this is a one-sided alternative hypothesis. Thus, we
would accept the lot only if the null hypothesisH0∶𝜇 = 200
could be rejected (i.e., if Z0 > Z

𝛼
).

Four specimens are randomly selected, and the average
breaking strength observed is y = 214 psi. The value of the
test statistic is

Z0 =
y − 𝜇0

𝜎∕
√
n
= 124 − 200

10∕
√
4

= 2.80

If a type I error of 𝛼 = 0.05 is specified, we find Z
𝛼
=

Z0.05 = 1.645 from Appendix Table I. The P-value would
be computed using only the area in the upper tail of
the standard normal distribution, because the alternative
hypothesis is one-sided. The P-value is P = 1 − Φ(2.80) =
1 − 0.99744 = 0.00256. Thus H0 is rejected, and we con-
clude that the lot average breaking strength exceeds
200 psi.

If the variance of the population is unknown, we must make the additional assumption that the population is
normally distributed, although moderate departures from normality will not seriously affect the results.

To test H0 ∶ 𝜇 = 𝜇0 in the variance unknown case, the sample variance S2 is used to estimate 𝜎2. Replacing 𝜎

with S in Equation 2.35, we have the one-sample t-test statistic

t0 =
y − 𝜇0

S∕
√
n

(2.37)

The null hypothesis H0 ∶ 𝜇 = 𝜇0 would be rejected if |t0| > t
𝛼∕2,n−1, where t𝛼∕2,n−1 denotes the upper 𝛼∕2 percentage

point of the t distribution with n − 1 degrees of freedom. A P-value approach could also be used. The 100(1 − 𝛼)
percent confidence interval in this case is

y − t
𝛼∕2,n−1S∕

√
n ≤ 𝜇 ≤ y + t

𝛼∕2,n−1S∕
√
n (2.38)

2.4.7 Summary

Tables 2.4 and 2.5 summarize the t-test and z-test procedures discussed above for sample means. Critical regions are
shown for both two-sided and one-sided alternative hypotheses.
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◾ TABLE 2 . 4
Tests on Means with Variance Known

Hypothesis Test Statistic
Fixed Significance Level
Criteria for Rejection P-Value

H0∶𝜇 = 𝜇0

H1∶𝜇 ≠ 𝜇0 |Z0| > Z
𝛼∕2 P = 2[1 − Φ(|Z0|)]

H0∶𝜇 = 𝜇0

H1∶𝜇 < 𝜇0 Z0 =
y − 𝜇0

𝜎∕
√
n

Z0 < −Z
𝛼

P = Φ(Z0)
H0∶𝜇 = 𝜇0

H1∶𝜇 > 𝜇0 Z0 > Z
𝛼

P = 1 − Φ(Z0)

H0∶𝜇1 = 𝜇2

H1∶𝜇1 ≠ 𝜇2 |Z0| > Z
𝛼∕2 P = 2[1 − Φ(|Z0|)]

H0∶𝜇1 = 𝜇2

H1∶𝜇1 < 𝜇2 Z0 =
y1 − y2√
𝜎
2
1

n1
+

𝜎
2
2

n2

Z0 < −Z
𝛼

P = Φ(Z0)

H0∶𝜇1 = 𝜇2

H1∶𝜇1 > 𝜇2 Z0 > Z
𝛼

P = 1 − Φ(Z0)

◾ TABLE 2 . 5
Tests on Means of Normal Distributions, Variance Unknown

Hypothesis Test Statistic
Fixed Significance Level
Criteria for Rejection P-Value

H0∶𝜇 = 𝜇0 sum of the probability
H1∶𝜇 ≠ 𝜇0 |t0| > t

𝛼∕2,n−1 above t0 and below −t0
H0∶𝜇 = 𝜇0

H1∶𝜇 < 𝜇0 t0 =
y − 𝜇0

S∕
√
n

t0 < −t
𝛼,n−1 probability below t0

H0∶𝜇 = 𝜇0

H1∶𝜇 > 𝜇0 t0 > t
𝛼,n−1 probability above t0

if 𝜎2
1 = 𝜎

2
2

H0∶𝜇1 = 𝜇2

H1∶𝜇1 ≠ 𝜇2 t0 =
y1 − y2

Sp

√
1
n1

+ 1
n2

|t0| > t
𝛼∕2,𝑣 sum of the probability

above t0 and below −t0

𝑣 = n1 + n2 − 2

if 𝜎2
1 ≠ 𝜎

2
2

H0∶𝜇1 = 𝜇2

H1∶𝜇1 < 𝜇2 t0 =
y1 − y2√
S21
n1

+
S22
n2

t0 < −t
𝛼,𝑣

probability below t0

H0∶𝜇1 = 𝜇2

H1∶𝜇1 > 𝜇2 𝑣 =

(
S21
n1

+
S22
n2

)2

(S21∕n1)
2

n1 − 1
+

(S22∕n2)
2

n2 − 1

t0 > t
𝛼,𝑣

probability above t0
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2.5 Inferences About the Differences in Means,
Paired Comparison Designs

2.5.1 The Paired Comparison Problem

In some simple comparative experiments, we can greatly improve the precision bymaking comparisons withinmatched
pairs of experimental material. For example, consider a hardness testing machine that presses a rod with a pointed tip
into a metal specimen with a known force. By measuring the depth of the depression caused by the tip, the hardness of
the specimen is determined. Two different tips are available for this machine, and although the precision (variability)
of the measurements made by the two tips seems to be the same, it is suspected that one tip produces different mean
hardness readings than the other.

An experiment could be performed as follows. A number of metal specimens (e.g., 20) could be randomly
selected. Half of these specimens could be tested by tip 1 and the other half by tip 2. The exact assignment of specimens
to tips would be randomly determined. Because this is a completely randomized design, the average hardness of the
two samples could be compared using the t-test described in Section 2.4.

A little reflection will reveal a serious disadvantage in the completely randomized design for this problem. Sup-
pose the metal specimens were cut from different bar stock that were produced in different heats or that were not
exactly homogeneous in some other way that might affect the hardness. This lack of homogeneity between specimens
will contribute to the variability of the hardness measurements and will tend to inflate the experimental error, thus
making a true difference between tips harder to detect.

To protect against this possibility, consider an alternative experimental design. Assume that each specimen is
large enough so that two hardness determinations may be made on it. This alternative design would consist of dividing
each specimen into two parts, then randomly assigning one tip to one-half of each specimen and the other tip to the
remaining half. The order in which the tips are tested for a particular specimen would also be randomly selected. The
experiment, when performed according to this design with 10 specimens, produced the (coded) data shown in Table 2.6.

We may write a statistical model that describes the data from this experiment as

yij = 𝜇i + 𝛽j + 𝜖ij

{
i = 1, 2

j = 1, 2, . . . , 10
(2.39)

where yij is the observation on hardness for tip i on specimen j, 𝜇i is the true mean hardness of the ith tip, 𝛽j is an effect
on hardness due to the jth specimen, and 𝜖ij is a random experimental error with mean zero and variance 𝜎

2
i . That

is, 𝜎2
1 is the variance of the hardness measurements from tip 1, and 𝜎

2
2 is the variance of the hardness measurements

from tip 2.

◾ TABLE 2 . 6
Data for the Hardness Testing Experiment

Specimen Tip 1 Tip 2

1 7 6

2 3 3

3 3 5

4 4 3

5 8 8

6 3 2

7 2 4

8 9 9

9 5 4

10 4 5
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Note that if we compute the jth paired difference

dj = y1j − y2j j = 1, 2, . . . , 10 (2.40)

the expected value of this difference is

𝜇d = E(dj)
= E(y1j − y2j)
= E(y1j) − E(y2j)
= 𝜇1 + 𝛽j − (𝜇2 + 𝛽j)
= 𝜇1 − 𝜇2

That is, we may make inferences about the difference in the mean hardness readings of the two tips 𝜇1 − 𝜇2 by making
inferences about the mean of the differences 𝜇d. Notice that the additive effect of the specimens 𝛽j cancels out when
the observations are paired in this manner.

Testing H0 ∶ 𝜇1 = 𝜇2 is equivalent to testing

H0∶𝜇d = 0

H1∶𝜇d ≠ 0

This is a single-sample t-test. The test statistic for this hypothesis is

t0 =
d

Sd∕
√
n

(2.41)

where

d = 1
n

n∑
j=1

dj (2.42)

is the sample mean of the differences and

Sd =
⎡⎢⎢⎢⎣

n∑
j=1

(dj − d)2

n−1

⎤⎥⎥⎥⎦

1∕2

=
⎡⎢⎢⎢⎣

n∑
j=1

d2j −
1
n

(
n∑
j=1

dj

)2

n−1

⎤⎥⎥⎥⎦

1∕2

(2.43)

is the sample standard deviation of the differences.H0 ∶ 𝜇d = 0 would be rejected if |t0| > t
𝛼∕2,n−1. A P-value approach

could also be used. Because the observations from the factor levels are “paired” on each experimental unit, this pro-
cedure is usually called the paired t-test.

For the data in Table 2.6, we find

d1 = 7 − 6 = 1 d6 = 3 − 2 = 1

d2 = 3 − 3 = 0 d7 = 2 − 4 = −2

d3 = 3 − 5 = −2 d8 = 9 − 9 = 0

d4 = 4 − 3 = 1 d9 = 5 − 4 = 1

d5 = 8 − 8 = 0 d10 = 4 − 5 = −1

Thus,

d = 1
n

n∑
j=1

dj =
1
10

(−1) = −0.10

Sd =
⎡⎢⎢⎢⎣

n∑
j=1

d2j −
1
n

(
n∑
j=1

dj

)2

n − 1

⎤⎥⎥⎥⎦

1∕2

=
⎡⎢⎢⎣
13 − 1

10
(−1)2

10 − 1

⎤⎥⎥⎦

1∕2

= 1.20
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◾ F I GURE 2 . 15 The reference distribution (t
with 9 degrees of freedom) for the hardness testing
problem
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Suppose we choose 𝛼 = 0.05. Now to make a decision, we would compute t0 and reject H0 if |t0| > t0.025,9 =
2.262.

The computed value of the paired t-test statistic is

t0 =
d

Sd∕
√
n
= −0.10

1.20∕
√
10

= −0.26

and because |t0| = 0.26 ≯ t0.025,9 = 2.262, we cannot reject the hypothesis H0 ∶ 𝜇d = 0. That is, there is no evidence
to indicate that the two tips produce different hardness readings. Figure 2.15 shows the t0 distribution with 9 degrees
of freedom, the reference distribution for this test, with the value of t0 shown relative to the critical region.

Table 2.7 shows the computer output from the Minitab paired t-test procedure for this problem. Notice that
the P-value for this test is P ≃ 0.80, implying that we cannot reject the null hypothesis at any reasonable level of
significance.

2.5.2 Advantages of the Paired Comparison Design

The design actually used for this experiment is called the paired comparison design, and it illustrates the blocking
principle discussed in Section 1.3. Actually, it is a special case of a more general type of design called the randomized
block design. The term block refers to a relatively homogeneous experimental unit (in our case, the metal specimens
are the blocks), and the block represents a restriction on complete randomization because the treatment combinations
are only randomized within the block. We look at designs of this type in Chapter 4. In that chapter, the mathematical
model for the design, Equation 2.39, is written in a slightly different form.

Before leaving this experiment, several points should be made. Note that, although 2n = 2(10) = 20 observations
have been taken, only n − 1 = 9 degrees of freedom are available for the t statistic. (We know that as the degrees of

◾ TABLE 2 . 7
Minitab Paired t-Test Results for the Hardness Testing Example

Paired T for Tip 1-Tip 2

N Mean Std. Dev. SE Mean
Tip 1 10 4.800 2.394 0.757

Tip 2 10 4.900 2.234 0.706

Difference 10 -0.100 1.197 0.379

95% CI for mean difference: (-0.956, 0.756)

t-Test of mean difference = 0 (vs not = 0):
T-Value = -0.26 P-Value = 0.798
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freedom for t increase, the test becomesmore sensitive.) By blocking or pairing we have effectively “lost” n − 1 degrees
of freedom, but we hope we have gained a better knowledge of the situation by eliminating an additional source of
variability (the difference between specimens).

We may obtain an indication of the quality of information produced from the paired design by comparing the
standard deviation of the differences Sd with the pooled standard deviation Sp that would have resulted had the exper-
iment been conducted in a completely randomized manner and the data of Table 2.5 been obtained. Using the data in
Table 2.5 as two independent samples, we compute the pooled standard deviation from Equation 2.25 to be Sp = 2.32.
Comparing this value to Sd = 1.20, we see that blocking or pairing has reduced the estimate of variability by nearly
50 percent.

Generally, when we don’t block (or pair the observations) when we really should have, Sp will always be larger
than Sd. It is easy to show this formally. If we pair the observations, it is easy to show that S2d is an unbiased estimator
of the variance of the differences dj under the model in Equation 2.39 because the block effects (the 𝛽j) cancel out
when the differences are computed. However, if we don’t block (or pair) and treat the observations as two independent
samples, then S2p is not an unbiased estimator of 𝜎2 under the model in Equation 2.39. In fact, assuming that both
population variances are equal,

E(S2p) = 𝜎
2 +

n∑
j=1

𝛽
2
j

That is, the block effects 𝛽j inflate the variance estimate. This is why blocking serves as a noise reduction design
technique.

We may also express the results of this experiment in terms of a confidence interval on 𝜇1 − 𝜇2. Using the paired
data, a 95 percent confidence interval on 𝜇1 − 𝜇2 is

d ± t0.025,9Sd∕
√
n

−0.10 ± (2.262)(1.20)∕
√
10

−0.10 ± 0.86

Conversely, using the pooled or independent analysis, a 95 percent confidence interval on 𝜇1 − 𝜇2 is

y1 − y2 ± t0.025,18Sp

√
1
n1

+ 1
n2

4.80 − 4.90 ± (2.101)(2.32)
√

1
10

+ 1
10

−0.10 ± 2.18

The confidence interval based on the paired analysis is much narrower than the confidence interval from the indepen-
dent analysis. This again illustrates the noise reduction property of blocking.

Blocking is not always the best design strategy. If the within-block variability is the same as the between-block
variability, the variance of y1 − y2 will be the same regardless of which design is used. Actually, blocking in this
situation would be a poor choice of design because blocking results in the loss of n − 1 degrees of freedom and will
actually lead to a wider confidence interval on 𝜇1 − 𝜇2. A further discussion of blocking is given in Chapter 4.

2.6 Inferences About the Variances of Normal Distributions

In many experiments, we are interested in possible differences in the mean response for two treatments. However, in
some experiments it is the comparison of variability in the data that is important. In the food and beverage industry, for
example, it is important that the variability of filling equipment be small so that all packages have close to the nominal
net weight or volume of content. In chemical laboratories, we may wish to compare the variability of two analytical
methods. We now briefly examine tests of hypotheses and confidence intervals for variances of normal distributions.
Unlike the tests on means, the procedures for tests on variances are rather sensitive to the normality assumption. A
good discussion of the normality assumption is in Appendix 2A of Davies (1956).
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Suppose we wish to test the hypothesis that the variance of a normal population equals a constant, for example,
𝜎
2
0 . Stated formally, we wish to test

H0∶𝜎2 = 𝜎
2
0

H1∶𝜎2 ≠ 𝜎
2
0 (2.44)

The test statistic for Equation 2.44 is

𝜒
2
0 =

SS

𝜎
2
0

= (n − 1)S2

𝜎
2
0

(2.45)

where SS =
∑n

i=1 (yi − y)2 is the corrected sum of squares of the sample observations. The appropriate reference
distribution for 𝜒2

0 is the chi-square distribution with n − 1 degrees of freedom. The null hypothesis is rejected if
𝜒
2
0 > 𝜒

2
𝛼∕2,n−1 or if 𝜒

2
0 < 𝜒

2
1−(𝛼∕2),n−1, where 𝜒

2
𝛼∕2,n−1 and 𝜒

2
1−(𝛼∕2),n−1 are the upper 𝛼∕2 and lower 1 − (𝛼∕2) percent-

age points of the chi-square distribution with n − 1 degrees of freedom, respectively. Table 2.8 gives the critical regions
for the one-sided alternative hypotheses. The 100(1 − 𝛼) percent confidence interval on 𝜎2 is

(n − 1)S2

𝜒
2
𝛼∕2,n−1

≤ 𝜎
2 ≤

(n − 1)S2

𝜒
2
1−(𝛼∕2),n−1

(2.46)

Now consider testing the equality of the variances of two normal populations. If independent random samples
of size n1 and n2 are taken from populations 1 and 2, respectively, the test statistic for

H0∶𝜎2
1 = 𝜎

2
2

H1∶𝜎2
1 ≠ 𝜎

2
2 (2.47)

is the ratio of the sample variances

F0 =
S21
S22

(2.48)

The appropriate reference distribution for F0 is the F distribution with n1 − 1 numerator degrees of freedom
and n2 − 1 denominator degrees of freedom. The null hypothesis would be rejected if F0 > F

𝛼∕2,n1−1,n2−1
or if

◾ TABLE 2 . 8
Tests on Variances of Normal Distributions

Hypothesis Test Statistic
Fixed Significance Level
Criteria for Rejection

H0∶𝜎2 = 𝜎
2
0

H1∶𝜎2 ≠ 𝜎
2
0

𝜒
2
0 > 𝜒

2
𝛼∕2,n−1 or

𝜒
2
0 < 𝜒

2
1−𝛼∕2,n−1

H0∶𝜎2 = 𝜎
2
0

H1∶𝜎2
< 𝜎

2
0

𝜒
2
0 =

(n − 1)S2

𝜎
2
0

𝜒
2
0 < 𝜒

2
1−𝛼,n−1

H0∶𝜎2 = 𝜎
2
0

H1∶𝜎2
> 𝜎

2
0

𝜒
2
0 > 𝜒

2
𝛼,n−1

H0∶𝜎2
1 = 𝜎

2
2

H1∶𝜎2
1 ≠ 𝜎

2
2

F0 =
S21
S22

F0 > F
𝛼∕2,n1−1,n2−1 or

F0 < F1−𝛼∕2,n1−1,n2−1

H0∶𝜎2
1 = 𝜎

2
2

H1∶𝜎2
1 < 𝜎

2
2

F0 =
S22
S21

F0 > F
𝛼,n2−1,n1−1

H0∶𝜎2
1 = 𝜎

2
2

H1∶𝜎2
1 > 𝜎

2
2

F0 =
S21
S22

F0 > F
𝛼,n1−1,n2−1



�

� �

�

2.7 Problems 55

F0 < F1−(𝛼∕2),n1−1,n2−1
, where F

𝛼∕2,n1−1,n2−1
and F1−(𝛼∕2),n1−1,n2−1

denote the upper 𝛼∕2 and lower 1 − (𝛼∕2) percentage
points of the F distribution with n1 − 1 and n2 − 1 degrees of freedom. Table IV of the Appendix gives only upper-tail
percentage points of F; however, the upper- and lower-tail points are related by

F1−𝛼,𝑣1,𝑣2
= 1

F
𝛼,𝑣2,𝑣1

(2.49)

Critical values for the one-sided alternative hypothesis are given in Table 2.8. Test procedures for more than two
variances are discussed in Section 3.4.3. We will also discuss the use of the variance or standard deviation as a response
variable in more general experimental settings.

EXAMPLE 2 . 3

A chemical engineer is investigating the inherent variability
of two types of test equipment that can be used to monitor
the output of a production process. He suspects that the old
equipment, type 1, has a larger variance than the new one.
Thus, he wishes to test the hypothesis

H0∶𝜎
2
1 = 𝜎

2
2

H1∶𝜎
2
1 > 𝜎

2
2

Two random samples of n1 = 12 and n2 = 10 observa-
tions are taken, and the sample variances are S21 = 14.5 and

S22 = 10.8. The test statistic is

F0 =
S21
S22

= 14.5
10.8

= 1.34

FromAppendix Table IVwe find thatF0.05,11,9 = 3.10, so the
null hypothesis cannot be rejected. That is, we have found
insufficient statistical evidence to conclude that the variance
of the old equipment is greater than the variance of the new
equipment.

The 100(1 − 𝛼) confidence interval for the ratio of the population variances 𝜎2
1∕𝜎

2
2 is

S21
S22

F1−𝛼∕2,n2−1,n1−1
≤

𝜎
2
1

𝜎
2
2

≤
S21
S22

F
𝛼∕2,n2−1,n1−1

(2.50)

To illustrate the use of Equation 2.50, the 95 percent confidence interval for the ratio of variances 𝜎2
1∕𝜎

2
2 in Example 2.2

is, using F0.025,9,11 = 3.59 and F0.975,9,11 = 1∕F0.025,11,9 = 1∕3.92 = 0.255,

14.5
10.8

(0.225) ≤
𝜎
2
1

𝜎
2
2

≤
14.5
10.8

(3.59)

0.34 ≤
𝜎
2
1

𝜎
2
2

≤ 4.82

2.7 Problems

2.1 Computer output for a random sample of data is shown
below. Some of the quantities are missing. Compute the values
of the missing quantities.

Variable N Mean SE Mean Std. Dev. Variance Minimum Maximum

Y 9 19.96 ? 3.12 ? 15.94 27.16

2.2 Computer output for a random sample of data is shown
below. Some of the quantities are missing. Compute the values
of the missing quantities.

Variable N Mean SE Mean Std. Dev. Sum

Y 16 ? 0.159 ? 399.851
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2.3 Suppose that we are testing H0 ∶ 𝜇 = 𝜇0 versus
H1 ∶ 𝜇 ≠ 𝜇0. Calculate the P-value for the following observed
values of the test statistic:

(a) Z0 = 2.25 (b) Z0 = 1.55 (c) Z0 = 2.10

(d) Z0 = 1.95 (e) Z0 = −0.10

2.4 Suppose that we are testing H0 ∶ 𝜇 = 𝜇0 versus
H1 ∶ 𝜇 > 𝜇0. Calculate the P-value for the following observed
values of the test statistic:

(a) Z0 = 2.45 (b) Z0 = −1.53 (c) Z0 = 2.15

(d) Z0 = 1.95 (e) Z0 = −0.25

2.5 Consider the computer output shown below.

One-Sample Z

Test of mu = 30 vs not = 30

The assumed standard deviation = 1.2

N Mean SE Mean 95% CI Z P

16 31.2000 0.3000 (30.6120, 31.7880) ? ?

(a) Fill in the missing values in the output. What conclusion
would you draw?

(b) Is this a one-sided or two-sided test?

(c) Use the output and the normal table to find a 99 percent
CI on the mean.

(d) What is the P-value if the alternative hypothesis is H1 ∶
𝜇 > 30?

2.6 Suppose that we are testing H0 ∶ 𝜇1 = 𝜇2 versus
H0 ∶ 𝜇1 ≠ 𝜇2 where the two sample sizes are n1 = n2 = 12.
Both sample variances are unknown but assumed equal. Find
bounds on the P-value for the following observed values of the
test statistic.

(a) t0 = 2.30 (b) t0 = 3.41 (c) t0 = 1.95 (d) t0 = −2.45

2.7 Suppose that we are testing H0 ∶ 𝜇1 = 𝜇2 versus H0 ∶
𝜇1 > 𝜇2 where the two sample sizes are n1 = n2 = 10. Both
sample variances are unknown but assumed equal. Find
bounds on the P-value for the following observed values of
the test statistic.

(a) t0 = 2.31 (b) t0 = 3.60 (c) t0 = 1.95 (d) t0 = 2.19

2.8 Consider the following sample data: 9.37, 13.04,
11.69, 8.21, 11.18, 10.41, 13.15, 11.51, 13.21, and 7.75. Is it
reasonable to assume that this data is a sample from a normal
distribution? Is there evidence to support a claim that the mean
of the population is 10?

2.9 A computer program has produced the following
output for a hypothesis-testing problem:

Difference in sample means: 2.35

Degrees of freedom: 18

Standard error of the difference in sample means: ?

Test statistic: t0 = 2.01

P-value: 0.0298

(a) What is the missing value for the standard error?

(b) Is this a two-sided or a one-sided test?

(c) If 𝛼 = 0.05, what are your conclusions?

(d) Find a 90% two-sided CI on the difference in means.

2.10 A computer program has produced the following
output for a hypothesis-testing problem:

Difference in sample means: 11.5

Degrees of freedom: 24

Standard error of the difference in sample means: ?

Test statistic: t0 = -1.88

P-value: 0.0723

(a) What is the missing value for the standard error?

(b) Is this a two-sided or a one-sided test?

(c) If 𝛼 = 0.05, what are your conclusions?

(d) Find a 95% two-sided CI on the difference in means.

2.11 A two-sample t-test has been conducted and the sam-
ple sizes are n1 = n2 = 10. The computed value of the test
statistic is t0 = 2.15. If the null hypothesis is two-sided, an
upper bound on the P-value is

(a) 0.10 (b) 0.05 (c) 0.025

(d) 0.01 (e) none of the above.

2.12 A two-sample t-test has been conducted and the sample
sizes are n1 = n2 = 12 The computed value of the test statis-
tic is t0 = 2.27. If the null hypothesis is two-sided, an upper
bound on the P-value is

(a) 0.10 (b) 0.05 (c) 0.025

(d) 0.01 (e) none of the above.

2.13 Suppose that we are testing H0 ∶ 𝜇 = 𝜇0 versus H1 ∶
𝜇 > 𝜇0 with a sample size of n = 15. Calculate bounds on the
P-value for the following observed values of the test statistic:

(a) t0 = 2.35 (b) t0 = 3.55 (c) t0 = 2.00 (d) t0 = 1.55

2.14 Suppose that we are testing H0 ∶ 𝜇 = 𝜇0 versus
H1 ∶ 𝜇 ≠ 𝜇0 with a sample size of n = 10. Calculate bounds
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on the P-value for the following observed values of the test
statistic:

(a) t0 = 2.48 (b) t0 = −3.95 (c) t0 = 2.69

(d) t0 = 1.88 (e) t0 = −1.25

2.15 Consider the computer output shown below.

One-Sample T: Y

Test of mu = 91 vs. not = 91

Variable N Mean Std. Dev. SE Mean 95% CI T P

Y 25 92.5805 ? 0.4673 (91.6160, ?) 3.38 0.002

(a) Fill in the missing values in the output. Can the null
hypothesis be rejected at the 0.05 level? Why?

(b) Is this a one-sided or a two-sided test?

(c) If the hypotheses had been H0 ∶ 𝜇 = 90 versus H1 ∶
𝜇 ≠ 90, would you reject the null hypothesis at the 0.05
level?,

(d) Use the output and the t table to find a 99 percent
two-sided CI on the mean.

(e) What is the P-value if the alternative hypothesis is H1 ∶
𝜇 > 91?

2.16 Consider the computer output shown below.

One-Sample T: Y

Test of mu = 25 vs. > 25

95% Lower

Variable N Mean Std. Dev. SE Mean Bound T P

Y 12 25.6818 ? 0.3360 ? ? 0.034

(a) How many degrees of freedom are there on the t-test
statistic?

(b) Fill in the missing information.

2.17 Consider the computer output shown below.

Two-Sample T-Test and Cl: Y1, Y2

Two-sample T for Y1 vs Y2

N Mean Std. Dev. SE Mean

Y1 20 50.19 1.71 0.38

Y2 20 52.52 2.48 0.55

Difference = mu (X1) - mu (X2)

Estimate for difference: - 2.33341

95% CI for difference: (- 3.69547, - 0.97135)

T-Test of difference = 0 (vs not =): T-Value = -3.47

P-Value = 0.001 DF = 38

Both use Pooled Std. Dev. = 2.1277

(a) Can the null hypothesis be rejected at the 0.05 level?
Why?

(b) Is this a one-sided or a two-sided test?

(c) If the hypotheses had been H0 ∶ 𝜇1 − 𝜇2 = 2 versus
H1 ∶ 𝜇1 − 𝜇2 ≠ 2, would you reject the null hypothesis
at the 0.05 level?,

(d) If the hypotheses had been H0 ∶ 𝜇1 − 𝜇2 = 2 versus
H1 ∶ 𝜇1 − 𝜇2 < 2, would you reject the null hypothesis
at the 0.05 level? Can you answer this question without
doing any additional calculations? Why?

(e) Use the output and the t table to find a 95 percent upper
confidence bound on the difference in means.

(f) What is the P-value if the hypotheses are H0 ∶ 𝜇1 −
𝜇2 = 2 versus H1 ∶ 𝜇1 − 𝜇2 ≠ 2?

2.18 The breaking strength of a fiber is required to be at
least 150 psi. Past experience has indicated that the standard
deviation of breaking strength is 𝜎 = 3 psi. A random sample
of four specimens is tested, and the results are y1 = 145, y2 =
153, y3 = 150, and y4 = 147.

(a) State the hypotheses that you think should be tested in
this experiment.

(b) Test these hypotheses using 𝛼 = 0.05. What are your
conclusions?

(c) Find the P-value for the test in part (b).

(d) Construct a 95 percent confidence interval on the mean
breaking strength.

2.19 The viscosity of a liquid detergent is supposed to aver-
age 800 centistokes at 25∘C. A random sample of 16 batches
of detergent is collected, and the average viscosity is 812.
Suppose we know that the standard deviation of viscosity is
𝜎 = 25 centistokes.

(a) State the hypotheses that should be tested.

(b) Test these hypotheses using 𝛼 = 0.05. What are your
conclusions?

(c) What is the P-value for the test?

(d) Find a 95 percent confidence interval on the mean.

2.20 The diameters of steel shafts produced by a certain
manufacturing process should have a mean diameter of 0.255
inches. The diameter is known to have a standard deviation of
𝜎 = 0.0001 inch. A random sample of 10 shafts has an average
diameter of 0.2545 inches.

(a) Set up appropriate hypotheses on the mean 𝜇.

(b) Test these hypotheses using 𝛼 = 0.05. What are your
conclusions?
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(c) Find the P-value for this test.

(d) Construct a 95 percent confidence interval on the mean
shaft diameter.

2.21 A normally distributed random variable has an
unknown mean 𝜇 and a known variance 𝜎2 = 9. Find the sam-
ple size required to construct a 95 percent confidence interval
on the mean that has a total length of 1.0.

2.22 The shelf life of a carbonated beverage is of interest.
Ten bottles are randomly selected and tested, and the following
results are obtained:

Days

108 138
124 163
124 159
106 134
115 139

(a) We would like to demonstrate that the mean shelf life
exceeds 120 days. Set up appropriate hypotheses for
investigating this claim.

(b) Test these hypotheses using 𝛼 = 0.01. What are your
conclusions?

(c) Find the P-value for the test in part (b).

(d) Construct a 99 percent confidence interval on the mean
shelf life.

2.23 Consider the shelf life data in Problem 2.22. Can shelf
life be described or modeled adequately by a normal distribu-
tion? What effect would the violation of this assumption have
on the test procedure you used in solving Problem 2.17?

2.24 The time to repair an electronic instrument is a nor-
mally distributed random variable measured in hours. The
repair times for 16 such instruments chosen at random are as
follows:

Hours

159 280 101 212
224 379 179 264
222 362 168 250
149 260 485 170

(a) You wish to know if the mean repair time exceeds 225
hours. Set up appropriate hypotheses for investigating
this issue.

(b) Test the hypotheses you formulated in part (a). What are
your conclusions? Use 𝛼 = 0.05.

(c) Find the P-value for the test.

(d) Construct a 95 percent confidence interval on mean
repair time.

2.25 Reconsider the repair time data in Problem 2.24. Can
repair time, in your opinion, be adequately modeled by a nor-
mal distribution?

2.26 Two machines are used for filling plastic bottles with
a net volume of 16.0 ounces. The filling processes can be
assumed to be normal, with standard deviations of 𝜎1 = 0.015
and 𝜎2 = 0.018. The quality engineering department suspects
that both machines fill to the same net volume, whether
or not this volume is 16.0 ounces. An experiment is per-
formed by taking a random sample from the output of each
machine.

Machine 1 Machine 2

16.03 16.01 16.02 16.03

16.04 15.96 15.97 16.04

16.05 15.98 15.96 16.02

16.05 16.02 16.01 16.01

16.02 15.99 15.99 16.00

(a) State the hypotheses that should be tested in this
experiment.

(b) Test these hypotheses using 𝛼 = 0.05. What are your
conclusions?

(c) Find the P-value for this test.

(d) Find a 95 percent confidence interval on the difference
in mean fill volume for the two machines.

2.27 Two types of plastic are suitable for use by an elec-
tronic calculator manufacturer. The breaking strength of this
plastic is important. It is known that 𝜎1 = 𝜎2 = 1.0 psi. From
random samples of n1 = 10 and n2 = 12, we obtain y1 = 162.5
and y2 = 155.0. The company will not adopt plastic 1 unless
its breaking strength exceeds that of plastic 2 by at least 10 psi.
Based on the sample information, should they use plastic 1? In
answering this question, set up and test appropriate hypotheses
using 𝛼 = 0.01. Construct a 99 percent confidence interval on
the true mean difference in breaking strength.

2.28 The following are the burning times (in minutes) of
chemical flares of two different formulations. The design engi-
neers are interested in both the mean and variance of the
burning times.
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Type 1 Type 2

65 82 64 56

81 67 71 69

57 59 83 74

66 75 59 82

82 70 65 79

(a) Test the hypothesis that the two variances are equal. Use
𝛼 = 0.05.

(b) Using the results of (a), test the hypothesis that the
mean burning times are equal. Use 𝛼 = 0.05. What is
the P-value for this test?

(c) Discuss the role of the normality assumption in this
problem. Check the assumption of normality for both
types of flares.

2.29 An article in Solid State Technology, “Orthogonal
Design for Process Optimization and Its Application to Plasma
Etching” by G. Z. Yin and D. W. Jillie (May 1987) describes
an experiment to determine the effect of the C2F6 flow rate on
the uniformity of the etch on a silicon wafer used in integrated
circuit manufacturing. All of the runs were made in random
order. Data for two flow rates are as follows:

Uniformity ObservationC2F6 Flow
(SCCM) 1 2 3 4 5 6

125 2.7 4.6 2.6 3.0 3.2 3.8

200 4.6 3.4 2.9 3.5 4.1 5.1

(a) Does the C2F6 flow rate affect average etch uniformity?
Use 𝛼 = 0.05.

(b) What is the P-value for the test in part (a)?

(c) Does the C2F6 flow rate affect the wafer-to-wafer vari-
ability in etch uniformity? Use 𝛼 = 0.05.

(d) Draw box plots to assist in the interpretation of the data
from this experiment.

2.30 A new filtering device is installed in a chemical unit.
Before its installation, a random sample yielded the follow-
ing information about the percentage of impurity: y1 = 12.5,
S21 = 101.17, and n1 = 8. After installation, a random sample
yielded y2 = 10.2, S22 = 94.73, n2 = 9.

(a) Can you conclude that the two variances are equal? Use
𝛼 = 0.05.

(b) Has the filtering device reduced the percentage of impu-
rity significantly? Use 𝛼 = 0.05.

2.31 Photoresist is a light-sensitivematerial applied to semi-
conductor wafers so that the circuit pattern can be imaged
on to the wafer. After application, the coated wafers are
baked to remove the solvent in the photoresist mixture and
to harden the resist. Here are measurements of photoresist
thickness (in kA) for eight wafers baked at two different tem-
peratures. Assume that all of the runs were made in random
order.

95∘C 100∘C

11.176 5.263

7.089 6.748

8.097 7.461

11.739 7.015

11.291 8.133

10.759 7.418

6.467 3.772

8.315 8.963

(a) Is there evidence to support the claim that the higher
baking temperature results in wafers with a lower mean
photoresist thickness? Use 𝛼 = 0.05.

(b) What is the P-value for the test conducted in part (a)?

(c) Find a 95 percent confidence interval on the difference
in means. Provide a practical interpretation of this inter-
val.

(d) Draw dot diagrams to assist in interpreting the results
from this experiment.

(e) Check the assumption of normality of the photoresist
thickness.

(f) Find the power of this test for detecting an actual differ-
ence in means of 2.5 kA.

(g) What sample size would be necessary to detect an actual
difference in means of 1.5 kA with a power of at least
0.9?

2.32 Front housings for cell phones are manufactured in
an injection molding process. The time the part is allowed to
cool in the mold before removal is thought to influence the
occurrence of a particularly troublesome cosmetic defect, flow
lines, in the finished housing. After manufacturing, the hous-
ings are inspected visually and assigned a score between 1 and
10 based on their appearance, with 10 corresponding to a per-
fect part and 1 corresponding to a completely defective part.
An experiment was conducted using two cool-down times, 10
and 20 seconds, and 20 housings were evaluated at each level
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of cool-down time. All 40 observations in this experiment were
run in random order. The data are as follows.

10 seconds 20 seconds

1 3 7 6

2 6 8 9

1 5 5 5

3 3 9 7

5 2 5 4

1 1 8 6

5 6 6 8

2 8 4 5

3 2 6 8

5 3 7 7

(a) Is there evidence to support the claim that the longer
cool-down time results in fewer appearance defects?
Use 𝛼 = 0.05.

(b) What is the P-value for the test conducted in part (a)?

(c) Find a 95 percent confidence interval on the differ-
ence in means. Provide a practical interpretation of this
interval.

(d) Draw dot diagrams to assist in interpreting the results
from this experiment.

(e) Check the assumption of normality for the data from this
experiment.

2.33 Twenty observations on etch uniformity on silicon
wafers are taken during a qualification experiment for a plasma
etcher. The data are as follows:

5.34 6.65 4.76 5.98 7.25

6.00 7.55 5.54 5.62 6.21

5.97 7.35 5.44 4.39 4.98

5.25 6.35 4.61 6.00 5.32

(a) Construct a 95 percent confidence interval estimate of
𝜎
2.

(b) Test the hypothesis that 𝜎2 = 1.0. Use 𝛼 = 0.05. What
are your conclusions?

(c) Discuss the normality assumption and its role in this
problem.

(d) Check normality by constructing a normal probability
plot. What are your conclusions?

2.34 The diameter of a ball bearing was measured by 12
inspectors, each using two different kinds of calipers. The
results are as follows:

Inspector Caliper 1 Caliper 2

1 0.265 0.264

2 0.265 0.265

3 0.266 0.264

4 0.267 0.266

5 0.267 0.267

6 0.265 0.268

7 0.267 0.264

8 0.267 0.265

9 0.265 0.265

10 0.268 0.267

11 0.268 0.268

12 0.265 0.269

(a) Is there a significant difference between themeans of the
population of measurements from which the two sam-
ples were selected? Use 𝛼 = 0.05.

(b) Find the P-value for the test in part (a).

(c) Construct a 95 percent confidence interval on the differ-
ence in mean diameter measurements for the two types
of calipers.

2.35 An article in the journal Neurology (1998, Vol. 50,
pp. 1246–1252) observed that monozygotic twins share
numerous physical, psychological, and pathological traits. The
investigators measured an intelligence score of 10 pairs of
twins. The data obtained are as follows:

Pair Birth Order: 1 Birth Order: 2

1 6.08 5.73

2 6.22 5.80

3 7.99 8.42

4 7.44 6.84

5 6.48 6.43

6 7.99 8.76

7 6.32 6.32

8 7.60 7.62

9 6.03 6.59

10 7.52 7.67

(a) Is the assumption that the difference in score is normally
distributed reasonable?
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(b) Find a 95% confidence interval on the difference in
mean score. Is there any evidence that mean score
depends on birth order?

(c) Test an appropriate set of hypotheses indicating that the
mean score does not depend on birth order.

2.36 An article in the Journal of Strain Analysis (Vol. 18,
no. 2, 1983) compares several procedures for predicting the
shear strength for steel plate girders. Data for nine girders in
the form of the ratio of predicted to observed load for two of
these procedures, the Karlsruhe and Lehigh methods, are as
follows:

Girder Karlsruhe Method Lehigh Method

S1/1 1.186 1.061

S2/1 1.151 0.992

S3/1 1.322 1.063

S4/1 1.339 1.062

S5/1 1.200 1.065

S2/1 1.402 1.178

S2/2 1.365 1.037

S2/3 1.537 1.086

S2/4 1.559 1.052

(a) Is there any evidence to support a claim that there is a
difference in mean performance between the two meth-
ods? Use 𝛼 = 0.05.

(b) What is the P-value for the test in part (a)?

(c) Construct a 95 percent confidence interval for the dif-
ference in mean predicted to observed load.

(d) Investigate the normality assumption for both samples.

(e) Investigate the normality assumption for the difference
in ratios for the two methods.

(f) Discuss the role of the normality assumption in the
paired t-test.

2.37 The deflection temperature under load for two differ-
ent formulations of ABS plastic pipe is being studied. Two
samples of 12 observations each are prepared using each for-
mulation and the deflection temperatures (in ∘F) are reported
below:

Formulation 1 Formulation 2

206 193 192 177 176 198

188 207 210 197 185 188

205 185 194 206 200 189

187 189 178 201 197 203

(a) Construct normal probability plots for both samples. Do
these plots support assumptions of normality and equal
variance for both samples?

(b) Do the data support the claim that the mean deflection
temperature under load for formulation 1 exceeds that
of formulation 2? Use 𝛼 = 0.05.

(c) What is the P-value for the test in part (a)?

2.38 Refer to the data in Problem 2.37. Do the data support
a claim that the mean deflection temperature under load for
formulation 1 exceeds that of formulation 2 by at least 3∘F?
2.39 In semiconductor manufacturing, wet chemical
etching is often used to remove silicon from the backs of
wafers prior to metalization. The etch rate is an important
characteristic of this process. Two different etching solutions
are being evaluated. Eight randomly selected wafers have
been etched in each solution, and the observed etch rates (in
mils/min) are as follows.

Solution 1 Solution 2

9.9 10.6 10.2 10.6

9.4 10.3 10.0 10.2

10.0 9.3 10.7 10.4

10.3 9.8 10.5 10.3

(a) Do the data indicate that the claim that both solutions
have the same mean etch rate is valid? Use 𝛼 = 0.05 and
assume equal variances.

(b) Find a 95 percent confidence interval on the difference
in mean etch rates.

(c) Use normal probability plots to investigate the adequacy
of the assumptions of normality and equal variances.

2.40 Two popular pain medications are being compared on
the basis of the speed of absorption by the body. Specifically,
tablet 1 is claimed to be absorbed twice as fast as tablet 2.
Assume that 𝜎2

1 and 𝜎
2
2 are known. Develop a test statistic for

H0∶2𝜇1 = 𝜇2

H1∶2𝜇1 ≠ 𝜇2

2.41 Continuation of Problem 2.40. An article in Nature
(1972, pp. 225–226) reported on the levels of monoamine
oxidase in blood platelets for a sample of 43 schizophrenic
patients resulting in y1 = 2.69 and s1 = 2.30 while for a sam-
ple of 45 normal patients the results were y2 = 6.35 and
s2 = 4.03. The units are nm/mg protein/h. Use the results
of the previous problem to test the claim that the mean
monoamine oxidase level for normal patients is at least
twice the mean level for schizophrenic patients. Assume that
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the sample sizes are large enough to use the sample standard
deviations as the true parameter values.

2.42 Suppose we are testing

H0 ∶ 𝜇1 = 𝜇2

H1 ∶ 𝜇1 ≠ 𝜇2

where 𝜎
2
1 > 𝜎

2
2 are known. Our sampling resources are con-

strained such that n1 + n2 = N. Show that an allocation of the
observations n1 and n2 to the two samples leads to the most
powerful test is in the ratio n1∕n2 = 𝜎1∕𝜎2.
2.43 Continuation of Problem 2.42. Suppose that we want
to construct a 95% two-sided confidence interval on the differ-
ence in two means where the two sample standard deviations
are known to be 𝜎1 = 4 and 𝜎2 = 8. The total sample size is
restricted to N = 30. What is the length of the 95% CI if the
sample sizes used by the experimenter are n1 = n2 = 15? How
much shorter would the 95% CI have been if the experimenter
had used an optimal sample size allocation?

2.44 Develop Equation 2.46 for a 100(1 − 𝛼) percent confi-
dence interval for the variance of a normal distribution.

2.45 Develop Equation 2.50 for a 100(1 − 𝛼) percent con-
fidence interval for the ratio 𝜎

2
1∕𝜎

2
2 , where 𝜎

2
1 and 𝜎

2
1 are the

variances of two normal distributions.

2.46 Develop an equation for finding a 100(1 − 𝛼) percent
confidence interval on the difference in the means of two nor-
mal distributions where 𝜎

2
1 ≠ 𝜎

2
2 . Apply your equation to the

Portland cement experiment data, and find a 95 percent confi-
dence interval.

2.47 Construct a data set for which the paired t-test statis-
tic is very large, but for which the usual two-sample or pooled
t-test statistic is small. In general, describe how you created the
data. Does this give you any insight regarding how the paired
t-test works?

2.48 Consider the experiment described in Problem 2.28. If
the mean burning times of the two flares differ by as much as
2 minutes, find the power of the test. What sample size would
be required to detect an actual difference in mean burning time
of 1 minute with a power of at least 0.90?

2.49 Reconsider the bottle filling experiment described in
Problem 2.26. Rework this problem assuming that the two pop-
ulation variances are unknown but equal.

2.50 Consider the data from Problem 2.26. If the mean
fill volume of the two machines differ by as much as
0.25 ounces, what is the power of the test used in Prob-
lem 2.21? What sample size would result in a power of
at least 0.9 if the actual difference in mean fill volume is
0.25 ounces?

2.51 An experiment has been performed with a factor that
has only two levels. Samples of size n1 = n2 = 12 have been
taken, and the resulting sample data is as follows:

y1 = 12.5, y2 = 13.1, S1 = 1.8, S2 = 2.1.

Can you conclude that there is no difference in means using
𝛼 = 0.05? What are bounds on the P-value for this test? Find
a 95 percent confidence interval on the difference in the two
means. Does the confidence interval provide any information
that is useful in interpreting the test of the hypothesis on the
difference in the two means?

2.52 Reconsider the situation in Problem 2.51. Suppose that
the two sample sizes were n1 = n2 = 5. What difference in
conclusions (if any) would you have obtained from the hypoth-
esis test? From the confidence interval?

2.53 Suppose that you are testing the hypothesis H0 ∶
𝜇 = 50 against the usual two-sided alternative. The data are
normally distributed with known standard deviation 𝜎 = 1.
The sample average obtained in the experiment is 50.5, and it
is known that if the true population mean is actually 50.5, then
this has no practical significance on the problem that motivated
the experiment. Find the P-value for the t-test for the following
sample sizes:

(a) n = 5 (b) n = 10 (c) n = 25

(d) n = 50 (e) n = 100 (f) n = 1000

Discuss your findings. What does this tell you about relying
on P-values in hypothesis testing situations when sample sizes
are large?

2.54 Consider the situation in Problem 2.53. Calculate the
95 percent confidence interval on themean for each of the sam-
ple sizes given. How does the length of the confidence interval
change with sample size?

2.55 Is the assumption of sampling from a normal distri-
bution critical in the application of the t-test? Justify your
answer.

2.56 Why is the random sampling assumption important in
statistical inference? Suppose that you had to select a random
sample of 100 items from a production line. How would you
propose to do this? Should you take into account factors such
as the production rate, or whether the line operates continu-
ously or only intermittently?

2.57 An experiment has been performed with a factor that
has only two levels. Samples of size n1 = n2 = 10 have been
taken, and the resulting sample data is as follows:

y1 = 10.7, y2 = 15.1, S1 = 1.5, S2 = 4.1.
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It seems likely that the two population variances are not
the same. Can you conclude that there is no difference inmeans
using 𝛼 = 0.05? What are bounds on the P-value for this test?
Find a 95 percent confidence interval on the difference in the
two means. Does the confidence interval provide any informa-
tion that is useful in interpreting the test of the hypothesis on
the difference in the two means?

2.58 Do you think that using a significance level of 𝛼 = 0.05
is appropriate for all experiments? In the early stages of
research and development work, is there a lot of harm in

identifying a factor as important when it really isn’t? Would
that seem to justify higher levels of significance such as
𝛼 = 0.10 or perhaps even 𝛼 = 0.15 in some situations?

2.59 Power calculation for hypothesis testing are relatively
easy to do with modern statistical software. What do you think
“adequate power” should be for an experiment? What issues
need to be considered in answering this question?

2.60 In the early stages of research and development
experimentation, which type of error do you think is most
important, type I or type II? Justify your answer.



�

� �

�

C H A P T E R 3

E x p e r i m e n t s w i t h a S i n g l e
F a c t o r : T h e A n a l y s i s
o f Va r i a n c e

CHAPTER OUTLINE
3.1 AN EXAMPLE

3.2 THE ANALYSIS OF VARIANCE

3.3 ANALYSIS OF THE FIXED EFFECTS MODEL
3.3.1 Decomposition of the Total Sum of Squares
3.3.2 Statistical Analysis
3.3.3 Estimation of the Model Parameters
3.3.4 Unbalanced Data

3.4 MODEL ADEQUACY CHECKING
3.4.1 The Normality Assumption
3.4.2 Plot of Residuals in Time Sequence
3.4.3 Plot of Residuals Versus Fitted Values
3.4.4 Plots of Residuals Versus Other Variables

3.5 PRACTICAL INTERPRETATION OF RESULTS
3.5.1 A Regression Model
3.5.2 Comparisons Among Treatment Means
3.5.3 Graphical Comparisons of Means
3.5.4 Contrasts
3.5.5 Orthogonal Contrasts
3.5.6 Scheffé’s Method for Comparing All Contrasts
3.5.7 Comparing Pairs of Treatment Means
3.5.8 Comparing Treatment Means with a Control

3.6 SAMPLE COMPUTER OUTPUT

3.7 DETERMINING SAMPLE SIZE
3.7.1 Operating Characteristic and Power Curves
3.7.2 Confidence Interval Estimation Method

3.8 OTHER EXAMPLES OF SINGLE-FACTOR
EXPERIMENTS

3.8.1 Chocolate and Cardiovascular Health
3.8.2 A Real Economy Application of a Designed

Experiment
3.8.3 Discovering Dispersion Effects

3.9 THE RANDOM EFFECTS MODEL
3.9.1 A Single Random Factor
3.9.2 Analysis of Variance for the Random Model
3.9.3 Estimating the Model Parameters

3.10 THE REGRESSION APPROACH TO THE ANALYSIS
OF VARIANCE
3.10.1 Least Squares Estimation of the Model

Parameters
3.10.2 The General Regression Significance Test

3.11 NONPARAMETRIC METHODS IN THE ANALYSIS
OF VARIANCE
3.11.1 The Kruskal–Wallis Test
3.11.2 General Comments on the Rank

Transformation

SUPPLEMENTAL MATERIAL FOR CHAPTER 3
S3.1 The Definition of Factor Effects
S3.2 Expected Mean Squares
S3.3 Confidence Interval for 𝜎2

S3.4 Simultaneous Confidence Intervals on Treatment Means
S3.5 Regression Models for a Quantitative Factor
S3.6 More About Estimable Functions
S3.7 Relationship Between Regression and Analysis of

Variance

The supplemental material is on the textbook website www.wiley.com/college/montgomery.

CHAPTER LEARNING OBJECTIVES
1. Understand how to set up and run a completely randomized experiment.

2. Understand how to perform a single-factor analysis of variance for a completely randomized design.
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3. Know the assumptions underlying the ANOVA and how to check for departures from these
assumptions.

4. Know how to apply methods for post-ANOVA comparisons for individual differences between
means.

5. Know how to interpret computer output from some standard statistics packages.

6. Understand several approaches for determining appropriate sample sizes in designed experiments.

In Chapter 2, we discussed methods for comparing two conditions or treatments. For example, the Portland cement
tension bond experiment involved two different mortar formulations. Another way to describe this experiment is as

a single-factor experiment with two levels of the factor, where the factor is mortar formulation and the two levels are
the two different formulation methods. Many experiments of this type involve more than two levels of the factor. This
chapter focuses on methods for the design and analysis of single-factor experiments with an arbitrary number a levels
of the factor (or a treatments). We will assume that the experiment has been completely randomized.

3.1 An Example

In many integrated circuit manufacturing steps, wafers are completely coated with a layer of material such as silicon
dioxide or a metal. The unwanted material is then selectively removed by etching through a mask, thereby creating
circuit patterns, electrical interconnects, and areas in which diffusions or metal depositions are to be made. A plasma
etching process is widely used for this operation, particularly in small geometry applications. Figure 3.1 shows the
important features of a typical single-wafer etching tool. Energy is supplied by a radio-frequency (RF) generator
causing plasma to be generated in the gap between the electrodes. The chemical species in the plasma are determined
by the particular gases used. Fluorocarbons, such as CF4 (tetrafluoromethane) or C2F6 (hexafluoroethane), are often
used in plasma etching, but other gases and mixtures of gases are relatively common, depending on the application.

An engineer is interested in investigating the relationship between the RF power setting and the etch rate for
this tool. The objective of an experiment like this is to model the relationship between etch rate and RF power and to
specify the power setting that will give a desired target etch rate. She is interested in a particular gas (C2F6) and gap
(0.80 cm) and wants to test four levels of RF power: 160, 180, 200, and 220 W. She decided to test five wafers at each
level of RF power.

This is an example of a single-factor experiment with a = 4 levels of the factor and n = 5 replicates. The 20 runs
should be made in random order. A very efficient way to generate the run order is to enter the 20 runs in a spreadsheet
(Excel), generate a column of random numbers using the RAND () function, and then sort by that column.

Gas supply

Gas control panel

RF
generator

Anode

Wafer
Cathode

Valve

Vacuum pump

◾ F I G U R E 3 . 1 A single-wafer plasma etching tool
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Suppose that the test sequence obtained from this process is given as below:

Test Sequence
Excel Random
Number (Sorted) Power

1 12417 200
2 18369 220
3 21238 220
4 24621 160
5 29337 160
6 32318 180
7 36481 200
8 40062 160
9 43289 180

10 49271 200
11 49813 220
12 52286 220
13 57102 160
14 63548 160
15 67710 220
16 71834 180
17 77216 180
18 84675 180
19 89323 200
20 94037 200

This randomized test sequence is necessary to prevent the effects of unknown nuisance variables, perhaps varying
out of control during the experiment, from contaminating the results. To illustrate this, suppose that we were to run
the 20 test wafers in the original nonrandomized order (that is, all five 160 W power runs are made first, all five 180
W power runs are made next, and so on). If the etching tool exhibits a warm-up effect such that the longer it is on,
the lower the observed etch rate readings will be, the warm-up effect will potentially contaminate the data and destroy
the validity of the experiment.

Suppose that the engineer runs the experiment that we have designed in the indicated random order. The obser-
vations that she obtains on etch rate are shown in Table 3.1.

It is always a good idea to examine experimental data graphically. Figure 3.2a presents box plots for etch rate at
each level of RF power and Figure 3.2b presents a scatter diagram of etch rate versus RF power. Both graphs indicate
that etch rate increases as the power setting increases. There is no strong evidence to suggest that the variability in
etch rate around the average depends on the power setting. On the basis of this simple graphical analysis, we strongly
suspect that (1) RF power setting affects the etch rate and (2) higher power settings result in increased etch rate.

Suppose that we wish to be more objective in our analysis of the data. Specifically, suppose that we wish to
test for differences between the mean etch rates at all a = 4 levels of RF power. Thus, we are interested in testing the
equality of all four means. It might seem that this problem could be solved by performing a t-test for all six possible
pairs of means. However, this is not the best solution to this problem. First of all, performing all six pairwise t-tests is
inefficient. It takes a lot of effort. Second, conducting all these pairwise comparisons inflates the type I error. Suppose
that all four means are equal, so if we select 𝛼 = 0.05, the probability of reaching the correct decision on any single
comparison is 0.95. However, the probability of reaching the correct conclusion on all six comparisons is considerably
less than 0.95, so the type I error is inflated.



�

� �

�

3.2 The Analysis of Variance 67

◾ T A B L E 3 . 1
Etch Rate Data (in Å/min) from the Plasma Etching Experiment

ObservationsPower
(W) 1 2 3 4 5 Totals Averages

160 575 542 530 539 570 2756 551.2
180 565 593 590 579 610 2937 587.4
200 600 651 610 637 629 3127 625.4
220 725 700 715 685 710 3535 707.0
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◾ F I G U R E 3 . 2 Box plots and scatter diagram of the etch rate data

The appropriate procedure for testing the equality of several means is the analysis of variance. However, the
analysis of variance has a much wider application than the problem above. It is probably the most useful technique in
the field of statistical inference.

3.2 The Analysis of Variance

Suppose we have a treatments or different levels of a single factor that we wish to compare. The observed response
from each of the a treatments is a random variable. The data would appear as in Table 3.2. An entry in Table 3.2 (e.g.,
yij) represents the jth observation taken under factor level or treatment i. There will be, in general, n observations under
the ith treatment. Notice that Table 3.2 is the general case of the data from the plasma etching experiment in Table 3.1.

Models for the Data. We will find it useful to describe the observations from an experiment with a model.
One way to write this model is

yij = 𝜇i + 𝜖ij

{
i = 1, 2, . . . , a

j = 1, 2, . . . , n
(3.1)

where yij is the ijth observation, 𝜇i is the mean of the ith factor level or treatment, and 𝜖ij is a random error com-
ponent that incorporates all other sources of variability in the experiment including measurement, variability arising
from uncontrolled factors, differences between the experimental units (such as test material) to which the treatments
are applied, and the general background noise in the process (such as variability over time, effects of environmental
variables). It is convenient to think of the errors as having mean zero, so that E(yij) = 𝜇i.

Equation 3.1 is called the means model. An alternative way to write a model for the data is to define

𝜇i = 𝜇 + 𝜏i, i = 1, 2, . . . , a
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◾ T A B L E 3 . 2
Typical Data for a Single-Factor Experiment

Treatment
(Level) Observations Totals Averages

1 y11 y12 · · · y1n y1. y1.

2 y21 y22 · · · y2n y2. y2.

⋮ ⋮ ⋮ · · · ⋮ ⋮ ⋮

· · ·

a ya1 ya2 · · · yan
ya.
y..

ya.
y..

so that Equation 3.1 becomes

yij = 𝜇 + 𝜏i + 𝜖ij

{
i = 1, 2, . . . , a

j = 1, 2, . . . , n
(3.2)

In this form of the model, 𝜇 is a parameter common to all treatments called the overall mean, and 𝜏i is a parameter
unique to the ith treatment called the ith treatment effect. Equation 3.2 is usually called the effects model.

Both the means model and the effects model are linear statistical models; that is, the response variable yij is
a linear function of the model parameters. Although both forms of the model are useful, the effects model is more
widely encountered in the experimental design literature. It has some intuitive appeal in that 𝜇 is a constant and the
treatment effects 𝜏i represent deviations from this constant when the specific treatments are applied.

Equation 3.2 (or 3.1) is also called the one-way or single-factor analysis of variance (ANOVA) model because
only one factor is investigated. Furthermore, we will require that the experiment be performed in random order so
that the environment in which the treatments are applied (often called the experimental units) is as uniform as pos-
sible. Thus, the experimental design is a completely randomized design. Our objectives will be to test appropriate
hypotheses about the treatment means and to estimate them. For hypothesis testing, the model errors are assumed to be
normally and independently distributed random variables with mean zero and variance 𝜎2. The variance 𝜎2 is assumed
to be constant for all levels of the factor. This implies that the observations

yij ∼ N(𝜇 + 𝜏i, 𝜎
2)

and that the observations are mutually independent.

Fixed or Random Factor? The statistical model, Equation 3.2, describes two different situations with
respect to the treatment effects. First, the a treatments could have been specifically chosen by the experimenter. In
this situation, we wish to test hypotheses about the treatment means, and our conclusions will apply only to the factor
levels considered in the analysis. The conclusions cannot be extended to similar treatments that were not explicitly
considered. We may also wish to estimate the model parameters (𝜇, 𝜏i, 𝜎2). This is called the fixed effects model.
Alternatively, the a treatments could be a random sample from a larger population of treatments. In this situation,
we should like to be able to extend the conclusions (which are based on the sample of treatments) to all treatments in
the population, whether or not they were explicitly considered in the analysis. Here, the 𝜏i are random variables, and
knowledge about the particular ones investigated is relatively useless. Instead, we test hypotheses about the variability
of the 𝜏i and try to estimate this variability. This is called the random effects model or components of variance
model. We discuss the single-factor random effects model in Section 3.9. However, we will defer a more complete
discussion of experiments with random factors to Chapter 13.
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3.3 Analysis of the Fixed Effects Model

In this section, we develop the single-factor analysis of variance for the fixed effects model. Recall that yi. represents
the total of the observations under the ith treatment. Let yi. represent the average of the observations under the ith
treatment. Similarly, let y

..
represent the grand total of all the observations and y

..
represent the grand average of all

the observations. Expressed symbolically,

yi. =
n∑

j=1
yij yi. = yi.∕n i = 1, 2, . . . , a

y.. =
a∑

i=1

n∑
j=1

yij y.. = y..∕N
(3.3)

where N = an is the total number of observations. We see that the “dot” subscript notation implies summation over
the subscript that it replaces.

We are interested in testing the equality of the a treatment means; that is, E(yij) = 𝜇 + 𝜏i = 𝜇i, i = 1, 2, . . . , a.
The appropriate hypotheses are

H0∶𝜇1 = 𝜇2 = · · · = 𝜇a
H1∶𝜇i ≠ 𝜇j for at least one pair (i, j) (3.4)

In the effects model, we break the ith treatment mean 𝜇i into two components such that
𝜇i = 𝜇 + 𝜏i. We usually think of 𝜇 as an overall mean so that

a∑
i=1

𝜇i

a
= 𝜇

This definition implies that
a∑
i=1

𝜏i = 0

That is, the treatment or factor effects can be thought of as deviations from the overall mean.1 Consequently, an
equivalent way to write the above hypotheses is in terms of the treatment effects 𝜏i, say

H0∶𝜏1 = 𝜏2 = · · · 𝜏a = 0
H1∶𝜏i ≠ 0 for at least one i

Thus, we speak of testing the equality of treatment means or testing that the treatment effects (the 𝜏i) are zero. The
appropriate procedure for testing the equality of a treatment means is the analysis of variance.

3.3.1 Decomposition of the Total Sum of Squares

The name analysis of variance is derived from a partitioning of total variability into its component parts. The total
corrected sum of squares

SST =
a∑
i=1

n∑
j=1

(yij − y
..
)2

is used as a measure of overall variability in the data. Intuitively, this is reasonable because if we were to divide SST
by the appropriate number of degrees of freedom (in this case, an − 1 = N − 1), we would have the sample variance
of the y’s. The sample variance is, of course, a standard measure of variability.

1 For more information on this subject, refer to the supplemental text material for Chapter 3.
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Note that the total corrected sum of squares SST may be written as

a∑
i=1

n∑
j=1

(yij − y
..
)2 =

a∑
i=1

n∑
j=1

[(yi. − y
..
) + (yij − yi.)]2 (3.5)

or

a∑
i=1

n∑
j=1

(yij − y
..
)2 = n

a∑
i=1

(yi. − y
..
)2 +

a∑
i=1

n∑
j=1

(yij − yi.)2

+2
a∑
i=1

n∑
j=1

(yi. − y
..
)(yij − yi.)

However, the cross-product term in this last equation is zero, because

n∑
j=1

(yij − yi.) = yi. − nyi. = yi. − n(yi.∕n) = 0

Therefore, we have
a∑
i=1

n∑
j=1

(yij − y
..
)2 = n

a∑
i=1

(yi. − y
..
)2 +

a∑
i=1

n∑
j=1

(yij − yi.)2 (3.6)

Equation 3.6 is the fundamental ANOVA identity. It states that the total variability in the data, as measured by the total
corrected sum of squares, can be partitioned into a sum of squares of the differences between the treatment averages
and the grand average plus a sum of squares of the differences of observations within treatments from the treatment
average. Now, the difference between the observed treatment averages and the grand average is a measure of the
differences between treatment means, whereas the differences of observations within a treatment from the treatment
average can be due to only random error. Thus, we may write Equation 3.6 symbolically as

SST = SSTreatments + SSE

where SSTreatments is called the sum of squares due to treatments (i.e., between treatments) and SSE is called the sum
of squares due to error (i.e., within treatments). There are an = N total observations; thus, SST has N − 1 degrees of
freedom. There are a levels of the factor (and a treatment means), so SSTreatments has a − 1 degrees of freedom. Finally,
there are n replicates within any treatment providing n − 1 degrees of freedom with which to estimate the experimental
error. Because there are a treatments, we have a(n − 1) = an − a = N − a degrees of freedom for error.

It is instructive to examine explicitly the two terms on the right-hand side of the fundamental ANOVA identity.
Consider the error sum of squares

SSE =
a∑
i=1

n∑
j=1

(yij − yi.)2 =
a∑
i=1

[
n∑
j=1

(yij − yi.)2
]

In this form, it is easy to see that the term within square brackets, if divided by n − 1, is the sample variance in the ith
treatment, or

S2
i =

n∑
j=1

(yij − yi.)2

n − 1
i = 1, 2, . . . , a
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Now a sample variances may be combined to give a single estimate of the common population variance as follows:

(n − 1)S2
1 + (n − 1)S2

2 + · · · + (n − 1)S2
a

(n − 1) + (n − 1) + · · · + (n − 1)
=

a∑
i=1

[
n∑
j=1

(yij − yi.)2
]

a∑
i=1

(n − 1)

=
SSE

(N − a)
Thus, SSE∕(N − a) is a pooled estimate of the common variance within each of the a treatments.

Similarly, if there were no differences between the a treatment means, we could use the variation of the treatment
averages from the grand average to estimate 𝜎

2. Specifically,

SSTreatments

a − 1
=

n
a∑
i=1

(yi. − y
..
)2

a − 1

is an estimate of 𝜎2 if the treatment means are equal. The reason for this may be intuitively seen as follows: The
quantity

∑a
i=1 (yi. − y

..
)2∕(a − 1) estimates 𝜎

2∕n, the variance of the treatment averages, so n
∑a

i=1 (yi. − y
..
)2∕(a − 1)

must estimate 𝜎
2 if there are no differences in treatment means.

We see that the ANOVA identity (Equation 3.6) provides us with two estimates of 𝜎2—one based on the inherent
variability within treatments and the other based on the variability between treatments. If there are no differences in the
treatment means, these two estimates should be very similar, and if they are not, we suspect that the observed difference
must be caused by differences in the treatment means. Although we have used an intuitive argument to develop this
result, a somewhat more formal approach can be taken.

The quantities

MSTreatments =
SSTreatments

a − 1

and

MSE =
SSE
N − a

are called mean squares. We now examine the expected values of these mean squares. Consider

E(MSE) = E

(
SSE
N − a

)
= 1

N − a
E

[
a∑
i=1

n∑
j=1

(yij − yi.)2
]

= 1
N − a

E

[
a∑
i=1

n∑
j=1

(y2
ij − 2yijyi. + y2

i.)

]

= 1
N − a

E

[
a∑
i=1

n∑
j=1

y2
ij − 2n

a∑
i=1

y2
i. + n

a∑
i=1

y2
i.

]

= 1
N − a

E

[
a∑
i=1

n∑
j=1

y2
ij −

1
n

a∑
i=1

y2
i.

]

Substituting the model (Equation 3.1) into this equation, we obtain

E(MSE) =
1

N − a
E
⎡⎢⎢⎣

a∑
i=1

n∑
j=1

(𝜇 + 𝜏i + 𝜖ij)2 −
1
n

a∑
i=1

(
n∑
i=1

𝜇 + 𝜏i + 𝜖ij

)2⎤⎥⎥⎦



�

� �

�

72 Chapter 3 Experiments with a Single Factor: The Analysis of Variance

Now when squaring and taking expectation of the quantity within the brackets, we see that terms involving 𝜖
2
ij and 𝜖

2
i.

are replaced by 𝜎
2 and n𝜎2, respectively, because E(𝜖ij) = 0. Furthermore, all cross products involving 𝜖ij have zero

expectation. Therefore, after squaring and taking expectation, the last equation becomes

E(MSE) =
1

N − a

[
N𝜇2 + n

a∑
i=1

𝜏
2
i + N𝜎2 − N𝜇2 − n

a∑
i=1

𝜏
2
i − a𝜎2

]

or
E(MSE) = 𝜎

2

By a similar approach, we may also show that2

E(MSTreatments) = 𝜎
2 +

n
a∑
i=1

𝜏
2
i

a − 1

Thus, as we argued heuristically, MSE = SSE∕(N − a) estimates 𝜎2, and, if there are no differences in treatment means
(which implies that 𝜏i = 0), MSTreatments = SSTreatments∕(a − 1) also estimates 𝜎2. However, note that if treatment means
do differ, the expected value of the treatment mean square is greater than 𝜎

2.
It seems clear that a test of the hypothesis of no difference in treatment means can be performed by comparing

MSTreatments and MSE. We now consider how this comparison may be made.

3.3.2 Statistical Analysis

We now investigate how a formal test of the hypothesis of no differences in treatment means (H0∶𝜇1 = 𝜇2 = · · · = 𝜇a,
or equivalently, H0∶𝜏1 = 𝜏2 = · · · = 𝜏a = 0) can be performed. Because we have assumed that the errors 𝜖ij are nor-
mally and independently distributed with mean zero and variance 𝜎

2, the observations yij are normally and indepen-
dently distributed with mean 𝜇 + 𝜏i and variance 𝜎

2. Thus, SST is a sum of squares in normally distributed random
variables; consequently, it can be shown that SST∕𝜎2 is distributed as chi-square with N − 1 degrees of freedom. Fur-
thermore, we can show that SSE∕𝜎2 is chi-square with N − a degrees of freedom and that SSTreatments∕𝜎2 is chi-square
with a − 1 degrees of freedom if the null hypothesis H0∶𝜏i = 0 is true. However, all three sums of squares are not
necessarily independent because SSTreatments and SSE add to SST . The following theorem, which is a special form of
one attributed to William G. Cochran, is useful in establishing the independence of SSE and SSTreatments.

THEOREM 3-1
Cochran’s Theorem

Let Zi be NID(0, 1) for i = 1, 2, . . . , v and

v∑
i=1

Z2
i = Q1 + Q2 + · · · + Qs

where s ≤ v, and Qi has vi degrees of freedom (i = 1, 2, . . . , s). Then Q1,Q2, . . . ,Qs are independent chi-square
random variables with v1, v2, . . . , vs degrees of freedom, respectively, if and only if

v = v1 + v2 + · · · + vs

2 Refer to the supplemental text material for Chapter 3.
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Because the degrees of freedom for SSTreatments and SSE add to N − 1, the total number of degrees of freedom,
Cochran’s theorem implies that SSTreatments∕𝜎2 and SSE∕𝜎2 are independently distributed chi-square random variables.
Therefore, if the null hypothesis of no difference in treatment means is true, the ratio

F0 =
SSTreatments∕(a − 1)

SSE∕(N − a)
=

MSTreatments

MSE
(3.7)

is distributed as F with a − 1 and N − a degrees of freedom. Equation 3.7 is the test statistic for the hypothesis of no
differences in treatment means.

From the expected mean squares we see that, in general, MSE is an unbiased estimator of 𝜎2. Also, under the null
hypothesis, MSTreatments is an unbiased estimator of 𝜎2. However, if the null hypothesis is false, the expected value of
MSTreatments is greater than 𝜎

2. Therefore, under the alternative hypothesis, the expected value of the numerator of the
test statistic (Equation 3.7) is greater than the expected value of the denominator, and we should reject H0 on values
of the test statistic that are too large. This implies an upper-tail, one-tail critical region. Therefore, we should reject H0
and conclude that there are differences in the treatment means if

F0 > F
𝛼,a−1,N−a

where F0 is computed from Equation 3.7. Alternatively, we could use the P-value approach for decision making. The
table of F percentages in the Appendix (Table IV) can be used to find bounds on the P-value.

The sums of squares may be computed in several ways. One direct approach is to make use of the definition

yij − y
..
= (y

.
− y

..
) + (yij − yi.)

Use a spreadsheet to compute these three terms for each observation. Then, sum up the squares to obtain SST ,
SSTreatments, and SSE. Another approach is to rewrite and simplify the definitions of SSTreatments and SST in Equation 3.6,
which results in

SST =
a∑
i=1

n∑
j=1

y2
ij −

y2
..

N
(3.8)

SSTreatments =
1
n

a∑
i=1

y2
i. −

y2
..

N
(3.9)

and
SSE = SST − SSTreatments (3.10)

This approach is nice because some calculators are designed to accumulate the sum of entered numbers in one register
and the sum of the squares of those numbers in another, so each number only has to be entered once. In practice, we
use computer software to do this.

The test procedure is summarized in Table 3.3. This is called an analysis of variance (or ANOVA) table.

◾ T A B L E 3 . 3
The Analysis of Variance Table for the Single-Factor, Fixed Effects Model

Source of Variation
Sum of
Squares

Degrees of
Freedom

Mean
Square F0

Between treatments SSTreatments = n
a∑
i=1

(yi. − y
..
)2 a − 1 MSTreatments F0 =

MSTreatments

MSE
Error (within

treatments)
SSE = SST − SSTreatments N − a MSE

Total SST =
a∑
i=1

n∑
j=1

(yij − y
..
)2 N − 1
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EXAMPLE 3 . 1 The Plasma Etching Experiment

To illustrate the analysis of variance, return to the first
example discussed in Section 3.1. Recall that the engineer is
interested in determining if the RF power setting affects the
etch rate, and she has run a completely randomized exper-
iment with four levels of RF power and five replicates. For
convenience, we repeat here the data from Table 3.1:

Observed Etch Rate (Å/min)RF Power
(W) 1 2 3 4 5

Totals
yi.

Averages
yi.

160 575 542 530 539 570 2756 551.2

180 565 593 590 579 610 2937 587.4

200 600 651 610 637 629 3127 625.4

220 725 700 715 685 710 3535 707.0

yi. = 12,355 y
..
= 617.75

SST =
4∑
i=1

5∑
j=1

y2
ij −

y2
..

N

= (575)2 + (542)2 + · · · + (710)2 − (12,355)2

20
= 72,209.75

SSTreatments =
1
n

4∑
i=1

y2
i. −

y2
..

N

= 1
5
[(2756)2 + · · · + (3535)2] − (12,355)2

20
= 66,870.55

We will use the analysis of variance to testH0∶𝜇1 = 𝜇2 =
𝜇3 = 𝜇4 against the alternative H1 ∶ some means are dif-
ferent. The sums of squares required are computed using
Equations 3.8, 3.9, and 3.10 as follows:

SSE = SST − SSTreatments

= 72,209.75 − 66,870.55 = 5339.20

◾ T A B L E 3 . 4
ANOVA for the Plasma Etching Experiment

Source of Variation
Sum of
Square

Degrees of
Freedom

Mean
Squares F0 P-Value

RF Power 66,870.55 3 22,290.18 F0 = 66.80 < 0.01

Error 5339.20 16 333.70

Total 72,209.75 19

Usually, these calculations would be performed on a
computer, using a software package with the capability to
analyze data from designed experiments.

The ANOVA is summarized in Table 3.4. Note that the
RF power or between-treatment mean square (22,290.18)
is many times larger than the within-treatment or error
mean square (333.70). This indicates that it is unlikely
that the treatment means are equal. More formally, we
can compute the F ratio F0 = 22,290.18∕333.70 = 66.80
and compare this to an appropriate upper-tail percent-
age point of the F3,16 distribution. To use a fixed signif-
icance level approach, suppose that the experimenter has
selected 𝛼 = 0.05. From Appendix Table IV we find that
F0.05,3,16 = 3.24. Because F0 = 66.80 > 3.24, we reject H0

and conclude that the treatment means differ; that is, the
RF power setting significantly affects the mean etch rate.
We could also compute a P-value for this test statistic.
Figure 3.3 shows the reference distribution (F3,16) for the test
statistic F0. Clearly, the P-value is very small in this case.
From Appendix Table A-4, we find that F0.01,3,16 = 5.29 and
because F0 > 5.29, we can conclude that an upper bound for
the P-value is 0.01; that is, P < 0.01 (the exact P-value is
P = 2.88 × 10−9).
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◾ F I G U R E 3 . 3 The reference distribution (F3,16) for
the test statistic F0 in Example 3.1

Coding the Data. Generally, we need not be too concerned with computing because there are many widely
available computer programs for performing the calculations. These computer programs are also helpful in performing
many other analyses associated with experimental design (such as residual analysis and model adequacy checking). In
many cases, these programs will also assist the experimenter in setting up the design.

However, when hand calculations are necessary, it is sometimes helpful to code the observations. This is illus-
trated in Example 3.2.

EXAMPLE 3 . 2 Coding the Observations

The ANOVA calculations may often be made more easily
or accurately by coding the observations. For example,
consider the plasma etching data in Example 3.1. Suppose
we subtract 600 from each observation. The coded data are
shown in Table 3.5. It is easy to verify that

SST = (−25)2 + (−58)2 + · · ·

+ (110)2 − (355)2

20
= 72,209.75

SSTreatment =
(−244)2 + (−63)2 + (127)2 + (535)2

5

− (355)2

20
= 66,870.55

and

SSE = 5339.20

Comparing these sums of squares to those obtained in
Example 3.1, we see that subtracting a constant from the
original data does not change the sums of squares.

Now suppose that we multiply each observation in
Example 3.1 by 2. It is easy to verify that the sums of
squares for the transformed data are SST = 288,839.00,
SSTreatments = 267,482.20, and SSE = 21,356.80. These
sums of squares appear to differ considerably from
those obtained in Example 3.1. However, if they are
divided by 4 (i.e., 22), the results are identical. For
example, for the treatment sum of squares 267,482.20∕4 =
66,870.55. Also, for the coded data, the F ratio is
F = (267,482.20∕3)∕(21,356.80∕16) = 66.80, which is
identical to the F ratio for the original data. Thus, the
ANOVAs are equivalent.
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◾ T A B L E 3 . 5
Coded Etch Rate Data for Example 3.2

ObservationsRF Power
(W) 1 2 3 4 5

Totals
yi.

160 −25 −58 −70 −61 −30 −244

180 −35 −7 −10 −21 10 −63

200 0 51 10 37 29 127

220 125 100 115 85 110 535

Randomization Tests and Analysis of Variance. In our development of the ANOVA F-test, we have used
the assumption that the random errors 𝜖ij are normally and independently distributed random variables. The F-test can
also be justified as an approximation to a randomization test. To illustrate this, suppose that we have five observations
on each of two treatments and that we wish to test the equality of treatment means. The data would look like this:

Treatment 1 Treatment 2

y11 y21

y12 y22

y13 y23

y14 y24

y15 y25

We could use the ANOVA F-test to test H0∶𝜇1 = 𝜇2. Alternatively, we could use a somewhat different approach.
Suppose we consider all the possible ways of allocating the 10 numbers in the above sample to the two treatments.
There are 10!∕5!5! = 252 possible arrangements of the 10 observations. If there is no difference in treatment means,
all 252 arrangements are equally likely. For each of the 252 arrangements, we calculate the value of the F-statistic
using Equation 3.7. The distribution of these F values is called a randomization distribution, and a large value of
F indicates that the data are not consistent with the hypothesis H0∶𝜇1 = 𝜇2. For example, if the value of F actually
observed was exceeded by only five of the values of the randomization distribution, this would correspond to rejection
of H0∶𝜇1 = 𝜇2 at a significance level of 𝛼 = 5∕252 = 0.0198 (or 1.98 percent). Notice that no normality assumption
is required in this approach.

The difficulty with this approach is that, even for relatively small problems, it is computationally prohibitive
to enumerate the exact randomization distribution. However, numerous studies have shown that the exact randomiza-
tion distribution is well approximated by the usual normal-theory F distribution. Thus, even without the normality
assumption, the ANOVA F-test can be viewed as an approximation to the randomization test. For further reading on
randomization tests in the analysis of variance, see Box, Hunter, and Hunter (2005).

3.3.3 Estimation of the Model Parameters

We now present estimators for the parameters in the single-factor model

yij = 𝜇 + 𝜏i + 𝜖ij.
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and confidence intervals on the treatment means. We will prove later that reasonable estimates of the overall mean and
the treatment effects are given by

�̂� = y..

𝜏i = yi. − y.., i = 1, 2, . . . , a
(3.11)

These estimators have considerable intuitive appeal; note that the overall mean is estimated by the grand average of the
observations and that any treatment effect is just the difference between the treatment average and the grand average.

A confidence interval estimate of the ith treatment mean may be easily determined. The mean of the ith treatment
is

𝜇i = 𝜇 + 𝜏i

A point estimator of 𝜇i would be �̂�i = �̂� + 𝜏i = yi. Now, if we assume that the errors are normally distributed,
each treatment average yi. is distributed NID(𝜇i, 𝜎

2∕n). Thus, if 𝜎2 were known, we could use the normal distribution
to define the confidence interval. Using the MSE as an estimator of 𝜎2, we would base the confidence interval on the t
distribution. Therefore, a 100(1 − 𝛼) percent confidence interval on the ith treatment mean 𝜇i is

yi. − t
𝛼∕2,N−a

√
MSE
n

≤ 𝜇i ≤ yi. + t
𝛼∕2,N−a

√
MSE
n

(3.12)

Differences in treatments are frequently of great practical interest. A 100(1 − 𝛼) percent confidence interval on the
difference in any two treatment means, say 𝜇i − 𝜇j, would be

yi. − yj. − t
𝛼∕2,N−a

√
2MSE
n

≤ 𝜇i − 𝜇j ≤ yi. − yj. + t
𝛼∕2,N−a

√
2MSE
n

(3.13)

EXAMPLE 3 . 3

Using the data in Example 3.1, we may find the esti-
mates of the overall mean and the treatment effects as
�̂� = 12,355∕20 = 617.75 and

𝜏1 = y1. − y
..
= 551.20 − 617.75 = −66.55

𝜏2 = y2. − y
..
= 587.40 − 617.75 = −30.35

𝜏3 = y3. − y
..
= 625.40 − 617.75 = 7.65

𝜏4 = y4. − y
..
= 707.00 − 617.75 = 89.25

A 95 percent confidence interval on the mean of
treatment 4 (220 W of RF power) is computed from

Equation 3.12 as

707.00 − 2.120

√
333.70

5
≤ 𝜇4 ≤ 707.00 + 2.120

√
333.70

5

or

707.00 − 17.32 ≤ 𝜇4 ≤ 707.00 + 17.32

Thus, the desired 95 percent confidence interval is
689.68 ≤ 𝜇4 ≤ 724.32.

Simultaneous Confidence Intervals. The confidence interval expressions given in Equations 3.12 and 3.13
are one-at-a-time confidence intervals. That is, the confidence level 1 − 𝛼 applies to only one particular estimate.
However, in many problems, the experimenter may wish to calculate several confidence intervals, one for each of a
number of means or differences between means. If there are r such 100(1 − 𝛼) percent confidence intervals of interest,
the probability that the r intervals will simultaneously be correct is at least 1 − r𝛼. The probability r𝛼 is often called
the experimentwise error rate or overall confidence coefficient. The number of intervals r does not have to be large
before the set of confidence intervals becomes relatively uninformative. For example, if there are r = 5 intervals and
𝛼 = 0.05 (a typical choice), the simultaneous confidence level for the set of five confidence intervals is at least 0.75,
and if r = 10 and 𝛼 = 0.05, the simultaneous confidence level is at least 0.50.
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One approach to ensuring that the simultaneous confidence level is not too small is to replace 𝛼∕2 in the
one-at-a-time confidence interval Equations 3.12 and 3.13 with 𝛼∕(2r). This is called the Bonferroni method, and
it allows the experimenter to construct a set of r simultaneous confidence intervals on treatment means or differences
in treatment means for which the overall confidence level is at least 100(1 − 𝛼) percent. When r is not too large, this is a
very nice method that leads to reasonably short confidence intervals. For more information, refer to the supplemental
text material for Chapter 3.

3.3.4 Unbalanced Data

In some single-factor experiments, the number of observations taken within each treatment may be different. We then
say that the design is unbalanced. The analysis of variance described may still be used, but slight modifications must be
made in the sum of squares formulas. Let ni observations be taken under treatment i (i = 1, 2, . . . , a) and N =

∑a
i=1 ni.

The manual computational formulas for SST and SSTreatments become

SST =
a∑
i=1

ni∑
j=1

y2
ij −

y2
..

N
(3.14)

and

SSTreatments =
a∑
i=1

y2
i.

ni
−

y2
..

N
(3.15)

No other changes are required in the analysis of variance.
There are two advantages in choosing a balanced design. First, the test statistic is relatively insensitive to small

departures from the assumption of equal variances for the a treatments if the sample sizes are equal. This is not the
case for unequal sample sizes. Second, the power of the test is maximized if the samples are of equal size.

3.4 Model Adequacy Checking

The decomposition of the variability in the observations through an analysis of variance identity (Equation 3.6) is a
purely algebraic relationship. However, the use of the partitioning to test formally for no differences in treatment means
requires that certain assumptions be satisfied. Specifically, these assumptions are that the observations are adequately
described by the model

yij = 𝜇 + 𝜏i + 𝜖ij

and that the errors are normally and independently distributed with mean zero and constant but unknown variance 𝜎
2.

If these assumptions are valid, the analysis of variance procedure is an exact test of the hypothesis of no difference in
treatment means.

In practice, however, these assumptions will usually not hold exactly. Consequently, it is usually unwise to
rely on the analysis of variance until the validity of these assumptions has been checked. Violations of the basic
assumptions and model adequacy can be easily investigated by the examination of residuals. We define the residual
for observation j in treatment i as

eij = yij − ŷij (3.16)

where ŷij is an estimate of the corresponding observation yij obtained as follows:

ŷij = �̂� + 𝜏i

= y
..
+ (yi. − y

..
)

= yi. (3.17)
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Equation 3.17 gives the intuitively appealing result that the estimate of any observation in the ith treatment is just the
corresponding treatment average.

Examination of the residuals should be an automatic part of any analysis of variance. If the model is adequate,
the residuals should be structureless; that is, they should contain no obvious patterns. Through analysis of residuals,
many types of model inadequacies and violations of the underlying assumptions can be discovered. In this section,
we show how model diagnostic checking can be done easily by graphical analysis of residuals and how to deal with
several commonly occurring abnormalities.

3.4.1 The Normality Assumption

A check of the normality assumption could be made by plotting a histogram of the residuals. If the NID(0, 𝜎2)
assumption on the errors is satisfied, this plot should look like a sample from a normal distribution centered at zero.
Unfortunately, with small samples, considerable fluctuation in the shape of a histogram often occurs, so the appear-
ance of a moderate departure from normality does not necessarily imply a serious violation of the assumptions. Gross
deviations from normality are potentially serious and require further analysis.

An extremely useful procedure is to construct a normal probability plot of the residuals. Recall from Chapter 2
that we used a normal probability plot of the raw data to check the assumption of normality when using the t-test. In the
analysis of variance, it is usually more effective (and straightforward) to do this with the residuals. If the underlying
error distribution is normal, this plot will resemble a straight line. In visualizing the straight line, place more emphasis
on the central values of the plot than on the extremes.

Table 3.6 shows the original data and the residuals for the etch rate data in Example 3.1. The normal probabil-
ity plot is shown in Figure 3.4. The general impression from examining this display is that the error distribution is
approximately normal. The tendency of the normal probability plot to bend down slightly on the left side and upward
slightly on the right side implies that the tails of the error distribution are somewhat thinner than would be anticipated
in a normal distribution; that is, the largest residuals are not quite as large (in absolute value) as expected. This plot is
not grossly nonnormal, however.

In general, moderate departures from normality are of little concern in the fixed effects analysis of variance
(recall our discussion of randomization tests in Section 3.3.2). An error distribution that has considerably thicker or
thinner tails than the normal is of more concern than a skewed distribution. Because the F-test is only slightly affected,
we say that the analysis of variance (and related procedures such as multiple comparisons) is robust to the normality
assumption. Departures from normality usually cause both the true significance level and the power to differ slightly
from the advertised values, with the power generally being lower. The random effects model that we will discuss in
Section 3.9 and Chapter 13 is more severely affected by nonnormality.

◾ T A B L E 3 . 6
Etch Rate Data and Residuals from Example 3.1a

Observations ( j)

Power (w) 1 2 3 4 5

23.8 –9.2 –21.2 –12.2 18.8

160 575 (13) 542 (14) 530 (8) 539 (5) 570 (4) 551.2

–22.4 5.6 2.6 –8.4 22.6

180 565 (18) 593 (9) 590 (6) 579 (16) 610 (17) 587.4

–25.4 25.6 –15.4 11.6 3.6

200 600 (7) 651 (19) 610 (10) 637 (20) 629 (1) 625.4

18.0 –7.0 8.0 –22.0 3.0

220 725 (2) 700 (3) 715 (15) 685 (11) 710 (12) 707.0

aThe residuals are shown in the box in each cell. The numbers in parentheses indicate the order in which each experimental run was made.

yi .ŷij
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◾ F I G U R E 3 . 4 Normal probability plot
of residuals for Example 3.1
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A very common defect that often shows up on normal probability plots is one residual that is very much larger
than any of the others. Such a residual is often called an outlier. The presence of one or more outliers can seriously
distort the analysis of variance, so when a potential outlier is located, careful investigation is called for. Frequently,
the cause of the outlier is a mistake in calculations or a data coding or copying error. If this is not the cause, the
experimental circumstances surrounding this run must be carefully studied. If the outlying response is a particularly
desirable value (high strength, low cost, etc.), the outlier may be more informative than the rest of the data. We should
be careful not to reject or discard an outlying observation unless we have reasonably nonstatistical grounds for doing
so. At worst, you may end up with two analyses: one with the outlier and one without.

Several formal statistical procedures may be used for detecting outliers [e.g., see Stefansky (1972), John and
Prescott (1975), and Barnett and Lewis (1994)]. Some statistical software packages report the results of a statistical
test for normality (such as the Anderson–Darling test) on the normal probability plot of residuals. This should be
viewed with caution as those tests usually assume that the data to which they are applied are independent and residuals
are not independent.

A rough check for outliers may be made by examining the standardized residuals

dij =
eij√
MSE

(3.18)

If the errors 𝜖ij are N(0, 𝜎2), the standardized residuals should be approximately normal with mean zero and unit
variance. Thus, about 68 percent of the standardized residuals should fall within the limits ±1, about 95 percent of
them should fall within ±2, and virtually all of them should fall within ±3. A residual bigger than 3 or 4 standard
deviations from zero is a potential outlier.

For the tensile strength data of Example 3.1, the normal probability plot gives no indication of outliers. Further-
more, the largest standardized residual is

d1 =
e1√
MSE

= 25.6√
333.70

= 25.6
18.27

= 1.40

which should cause no concern.
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3.4.2 Plot of Residuals in Time Sequence

Plotting the residuals in time order of data collection is helpful in detecting strong correlation between the residuals.
A tendency to have runs of positive and negative residuals indicates positive correlation. This would imply that the
independence assumption on the errors has been violated. This is a potentially serious problem and one that is difficult
to correct, so it is important to prevent the problem if possible when the data are collected. Proper randomization of
the experiment is an important step in obtaining independence.

Sometimes the skill of the experimenter (or the subjects) may change as the experiment progresses, or the process
being studied may “drift” or become more erratic. This will often result in a change in the error variance over time. This
condition often leads to a plot of residuals versus time that exhibits more spread at one end than at the other. Nonconstant
variance is a potentially serious problem. We will have more to say on the subject in Sections 3.4.3 and 3.4.4.

Table 3.6 displays the residuals and the time sequence of data collection for the tensile strength data. A plot
of these residuals versus run order or time is shown in Figure 3.5. There is no reason to suspect any violation of the
independence or constant variance assumptions.

3.4.3 Plot of Residuals Versus Fitted Values

If the model is correct and the assumptions are satisfied, the residuals should be structureless; in particular, they should
be unrelated to any other variable including the predicted response. A simple check is to plot the residuals versus the
fitted values ŷij. (For the single-factor experiment model, remember that ŷij = yi., the ith treatment average.) This plot
should not reveal any obvious pattern. Figure 3.6 plots the residuals versus the fitted values for the tensile strength data
of Example 3.1. No unusual structure is apparent.

A defect that occasionally shows up on this plot is nonconstant variance. Sometimes the variance of the obser-
vations increases as the magnitude of the observation increases. This would be the case if the error or background noise
in the experiment was a constant percentage of the size of the observation. (This commonly happens with many mea-
suring instruments—error is a percentage of the scale reading.) If this were the case, the residuals would get larger as yij
gets larger, and the plot of residuals versus ŷij would look like an outward-opening funnel or megaphone. Nonconstant
variance also arises in cases where the data follow a nonnormal, skewed distribution because in skewed distributions
the variance tends to be a function of the mean.
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If the assumption of homogeneity of variances is violated, the F-test is only slightly affected in the balanced
(equal sample sizes in all treatments) fixed effects model. However, in unbalanced designs or in cases where one
variance is very much larger than the others, the problem is more serious. Specifically, if the factor levels having the
larger variances also have the smaller sample sizes, the actual type I error rate is larger than anticipated (or confidence
intervals have lower actual confidence levels than were specified). Conversely, if the factor levels with larger variances
also have the larger sample sizes, the significance levels are smaller than anticipated (confidence levels are higher).
This is a good reason for choosing equal sample sizes whenever possible. For random effects models, unequal error
variances can significantly disturb inferences on variance components even if balanced designs are used.

Inequality of variance also shows up occasionally on the plot of residuals versus run order. An outward-opening
funnel pattern indicates that variability is increasing over time. This could result from operator/subject fatigue, accu-
mulated stress on equipment, changes in material properties such as catalyst degradation, or tool wear, or any of a
number of causes.

The usual approach to dealing with nonconstant variance when it occurs for the aforementioned reasons is to
apply a variance-stabilizing transformation and then to run the analysis of variance on the transformed data. In this
approach, one should note that the conclusions of the analysis of variance apply to the transformed populations.

Considerable research has been devoted to the selection of an appropriate transformation. If experimenters
know the theoretical distribution of the observations, they may utilize this information in choosing a transformation.
For example, if the observations follow the Poisson distribution, the square root transformation y∗ij =

√
yij or

y∗ij =
√

1 + yij would be used. If the data follow the lognormal distribution, the logarithmic transformation
y∗ij = log yij is appropriate. For binomial data expressed as fractions, the arcsin transformation y∗ij = arcsin

√
yij is

useful. When there is no obvious transformation, the experimenter usually empirically seeks a transformation that
equalizes the variance regardless of the value of the mean. We offer some guidance on this at the conclusion of this
section. In factorial experiments, which we introduce in Chapter 5, another approach is to select a transformation that
minimizes the interaction mean square, resulting in an experiment that is easier to interpret. In Chapter 15, we discuss
methods for analytically selecting the form of the transformation in more detail. Transformations made for inequality
of variance also affect the form of the error distribution. In most cases, the transformation brings the error distribution
closer to normal. For more discussion of transformations, refer to Bartlett (1947), Dolby (1963), Box and Cox (1964),
and Draper and Hunter (1969).

Statistical Tests for Equality of Variance. Although residual plots are frequently used to diagnose inequal-
ity of variance, several statistical tests have also been proposed. These tests may be viewed as formal tests of the
hypotheses

H0∶𝜎2
1 = 𝜎

2
2 = · · · = 𝜎

2
a

H1∶above not true for at least one 𝜎
2
i

A widely used procedure is Bartlett’s test. The procedure involves computing a statistic whose sampling dis-
tribution is closely approximated by the chi-square distribution with a − 1 degrees of freedom when the a random
samples are from independent normal populations. The test statistic is

𝜒
2
0 = 2.3026

q

c
(3.19)

where

q = (N − a)log10S
2
p −

a∑
i=1

(ni − 1)log10S
2
i

c = 1 + 1
3(a − 1)

(
a∑
i=1

(ni − 1)−1 − (N − a)−1

)

S2
p =

a∑
i=1

(ni − 1)S2
i

N − a

and S2
i is the sample variance of the ith population.
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The quantity q is large when the sample variances S2
i differ greatly and is equal to zero when all S2

i are equal.
Therefore, we should reject H0 on values of 𝜒2

0 that are too large; that is, we reject H0 only when

𝜒
2
0 > 𝜒

2
𝛼,a−1

where 𝜒2
𝛼,a−1 is the upper 𝛼 percentage point of the chi-square distribution with a − 1 degrees of freedom. The P-value

approach to decision making could also be used.
Bartlett’s test is very sensitive to the normality assumption. Consequently, when the validity of this assumption

is doubtful, Bartlett’s test should not be used.

EXAMPLE 3 . 4

In the plasma etch experiment, the normality assumption is
not in question, so we can apply Bartlett’s test to the etch rate
data. We first compute the sample variances in each treat-
ment and find that S2

1 = 400.7, S2
2 = 280.3, S2

3 = 421.3, and
S2

4 = 232.5. Then

S2
p =

4(400.7) + 4(280.3) + 4(421.3) + 4(232.5)
16

= 333.7

q = 16log10(333.7) − 4[log10400.7 + log10280.3

+ log10421.3 + log10232.5] = 0.21

c = 1 + 1
3(3)

(4
4
− 1

16

)
= 1.10

and the test statistic is

𝜒
2
0 = 2.3026

(0.21)
(1.10)

= 0.43

From Appendix Table III, we find that 𝜒2
0.05,3 = 7.81 (the

P-value is P = 0.934), so we cannot reject the null hypoth-
esis. There is no evidence to counter the claim that all five
variances are the same. This is the same conclusion reached
by analyzing the plot of residuals versus fitted values.

Because Bartlett’s test is sensitive to the normality assumption, there may be situations where an alternative procedure
would be useful. Anderson and McLean (1974) present a useful discussion of statistical tests for equality of variance.
The modified Levene test [see Levene (1960) and Conover, Johnson, and Johnson (1981)] is a very nice procedure
that is robust to departures from normality. To test the hypothesis of equal variances in all treatments, the modified
Levene test uses the absolute deviation of the observations yij in each treatment from the treatment median, say, ỹi.
Denote these deviations by

dij = |yij − ỹi|
{

i = 1, 2, . . . , a
j = 1, 2, . . . ni

The modified Levene test then evaluates whether or not the means of these deviations are equal for all treatments. It
turns out that if the mean deviations are equal, the variances of the observations in all treatments will be the same.
The test statistic for Levene’s test is simply the usual ANOVA F-statistic for testing equality of means applied to the
absolute deviations.

EXAMPLE 3 . 5

A civil engineer is interested in determining whether four
different methods of estimating flood flow frequency pro-
duce equivalent estimates of peak discharge when applied
to the same watershed. Each procedure is used six times
on the watershed, and the resulting discharge data (in
cubic feet per second) are shown in the upper panel of
Table 3.7. The analysis of variance for the data, summa-
rized in Table 3.8, implies that there is a difference in mean
peak discharge estimates given by the four procedures. The

plot of residuals versus fitted values, shown in Figure 3.7,
is disturbing because the outward-opening funnel shape
indicates that the constant variance assumption is not
satisfied.

We will apply the modified Levene test to the peak dis-
charge data. The upper panel of Table 3.7 contains the
treatment medians ỹi and the lower panel contains the
deviations dij around the medians. Levene’s test consists
of conducting a standard analysis of variance on the dij.



�

� �

�

84 Chapter 3 Experiments with a Single Factor: The Analysis of Variance

The F-test statistic that results from this is F0 = 4.55, for
which the P-value is P = 0.0137. Therefore, Levene’s test
rejects the null hypothesis of equal variances, essentially

confirming the diagnosis we made from visual examination
of Figure 3.7. The peak discharge data are a good candidate
for data transformation.

◾ T A B L E 3 . 7
Peak Discharge Data

Estimation Method Observations yi. ỹi Si

1 0.34 0.12 1.23 0.70 1.75 0.12 0.71 0.520 0.66

2 0.91 2.94 2.14 2.36 2.86 4.55 2.63 2.610 1.09

3 6.31 8.37 9.75 6.09 9.82 7.24 7.93 7.805 1.66

4 17.15 11.82 10.95 17.20 14.35 16.82 14.72 15.59 2.77

Estimation Method Deviations dij for the Modified Levene Test

1 0.18 0.40 0.71 0.18 1.23 0.40

2 1.70 0.33 0.47 0.25 0.25 1.94

3 1.495 0.565 1.945 1.715 2.015 0.565

4 1.56 3.77 4.64 1.61 1.24 1.23

◾ T A B L E 3 . 8
Analysis of Variance for Peak Discharge Data

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F0 P-Value

Methods 708.3471 3 236.1157 76.07 < 0.001

Error 62.0811 20 3.1041

Total 770.4282 23
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◾ F I G U R E 3 . 7 Plot of residuals versus ŷij for
Example 3.5
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Empirical Selection of a Transformation. We observed above that if experimenters knew the relationship
between the variance of the observations and the mean, they could use this information to guide them in selecting the
form of the transformation. We now elaborate on this point and show one method for empirically selecting the form
of the required transformation from the data.

Let E(y) = 𝜇 be the mean of y, and suppose that the standard deviation of y is proportional to a power of the
mean of y such that

𝜎y ∝ 𝜇
𝛼

We want to find a transformation on y that yields a constant variance. Suppose that the transformation is a power of
the original data, say

y∗ = y𝜆 (3.20)

Then it can be shown that
𝜎y∗ ∝ 𝜇

𝜆+𝛼−1 (3.21)

Clearly, if we set 𝜆 = 1 − 𝛼, the variance of the transformed data y∗ is constant.
Several of the common transformations discussed previously are summarized in Table 3.9. Note that 𝜆 = 0

implies the log transformation. These transformations are arranged in order of increasing strength. By the strength
of a transformation, we mean the amount of curvature it induces. A mild transformation applied to data spanning a
narrow range has little effect on the analysis, whereas a strong transformation applied over a large range may have
dramatic results. Transformations often have little effect unless the ratio ymax∕ymin is larger than 2 or 3.

In many experimental design situations where there is replication, we can empirically estimate 𝛼 from the data.
Because in the ith treatment combination 𝜎yi

∝ 𝜇
𝛼

i = 𝜃𝜇
𝛼

i , where 𝜃 is a constant of proportionality, we may take logs
to obtain

log 𝜎yi
= log 𝜃 + 𝛼 log 𝜇i (3.22)

Therefore, a plot of log 𝜎yi versus log 𝜇i would be a straight line with slope 𝛼. Because we don’t know 𝜎yi
and 𝜇i,

we may substitute reasonable estimates of them in Equation 3.22 and use the slope of the resulting straight line fit as
an estimate of 𝛼. Typically, we would use the standard deviation Si and the average yi. of the ith treatment (or, more
generally, the ith treatment combination or set of experimental conditions) to estimate 𝜎yi

and 𝜇i.
To investigate the possibility of using a variance-stabilizing transformation on the peak discharge data from

Example 3.5, we plot log Si versus log yi. in Figure 3.8. The slope of a straight line passing through these four points
is close to 1/2 and from Table 3.9 this implies that the square root transformation may be appropriate. The analysis
of variance for the transformed data y∗ =

√
y is presented in Table 3.10, and a plot of residuals versus the predicted

response is shown in Figure 3.9. This residual plot is much improved in comparison to Figure 3.7, so we conclude that
the square root transformation has been helpful. Note that in Table 3.10 we have reduced the degrees of freedom for
error and total by one to account for the use of the data to estimate the transformation parameter 𝛼.

◾ T A B L E 3 . 9
Variance-Stabilizing Transformations

Relationship
Between 𝝈y and 𝝁 𝜶 𝝀 = 1 − 𝜶 Transformation Comment

𝜎y ∝ constant 0 1 No transformation

𝜎y ∝ 𝜇
1∕2 1/2 1/2 Square root Poisson (count) data

𝜎y ∝ 𝜇 1 0 Log

𝜎y ∝ 𝜇
3∕2 3/2 −1∕2 Reciprocal square root

𝜎y ∝ 𝜇
2 2 −1 Reciprocal
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◾ F I G U R E 3 . 8 Plot of log Si

versus log yi. for the peak discharge data
from Example 3.5
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◾ F I G U R E 3 . 9 Plot of residuals from
transformed data versus ŷ∗ij for the peak discharge
data in Example 3.5

◾ T A B L E 3 . 10
Analysis of Variance for Transformed Peak Discharge Data, y∗ =

√
y

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F0 P-Value

Methods 32.6842 3 10.8947 76.99 < 0.001

Error 2.6884 19 0.1415

Total 35.3726 22

In practice, many experimenters select the form of the transformation by simply trying several alternatives and
observing the effect of each transformation on the plot of residuals versus the predicted response. The transforma-
tion that produced the most satisfactory residual plot is then selected. Alternatively, there is a formal method called
the Box-Cox Method for selecting a variance-stability transformation. In Chapter 15 we discuss and illustrate this
procedure. It is widely used and implemented in many software packages.

3.4.4 Plots of Residuals Versus Other Variables

If data have been collected on any other variables that might possibly affect the response, the residuals should be plotted
against these variables. For example, in the tensile strength experiment of Example 3.1, strength may be significantly
affected by the thickness of the fiber, so the residuals should be plotted versus fiber thickness. If different testing
machines were used to collect the data, the residuals should be plotted against machines. Patterns in such residual
plots imply that the variable affects the response. This suggests that the variable should be either controlled more
carefully in future experiments or included in the analysis.

3.5 Practical Interpretation of Results

After conducting the experiment, performing the statistical analysis, and investigating the underlying assumptions,
the experimenter is ready to draw practical conclusions about the problem he or she is studying. Often this is relatively
easy, and certainly in the simple experiments we have considered so far, this might be done somewhat informally,
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perhaps by inspection of graphical displays such as the box plots and scatter diagram in Figures 3.1 and 3.2. However,
in some cases, more formal techniques need to be applied. We present some of these techniques in this section.

3.5.1 A Regression Model

The factors involved in an experiment can be either quantitative or qualitative. A quantitative factor is one whose
levels can be associated with points on a numerical scale, such as temperature, pressure, or time. Qualitative factors,
on the other hand, are factors for which the levels cannot be arranged in order of magnitude. Operators, batches of raw
material, and shifts are typical qualitative factors because there is no reason to rank them in any particular numerical
order.

Insofar as the initial design and analysis of the experiment are concerned, both types of factors are treated iden-
tically. The experimenter is interested in determining the differences, if any, between the levels of the factors. In fact,
the analysis of variance treats the design factor as if it were qualitative or categorical. If the factor is really qualitative,
such as operators, it is meaningless to consider the response for a subsequent run at an intermediate level of the factor.
However, with a quantitative factor such as time, the experimenter is usually interested in the entire range of values
used, particularly the response from a subsequent run at an intermediate factor level. That is, if the levels 1.0, 2.0,
and 3.0 hours are used in the experiment, we may wish to predict the response at 2.5 hours. Thus, the experimenter is
frequently interested in developing an interpolation equation for the response variable in the experiment. This equation
is an empirical model of the process that has been studied.

The general approach to fitting empirical models is called regression analysis, which is discussed extensively
in Chapter 10. See also the supplemental text material for this chapter. This section briefly illustrates the technique
using the etch rate data of Example 3.1.

Figure 3.10 presents scatter diagrams of etch rate y versus the power x for the experiment in Example 3.1. From
examining the scatter diagram, it is clear that there is a strong relationship between the etch rate and power. As a first
approximation, we could try fitting a linear model to the data, say

y = 𝛽0 + 𝛽1x + 𝜖

where 𝛽0 and 𝛽1 are unknown parameters to be estimated and 𝜖 is a random error term. The method often used to
estimate the parameters in a model such as this is the method of least squares. This consists of choosing estimates of
the 𝛽’s such that the sum of the squares of the errors (the 𝜖’s) is minimized. The least squares fit in our example is

ŷ = 137.62 + 2.527x

(If you are unfamiliar with regression methods, see Chapter 10 and the supplemental text material for this chapter.)
This linear model is shown in Figure 3.10a. It does not appear to be very satisfactory at the higher power settings.

Perhaps an improvement can be obtained by adding a quadratic term in x. The resulting quadratic model fit is

ŷ = 1147.77 − 8.2555 x + 0.028375 x2

This quadratic fit is shown in Figure 3.10b. The quadratic model appears to be superior to the linear model because it
provides a better fit at the higher power settings.

In general, we would like to fit the lowest order polynomial that adequately describes the system or process.
In this example, the quadratic polynomial seems to fit better than the linear model, so the extra complexity of the
quadratic model is justified. Selecting the order of the approximating polynomial is not always easy, however, and it
is relatively easy to overfit, that is, to add high-order polynomial terms that do not really improve the fit but increase
the complexity of the model and often damage its usefulness as a predictor or interpolation equation.

In this example, the empirical model could be used to predict etch rate at power settings within the region of
experimentation. In other cases, the empirical model could be used for process optimization, that is, finding the levels
of the design variables that result in the best values of the response. We will discuss and illustrate these problems
extensively later in the book.
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◾ F I G U R E 3 . 10 Scatter diagrams and regression models for the etch rate data of Example 3.1

3.5.2 Comparisons Among Treatment Means

Suppose that in conducting an analysis of variance for the fixed effects model the null hypothesis is rejected. Thus,
there are differences between the treatment means but exactly which means differ is not specified. Sometimes in this
situation, further comparisons and analysis among groups of treatment means may be useful. The ith treatment mean
is defined as 𝜇i = 𝜇 + 𝜏i, and 𝜇i is estimated by yi. Comparisons between treatment means are made in terms of either
the treatment totals {yi.} or the treatment averages {yi.}. The procedures for making these comparisons are usually
called multiple comparison methods. In the next several sections, we discuss methods for making comparisons
among individual treatment means or groups of these means.

3.5.3 Graphical Comparisons of Means

It is very easy to develop a graphical procedure for the comparison of means following an analysis of variance. Suppose
that the factor of interest has a levels and that y1., y2., . . . , ya., are the treatment averages. If we know 𝜎, any treatment
average would have a standard deviation 𝜎∕

√
n. Consequently, if all factor level means are identical, the observed sam-

ple means yi. would behave as if they were a set of observations drawn at random from a normal distribution with mean
y
..

and standard deviation 𝜎∕
√
n. Visualize a normal distribution capable of being slid along an axis below which the

y1., y2., . . . , ya., are plotted. If the treatment means are all equal, there should be some position for this distribution that
makes it obvious that the yi. values were drawn from the same distribution. If this is not the case, the yi. values that appear
not to have been drawn from this distribution are associated with factor levels that produce different mean responses.

The only flaw in this logic is that 𝜎 is unknown. Box, Hunter, and Hunter (2005) point out that we can replace 𝜎
with

√
MSE from the analysis of variance and use a t distribution with a scale factor

√
MSE∕n instead of the normal.

Such an arrangement for the etch rate data of Example 3.1 is shown in Figure 3.11. Focus on the t distribution shown
as a solid line curve in the middle of the display.

To sketch the t distribution in Figure 3.11, simply multiply the abscissa t value by the scale factor
√
MSE∕n =

√
330.70∕5 = 8.13
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◾ F I G U R E 3 . 11 Etch rate averages from Example 3.1 in relation to a t distribution with scale factor√
MSE∕n =

√
330.70∕5 = 8.13

and plot this against the ordinate of t at that point. Because the t distribution looks much like the normal, except that it
is a little flatter near the center and has longer tails, this sketch is usually easily constructed by eye. If you wish to be
more precise, there is a table of abscissa t values and the corresponding ordinates in Box, Hunter, and Hunter (2005).
The distribution can have an arbitrary origin, although it is usually best to choose one in the region of the yi. values to
be compared. In Figure 3.11, the origin is 615 Å/min.

Now visualize sliding the t distribution in Figure 3.11 along the horizontal axis as indicated by the dashed lines
and examine the four means plotted in the figure. Notice that there is no location for the distribution such that all four
averages could be thought of as typical, randomly selected observations from the distribution. This implies that all four
means are not equal; thus, the figure is a graphical display of the ANOVA results. Furthermore, the figure indicates that
all four levels of power (160, 180, 200, 220 W) produce mean etch rates that differ from each other. In other words,
𝜇1 ≠ 𝜇2 ≠ 𝜇3 ≠ 𝜇4.

This simple procedure is a rough but effective technique for many multiple comparison problems. However,
there are more formal methods. We now give a brief discussion of some of these procedures.

3.5.4 Contrasts

Many multiple comparison methods use the idea of a contrast. Consider the plasma etching experiment of
Example 3.1. Because the null hypothesis was rejected, we know that some power settings produce different etch
rates than others, but which ones actually cause this difference? We might suspect at the outset of the experiment that
200 W and 220 W produce the same etch rate, implying that we would like to test the hypothesis

H0∶𝜇3 = 𝜇4

H1∶𝜇3 ≠ 𝜇4

or equivalently
H0∶𝜇3 − 𝜇4 = 0

H1∶𝜇3 − 𝜇4 ≠ 0 (3.23)

If we had suspected at the start of the experiment that the average of the lowest levels of power did not differ from the
average of the highest levels of power, then the hypothesis would have been

H0∶𝜇1 + 𝜇2 = 𝜇3 + 𝜇4

H1∶𝜇1 + 𝜇2 ≠ 𝜇3 + 𝜇4

or
H0∶𝜇1 + 𝜇2 − 𝜇3 − 𝜇4 = 0

H1∶𝜇1 + 𝜇2 − 𝜇3 − 𝜇4 ≠ 0 (3.24)

In general, a contrast is a linear combination of parameters of the form

Γ =
a∑
i=1

ci𝜇i
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where the contrast constants c1, c2, . . . , ca sum to zero; that is,
∑a

i=1 ci = 0. Both of the above hypotheses can be
expressed in terms of contrasts:

H0∶
a∑
i=1

ci𝜇i = 0

H1∶
a∑
i=1

ci𝜇i ≠ 0 (3.25)

The contrast constants for the hypotheses in Equation 3.23 are c1 = c2 = 0, c3 = +1, and c4 = −1, whereas for the
hypotheses in Equation 3.24, they are c1 = c2 = +1 and c3 = c4 = −1.

Testing hypotheses involving contrasts can be done in two basic ways. The first method uses a t-test. Write the
contrast of interest in terms of the treatment averages, giving

C =
a∑
i=1

ciyi.

The variance of C is

V(C) = 𝜎
2

n

a∑
i=1

c2
i (3.26)

when the sample sizes in each treatment are equal. If the null hypothesis in Equation 3.25 is true, the ratio
a∑
i=1

ciyi.

√
𝜎

2

n

a∑
i=1

c2
i

has the N(0, 1) distribution. Now we would replace the unknown variance 𝜎
2 by its estimate, the mean square error

MSE and use the statistic

t0 =

a∑
i=1

ciyi.

√
MSE
n

a∑
i=1

c2
i

(3.27)

to test the hypotheses in Equation 3.25. The null hypothesis would be rejected if |t0| in Equation 3.27 exceeds t
𝛼∕2,N−a.

The second approach uses an F-test. Now the square of a t random variable with 𝑣 degrees of freedom is an F
random variable with 1 numerator and 𝑣 denominator degrees of freedom. Therefore, we can obtain

F0 = t20 =

(
a∑
i=1

ciyi.

)2

MSE
n

a∑
i=1

c2
i

(3.28)

as an F-statistic for testing Equation 3.25. The null hypothesis would be rejected if F0 > F
𝛼,1,N−a. We can write the

test statistic of Equation 3.28 as

F0 =
MSC
MSE

=
SSC∕1

MSE
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where the single-degree-of-freedom contrast sum of squares is

SSC =

(
a∑
i=1

ciyi.

)2

1
n

a∑
i=1

c2
i

(3.29)

Confidence Interval for a Contrast. Instead of testing hypotheses about a contrast, it may be more useful
to construct a confidence interval. Suppose that the contrast of interest is

Γ =
a∑
i=1

ci𝜇i

Replacing the treatment means with the treatment averages yields

C =
a∑
i=1

ciyi.

Because

E

( a∑
i=1

ciyi.

)
=

a∑
i=1

ci𝜇i and V(C) = 𝜎
2∕n

a∑
i=1

c2
i

the 100(1 − 𝛼) percent confidence interval on the contrast Σa
i=1ci𝜇i is

a∑
i=1

ciyi. − t
𝛼∕2,N−a

√√√√MSE
n

a∑
i=1

c2
i ≤

a∑
i=1

ci𝜇i ≤

a∑
i=1

ciyi. + t
𝛼∕2,N−a

√√√√MSE
n

a∑
i=1

c2
i (3.30)

Note that we have used MSE to estimate 𝜎2. Clearly, if the confidence interval in Equation 3.30 includes zero, we would
be unable to reject the null hypothesis in Equation 3.25.

Standardized Contrast. When more than one contrast is of interest, it is often useful to evaluate them on
the same scale. One way to do this is to standardize the contrast so that it has variance 𝜎

2. If the contrast Σa
i=1ci𝜇i is

written in terms of treatment averages as Σa
i=1ciyi., dividing it by

√
(1∕n)Σa

i=1c
2
i will produce a standardized contrast

with variance 𝜎
2. Effectively, then, the standardized contrast is

a∑
i=1

c∗i yi.

where
c∗i =

ci√
1
n

a∑
i=1

c2
i

Unequal Sample Sizes. When the sample sizes in each treatment are different, minor modifications are made
in the above results. First, note that the definition of a contrast now requires that

a∑
i=1

nici = 0
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Other required changes are straightforward. For example, the t statistic in Equation 3.27 becomes

t0 =

a∑
i=1

ciyi.

√
MSE

a∑
i=1

c2
i

ni

and the contrast sum of squares from Equation 3.29 becomes

SSC =

(
a∑
i=1

ciyi.

)2

a∑
i=1

c2
i

ni

3.5.5 Orthogonal Contrasts

A useful special case of the procedure in Section 3.5.4 is that of orthogonal contrasts. Two contrasts with coefficients
{ci} and {di} are orthogonal if

a∑
i=1

cidi = 0

or, for an unbalanced design, if
a∑
i=1

cidi∕ni = 0

For a treatments, the set of a − 1 orthogonal contrasts partition the sum of squares due to treatments into a − 1 inde-
pendent single-degree-of-freedom components. Thus, tests performed on orthogonal contrasts are independent.

There are many ways to choose the orthogonal contrast coefficients for a set of treatments. Usually, something
in the nature of the experiment should suggest which comparisons will be of interest. For example, if there are a = 3
treatments, with treatment 1 a control and treatments 2 and 3 actual levels of the factor of interest to the experimenter,
appropriate orthogonal contrasts might be as follows:

Treatment
Coefficients for

Orthogonal Contrasts

1 (control) −2 0

2 (level 1) 1 −1

3 (level 2) 1 1

Note that contrast 1 with ci = −2, 1, 1 compares the average effect of the factor with the control, whereas contrast 2
with di = 0,−1, 1 compares the two levels of the factor of interest.

Generally, the method of contrasts (or orthogonal contrasts) is useful for what are called preplanned compar-
isons. That is, the contrasts are specified prior to running the experiment and examining the data. The reason for this is
that if comparisons are selected after examining the data, most experimenters would construct tests that correspond to
large observed differences in means. These large differences could be the result of the presence of real effects, or they
could be the result of random error. If experimenters consistently pick the largest differences to compare, they will
inflate the type I error of the test because it is likely that, in an unusually high percentage of the comparisons selected,
the observed differences will be the result of error. Examining the data to select comparisons of potential interest is often
called data snooping. The Scheffé method for all comparisons, discussed in the next section, permits data snooping.
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EXAMPLE 3 . 6

Consider the plasma etching experiment in Example 3.1.
There are four treatment means and three degrees of free-
dom between these treatments. Suppose that prior to running
the experiment the following set of comparisons among
the treatment means (and their associated contrasts) were
specified:

Hypothesis Contrast

H0∶𝜇1 = 𝜇2

H0∶𝜇1 + 𝜇2 = 𝜇3 + 𝜇4

H0∶𝜇3 = 𝜇4

C1 = y1. − y2.

C2 = y1. + y2. − y3. − y4.

C3 = y3. − y4.

Notice that the contrast coefficients are orthogonal. Using
the data in Table 3.4, we find the numerical values of the
contrasts and the sums of squares to be as follows:

C1 = +1(551.2) − 1(587.4) = −36.2

SSC1
= (−36.2)2

1
5
(2)

= 3276.10

C2 = +1(551.2) + 1(587.4)
−1(625.4) − 1(707.0) = −193.8

SSC2
= (−193.8)2

1
5
(4)

= 46,948.05

C3 = +1(625.4) − 1(707.6) = −81.6

SSC3
= (−81.6)2

1
5
(2)

= 16,646.40

These contrast sums of squares completely partition the
treatment sum of squares. The tests on such orthogonal con-
trasts are usually incorporated in the ANOVA, as shown in
Table 3.11. We conclude from the P-values that there are
significant differences in mean etch rates between levels 1
and 2 and between levels 3 and 4 of the power settings, and
that the average of levels 1 and 2 does differ significantly
from the average of levels 3 and 4 at the 𝛼 = 0.05 level.

◾ T A B L E 3 . 11
Analysis of Variance for the Plasma Etching Experiment

Source of Variation
Sum of
Squares

Degrees of
Freedom

Mean
Square F0 P-Value

Power setting 66,870.55 3 22,290.18 66.80 < 0.001

Orthogonal contrasts

C1∶𝜇1 = 𝜇2 (3276.10) 1 3276.10 9.82 < 0.01

C2∶𝜇1 + 𝜇3 = 𝜇3 + 𝜇4 (46,948.05) 1 46,948.05 140.69 < 0.001

C3∶𝜇3 = 𝜇4 (16,646.40) 1 16,646.40 49.88 < 0.001

Error 5,339.20 16 333.70

Total 72,209.75 19

3.5.6 Scheffé’s Method for Comparing All Contrasts

In many situations, experimenters may not know in advance which contrasts they wish to compare, or they may be
interested in more than a − 1 possible comparisons. In many exploratory experiments, the comparisons of interest are
discovered only after preliminary examination of the data. Scheffé (1953) has proposed a method for comparing any
and all possible contrasts between treatment means. In the Scheffé method, the type I error is at most 𝛼 for any of the
possible comparisons.
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Suppose that a set of m contrasts in the treatment means

Γu = c1u𝜇1 + c2u𝜇2 + · · · + cau𝜇a u = 1, 2, . . . ,m (3.31)

of interest have been determined. The corresponding contrast in the treatment averages yi. is

Cu = c1uy1. + c2uy2. + · · · + cauya. u = 1, 2, . . . ,m (3.32)

and the standard error of this contrast is

SCu
=

√√√√MSE

a∑
i=1

(c2
iu∕ni) (3.33)

where ni is the number of observations in the ith treatment. It can be shown that the critical value against which Cu
should be compared is

S
𝛼,u = SCu

√
(a − 1)F

𝛼,a−1,N−a (3.34)

To test the hypothesis that the contrast Γu differs significantly from zero, refer Cu to the critical value. If |Cu| > S
𝛼,u,

the hypothesis that the contrast Γu equals zero is rejected.
The Scheffé procedure can also be used to form confidence intervals for all possible contrasts among treatment

means. The resulting intervals, say Cu − S
𝛼,u ≤ Γu ≤ Cu + S

𝛼,u, are simultaneous confidence intervals in that the
probability that all of them are simultaneously true is at least 1 − 𝛼.

To illustrate the procedure, consider the data in Example 3.1 and suppose that the contrasts of interests are

Γ1 = 𝜇1 + 𝜇2 − 𝜇3 − 𝜇4

and
Γ2 = 𝜇1 − 𝜇4

The numerical values of these contrasts are

C1 = y1. + y2. − y3. − y4.

= 551.2 + 587.4 − 625.4 − 707.0 = −193.80

and

C2 = y1. − y4.

= 551.2 − 707.0 = −155.8

The standard errors are found from Equation 3.33 as

SC1
=

√√√√MSE

5∑
i=1

(c2
i1∕ni) =

√
333.70(1 + 1 + 1 + 1)∕5 = 16.34

and

SC2
=

√√√√MSE

5∑
i=1

(c2
i2∕ni) =

√
333.70(1 + 1)∕5 = 11.55

From Equation 3.34, the 1 percent critical values are

S0.01,1 = SC1

√
(a − 1)F0.01,a−1,N−a = 16.34

√
3(5.29) = 65.09
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and
S0.01,2 = SC2

√
(a − 1)F0.01,a−1,N−a = 11.55

√
3(5.29) = 45.97

Because |C1| > S0.01,1, we conclude that the contrast Γ1 = 𝜇1 + 𝜇2 − 𝜇3 − 𝜇4 does not equal zero; that is, we conclude
that the mean etch rates of power settings 1 and 2 as a group differ from the means of power settings 3 and 4 as a group.
Furthermore, because |C2| > S0.01,2, we conclude that the contrast Γ2 = 𝜇1 − 𝜇4 does not equal zero; that is, the mean
etch rates of treatments 1 and 4 differ significantly.

3.5.7 Comparing Pairs of Treatment Means

In many practical situations, we will wish to compare only pairs of means. Frequently, we can determine which means
differ by testing the differences between all pairs of treatment means. Thus, we are interested in contrasts of the form
Γ = 𝜇j − 𝜇j for all i ≠ j. Although the Scheffé method described in the previous section could be easily applied to
this problem, it is not the most sensitive procedure for such comparisons. We now turn to a consideration of methods
specifically designed for pairwise comparisons between all a population means.

Suppose that we are interested in comparing all pairs of a treatment means and that the null hypotheses that we
wish to test are H0∶𝜇i = 𝜇j for all i ≠ j. There are numerous procedures available for this problem. We now present
two popular methods for making such comparisons.

Tukey’s Test. Suppose that, following an ANOVA in which we have rejected the null hypothesis of equal
treatment means, we wish to test all pairwise mean comparisons:

H0∶𝜇i = 𝜇j

H1∶𝜇i ≠ 𝜇j

for all i ≠ j. Tukey (1953) proposed a procedure for testing hypotheses for which the overall significance level is exactly
𝛼 when the sample sizes are equal and at most 𝛼 when the sample sizes are unequal. His procedure can also be used to
construct confidence intervals on the differences in all pairs of means. For these intervals, the simultaneous confidence
level is 100(1 − 𝛼) percent when the sample sizes are equal and at least 100(1 − 𝛼) percent when sample sizes are
unequal. In other words, the Tukey procedure controls the experimentwise or “family” error rate at the selected level
𝛼. This is an excellent data snooping procedure when interest focuses on pairs of means.

Tukey’s procedure makes use of the distribution of the studentized range statistic

q =
ymax − ymin√

MSE∕n

where ymax and ymin are the largest and smallest sample means, respectively, out of a group of p sample means. Appendix
Table V contains values of q

𝛼
(p, f ), the upper 𝛼 percentage points of q, where f is the number of degrees of freedom

associated with the MSE. For equal sample sizes, Tukey’s test declares two means significantly different if the absolute
value of their sample differences exceeds

T
𝛼
= q

𝛼
(a, f )

√
MSE
n

(3.35)

Equivalently, we could construct a set of 100(1 − 𝛼) percent confidence intervals for all pairs of means as follows:

yi. − yj. − q
𝛼
(a, f )

√
MSE
n

≤ 𝜇i − 𝜇j

≤ yi. − yj. + q
𝛼
(a, f )

√
MSE
n

, i ≠ j. (3.36)

When sample sizes are not equal, Equations 3.35 and 3.36 become

T
𝛼
=

q
𝛼
(a, f )√

2

√
MSE

(
1
ni

+ 1
nj

)
(3.37)
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and

yi. − yj. −
q
𝛼
(a, f )√

2

√
MSE

(
1
ni

+ 1
nj

)
≤ 𝜇i − 𝜇j

≤ yi. − yj. +
q
𝛼
(a, f )√

2

√
MSE

(
1
ni

+ 1
nj

)
, i ≠ j (3.38)

respectively. The unequal sample size version is sometimes called the Tukey–Kramer procedure.

EXAMPLE 3 . 7

To illustrate Tukey’s test, we use the data from the plasma
etching experiment in Example 3.1. With 𝛼 = 0.05 and
f = 16 degrees of freedom for error, Appendix Table V gives
q0.05(4, 16) = 4.05. Therefore, from Equation 3.35,

T0.05 = q0.05(4, 16)
√

MSE
n

= 4.05

√
333.70

5
= 33.09

Thus, any pairs of treatment averages that differ in absolute
value by more than 33.09 would imply that the correspond-
ing pair of population means are significantly different.
The four treatment averages are

y1. = 551.2 y2. = 587.4

y3. = 625.4 y4. = 707.0

and the differences in averages are

y1. − y2. = 551.2 − 587.4 = −36.20∗

y1. − y3. = 551.2 − 625.4 = −74.20∗

y1. − y4. = 551.2 − 707.0 = −155.8∗

y2. − y3. = 587.4 − 625.4 = −38.0∗

y2. − y4. = 587.4 − 707.0 = −119.6∗

y3. − y4. = 625.4 − 707.0 = −81.60∗

The starred values indicate the pairs of means that are sig-
nificantly different. Note that the Tukey procedure indicates
that all pairs of means differ. Therefore, each power setting
results in a mean etch rate that differs from the mean etch
rate at any other power setting.

When using any procedure for pairwise testing of means, we occasionally find that the overall F-test from the
ANOVA is significant, but the pairwise comparison of means fails to reveal any significant differences. This situation
occurs because the F-test is simultaneously considering all possible contrasts involving the treatment means, not just
pairwise comparisons. That is, in the data at hand, the significant contrasts may not be of the form 𝜇i − 𝜇j.

The derivation of the Tukey confidence interval of Equation 3.36 for equal sample sizes is straightforward. For
the studentized range statistic q, we have

P

(
max(yi. − 𝜇i) − min(yi. − 𝜇i)√

MSE∕n
≤ q

𝛼
(a, f )

)
= 1 − 𝛼

If max(yi. − 𝜇i) − min(yi. − 𝜇i) is less than or equal to q
𝛼
(a, f )

√
MSE∕n, it must be true that |(yi. − 𝜇i) − (yj. − 𝜇j)| ≤

q
𝛼
(a, f )

√
MSE∕n for every pair of means. Therefore

P

(
−q

𝛼
(a, f )

√
MSE
n

≤ yi. − yj. − (𝜇i − 𝜇j) ≤ q
𝛼
(a, f )

√
MSE
n

)
= 1 − 𝛼

Rearranging this expression to isolate 𝜇i − 𝜇j between the inequalities will lead to the set of 100(1 − 𝛼) percent simul-
taneous confidence intervals given in Equation 3.38.
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The Fisher Least Significant Difference (LSD) Method. The Fisher method for comparing all pairs of
means controls the error rate 𝛼 for each individual pairwise comparison but does not control the experimentwise or
family error rate. This procedure uses the t statistic for testing H0∶𝜇i = 𝜇j

t0 =
yi. − yj.√

MSE

(
1
ni

+ 1
nj

) (3.39)

Assuming a two-sided alternative, the pair of means 𝜇i and 𝜇j would be declared significantly different if |yi. − yj.| >
t
𝛼∕2,N−a

√
MSE(1∕ni + 1∕nj). The quantity

LSD = t
𝛼∕2,N−a

√
MSE

(
1
ni

+ 1
nj

)
(3.40)

is called the least significant difference. If the design is balanced, n1 = n2 = · · · = na = n, and

LSD = t
𝛼∕2,N−a

√
2MSE
n

(3.41)

To use the Fisher LSD procedure, we simply compare the observed difference between each pair of averages to
the corresponding LSD. If |yi. − yj.| > LSD, we conclude that the population means 𝜇i and 𝜇j differ. The t statistic in
Equation 3.39 could also be used.

EXAMPLE 3 . 8

To illustrate the procedure, if we use the data from the exper-
iment in Example 3.1, the LSD at 𝛼 = 0.05 is

LSD = t.025,16

√
2MSE
n

= 2.120

√
2(333.70)

5
= 24.49

Thus, any pair of treatment averages that differ in absolute
value by more than 24.49 would imply that the correspond-
ing pair of population means are significantly different.
The differences in averages are

y1. − y2. = 551.2 − 587.4 = −36.2∗

y1. − y3. = 551.2 − 625.4 = −74.2∗

y1. − y4. = 551.2 − 707.0 = −155.8∗

y2. − y3. = 587.4 − 625.4 = −38.0∗

y2. − y4. = 587.4 − 707.0 = −119.6∗

y3. − y4. = 625.4 − 707.0 = −81.6∗

The starred values indicate pairs of means that are sig-
nificantly different. Clearly, all pairs of means differ
significantly.

Note that the overall 𝛼 risk may be considerably inflated using this method. Specifically, as the number of treat-
ments a gets larger, the experimentwise or family type I error rate (the ratio of the number of experiments in which at
least one type I error is made to the total number of experiments) becomes large.

Which Pairwise Comparison Method Do I Use? Certainly, a logical question at this point is as follows:
Which one of these procedures should I use? Unfortunately, there is no clear-cut answer to this question, and profes-
sional statisticians often disagree over the utility of the various procedures. Carmer and Swanson (1973) have conducted
Monte Carlo simulation studies of a number of multiple comparison procedures, including others not discussed here.
They report that the least significant difference method is a very effective test for detecting true differences in means
if it is applied only after the F-test in the ANOVA is significant at 5 percent. However, this method does not contain
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the experimentwise error rate. Because the Tukey method does control the overall error rate, many statisticians prefer
to use it.

As indicated above, there are several other multiple comparison procedures. For articles describing these meth-
ods, see O’Neill and Wetherill (1971), Miller (1977), and Nelson (1989). The books by Miller (1991) and Hsu (1996)
are also recommended.

3.5.8 Comparing Treatment Means with a Control

In many experiments, one of the treatments is a control, and the analyst is interested in comparing each of the other
a − 1 treatment means with the control. Thus, only a − 1 comparisons are to be made. A procedure for making these
comparisons has been developed by Dunnett (1964). Suppose that treatment a is the control and we wish to test the
hypotheses

H0∶𝜇i = 𝜇a

H1∶𝜇i ≠ 𝜇a

for i = 1, 2, . . . , a − 1. Dunnett’s procedure is a modification of the usual t-test. For each hypothesis, we compute the
observed differences in the sample means

|yi. − ya.| i = 1, 2, . . . , a − 1

The null hypothesis H0∶𝜇i = 𝜇a is rejected using a type I error rate 𝛼 if

|yi. − ya.| > d
𝛼
(a − 1, f )

√
MSE

(
1
ni

+ 1
na

)
(3.42)

where the constant d
𝛼
(a − 1, f ) is given in Appendix Table VI. (Both two- and one-sided tests are possible.) Note that

𝛼 is the joint significance level associated with all a − 1 tests.

EXAMPLE 3 . 9

To illustrate Dunnett’s test, consider the experiment from
Example 3.1 with treatment 4 considered as the control. In
this example, a = 4, a − 1 = 3, f = 16, and ni = n = 5. At
the 5 percent level, we find from Appendix Table VI that
d0.05(3, 16) = 2.59. Thus, the critical difference becomes

d0.05(3, 16)
√

2MSE
n

= 2.59

√
2(333.70)

5
= 29.92

(Note that this is a simplification of Equation 3.42 result-
ing from a balanced design.) Thus, any treatment mean that

differs in absolute value from the control by more than 29.92
would be declared significantly different. The observed dif-
ferences are

1 vs. 4 ∶ y1. − y4. = 551.2 − 707.0 = −155.8

2 vs. 4 ∶ y2. − y4. = 587.4 − 707.0 = −119.6

3 vs. 4 ∶ y3. − y4. = 625.4 − 707.0 = −81.6

Note that all differences are significant. Thus, we would
conclude that all power settings are different from the
control.

When comparing treatments with a control, it is a good idea to use more observations for the control treatment
(say na) than for the other treatments (say n), assuming equal numbers of observations for the remaining a − 1 treat-
ments. The ratio na∕n should be chosen to be approximately equal to the square root of the total number of treatments.
That is, choose na∕n =

√
a.
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3.6 Sample Computer Output

Computer programs for supporting experimental design and performing the analysis of variance are widely available.
The output from one such program, Design-Expert, is shown in Figure 3.12, using the data from the plasma etching
experiment in Example 3.1. The sum of squares corresponding to the “Model” is the usual SSTreatments for a single-factor
design. That source is further identified as “A.” When there is more than one factor in the experiment, the model sum
of squares will be decomposed into several sources (A, B, etc.). Notice that the analysis of variance summary at the top
of the computer output contains the usual sums of squares, degrees of freedom, mean squares, and test statistic F0. The
column “Prob > F” is the P-value (actually, the upper bound on the P-value because probabilities less than 0.0001 are
defaulted to 0.0001).

In addition to the basic analysis of variance, the program displays some other useful information. The quantity
“R-squared” is defined as

R2 =
SSModel

SSTotal
= 66,870.55

72,209.75
= 0.9261

and is loosely interpreted as the proportion of the variability in the data “explained” by the ANOVA model. Thus, in the
plasma etching experiment, the factor “power” explains about 92.61 percent of the variability in etch rate. Clearly, we
must have 0 ≤ R2 ≤ 1, with larger values being more desirable. There are also some other R2-like statistics displayed in
the output. The “adjusted” R2 is a variation of the ordinary R2 statistic that reflects the number of factors in the model.
It can be a useful statistic for more complex experiments with several design factors when we wish to evaluate the
impact of increasing or decreasing the number of model terms. “Std. Dev.” is the square root of the error mean square,√

333.70 = 18.27, and “C.V.” is the coefficient of variation, defined as (
√
MSE∕y)100. The coefficient of variation

measures the unexplained or residual variability in the data as a percentage of the mean of the response variable.
“PRESS” stands for “prediction error sum of squares,” and it is a measure of how well the model for the experiment
is likely to predict the responses in a new experiment. Small values of PRESS are desirable. Alternatively, one can
calculate an R2 for prediction based on PRESS (we will show how to do this later). This R2

Pred in our problem is 0.8845,
which is not unreasonable, considering that the model accounts for about 93 percent of the variability in the current
experiment. The “adequate precision” statistic is computed by dividing the difference between the maximum predicted
response and the minimum predicted response by the average standard deviation of all predicted responses. Large
values of this quantity are desirable, and values that exceed four usually indicate that the model will give reasonable
performance in prediction.

Treatment means are estimated, and the standard error (or sample standard deviation of each treatment mean,√
MSE∕n) is displayed. Differences between pairs of treatment means are investigated by using a hypothesis testing

version of the Fisher LSD method described in Section 3.5.7.
The computer program also calculates and displays the residuals, as defined in Equation 3.16. The program will

also produce all of the residual plots that we discussed in Section 3.4. There are also several other residual diagnostics
displayed in the output. Some of these will be discussed later. Design-Expert also displays the studentized residual
(called “Student Residual” in the output) calculated as

rij =
eij√

MSE(1 − Leverageij)

where Leverageij is a measure of the influence of the ijth observation on the model. We will discuss leverage in more
detail and show how it is calculated in Chapter 10. Studentized residuals are considered to be more effective in iden-
tifying potential outliers rather than either the ordinary residuals or standardized residuals.

Finally, notice that the computer program also has some interpretative guidance embedded in the output. This
“advisory” information is fairly standard in many PC-based statistics packages. Remember in reading such guid-
ance that it is written in very general terms and may not exactly suit the report writing requirements of any specific
experimenter. This advisory output may be hidden upon request by the user.



�

� �

�

100 Chapter 3 Experiments with a Single Factor: The Analysis of Variance

◾ F I G U R E 3 . 12 Design-Expert
computer output for Example 3.1
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Figure 3.13 presents the output from Minitab for the plasma etching experiment. The output is very similar to the
Design-Expert output in Figure 3.12. Note that confidence intervals on each individual treatment mean are provided
and that the pairs of means are compared using Tukey’s method. However, the Tukey method is presented using the
confidence interval format instead of the hypothesis-testing format that we used in Section 3.5.7. None of the Tukey
confidence intervals includes zero, so we would conclude that all of the means are different.

Figure 3.14 is the output from JMP for the plasma etch experiment in Example 3.1. The output information is
very similar to that from Design-Expert and Minitab. The plots of actual observations versus the predicted values and
residuals versus the predicted values are default output. There is an option in JMP to provide the Fisher LSD procedure
or Tukey’s method to compare all pairs of means.

One-way ANOVA: Etch Rate versus Power

Source
Power
Error
Total

DF
3

16
19

SS
66871

5339
72210

MS
22290

334

Level
160
180
200
220

N
5
5
5
5

Mean
551.20
587.40
625.40
707.00

Std.Dev.
20.02
16.74
20.53
15.25

Power
180
200
220

Lower
3.11

41.11
122.71

Center
36.20
74.20

155.80

Upper
69.29

107.29
188.89

Power
200
220

Lower
4.91

86.51

Center
38.00

119.60

Upper
71.09

152.69

( (

F
66.80

P
0.000

S = 18.27 R–Sq = 92.61% R–Sq (adj) = 91.22%

Individual 95% CIs For Mean Based on
Pooled StDev

*
( (*

( (*
( (*

( (*

( (*
( (*

550 600 700650

–100 0 200100

( (*

( (*

–100 0 200100

Pooled Std. Dev. = 18.27

Individual confidence level = 98.87%

Power = 160 subtracted from

Power = 180 subtracted from

Turkey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Power

Power
220

Lower
48.51

Center
81.60

Upper
114.69 ( (*

–100 0 200100

Power = 200 subtracted from

◾ F I G U R E 3 . 13 Minitab computer output for Example 3.1
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Actual by Predicted Plot

Response Etch rate
Whole Model

750

700

650

600

550

550

Etch rate Predicted P < .0001
RSq = 0.93 RMSE = 18.267

E
tc

h
 r

a
te

 A
ct

u
a
l

600 650 700

Summary of Fit

0.92606RSquare
0.912196RSquare Adj
18.26746Root Mean Square Error

617.75Mean of Response
20Observations (or Sum Wgts)

Analysis of Variance
F RatioSource DF Sum of Squares Mean Square

Model 3 66870.550 22290.2 66.7971
Error 16 5339.200 333.7 FProb 
C.Total 19 72209.750 .0001

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
RF power 3 3 66870.550 66.7971 .0001

Residual by Predicted Plot
30

20

10

0

–10

–20

–30

Etch rate Predicted

E
tc

h
 r

a
te

 
R

e
si

d
u

a
l

550 600 650 700

RF power

Least Squares Means Table
Level Least Sq Mean Std Error Mean
160
180
200
220

551.20000
587.40000
625.40000
707.00000

8.1694553
8.1694553
8.1694553
8.1694553

551.200
587.400
625.400
707.000

◾ F I G U R E 3 . 14 JMP output from Example 3.1
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3.7 Determining Sample Size

In any experimental design problem, a critical decision is the choice of sample size—that is, determining the number of
replicates to run. Generally, if the experimenter is interested in detecting small effects, more replicates are required than
if the experimenter is interested in detecting large effects. In this section, we discuss several approaches to determining
sample size. Although our discussion focuses on a single-factor design, most of the methods can be used in more
complex experimental situations.

3.7.1 Operating Characteristic and Power Curves

Recall that an operating characteristic (OC) curve is a plot of the type II error probability 𝛽 of a statistical test for
a particular sample size versus a parameter that reflects the extent to which the null hypothesis is false. Alternatively
a Power Curve plots power or 1−𝛽 versus this parameter. Power and/or OC curves can be constructed from software
and are useful in guiding the experimenter in selecting the number of replicates so that the design will be sensitive to
important potential differences in the treatments.

We consider the probability of type II error of the fixed effects model for the case of equal sample sizes per
treatment, say

𝛽 = 1 − P{Reject H0|H0 is false}

= 1 − P{F0 > F
𝛼,a−1,N−a|H0 is false} (3.43)

To evaluate the probability statement in Equation 3.43, we need to know the distribution of the test statistic F0 if
the null hypothesis is false. It can be shown that, if H0 is false, the statistic F0 = MSTreatments∕MSE is distributed as a
noncentral F random variable with a − 1 and N − a degrees of freedom and the noncentrality parameter 𝛿. If 𝛿 = 0,
the noncentral F distribution becomes the usual (central) F distribution.

We will illustrate the sample size determination method implemented in JMP. Consider the plasma etching exper-
iment described in Exampe 3.1 Suppose that the experimenter is interested in rejecting the null hypothesis with a
probability of at least 0.9 (power = 0.9) if the true treatment means are

𝜇1 = 575, 𝜇2 = 600, 𝜇3 = 650, and 𝜇1 = 675

The experimenter feels that the standard deviation of etch rate will be no larger than 𝜎 = 25 Å∕min. The input and
output from the JMP power and sample size platform for comparing several means is shown in the following display:
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The graph on the right is a plot of power versus the total sample size. This plot indicates that at least 4 replicates are
required to obtain a power that exceeds 0.90.

A potential problem with this approach to determining sample size is that it can be difficult to select a set of
treatment means on which the sample size decision should be based. An alternate approach is to select a sample size
such that if the difference between any two treatment means exceeds a specified value, the null hypothesis should be
rejected.

Minitab uses this approach to perform power calculations and find sample sizes for single-factor ANOVAs.
Consider the following display:

Power and Sample Size

One-way ANOVA

Alpha = 0.01 Assumed standard deviation = 25

Number of Levels = 4

Sample Maximum

SS Means Size Power Difference
2812.5 5 0.804838 75

The sample size is for each level.

Power and Sample Size

One-way ANOVA

Alpha = 0.01 Assumed standard deviation = 25
Number of Levels 5 4

Sample Target Maximum

SS Means Size Power Actual Power Difference
2812.5 6 0.9 0.915384 75

The sample size is for each level.

In the upper portion of the display, we asked Minitab to calculate the power for n = 5 replicates when the maximum
difference in treatment means is 75. The bottom portion of the display is the output when the experimenter requests
the sample size to obtain a target power of at least 0.90.

3.7.2 Confidence Interval Estimation Method

This approach assumes that the experimenter wishes to express the final results in terms of confidence intervals and
is willing to specify in advance how wide he or she wants these confidence intervals to be. For example, suppose that
in the plasma etching experiment from Example 3.1, we wanted a 95 percent confidence interval on the difference in
mean etch rate for any two power settings to be ±30 Å∕min and a prior estimate of 𝜎 is 25. Then, using Equation 3.13,
we find that the accuracy of the confidence interval is

±t
𝛼∕2,N−a

√
2MSE
n

Suppose that we try n = 5 replicates. Then, using 𝜎
2 = (25)2 = 625 as an estimate of MSE, the accuracy of the confi-

dence interval becomes

±2.120

√
2(625)

5
= ±33.52
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which does not meet the requirement. Trying n = 6 gives

±2.086

√
2(625)

6
= ±30.11

Trying n = 7 gives

±2.064

√
2(625)

7
= ±27.58

Clearly, n = 7 is the smallest sample size that will lead to the desired accuracy.
The quoted level of significance in the above illustration applies only to one confidence interval. However, the

same general approach can be used if the experimenter wishes to prespecify a set of confidence intervals about which
a joint or simultaneous confidence statement is made (see the comments about simultaneous confidence intervals in
Section 3.3.3). Furthermore, the confidence intervals could be constructed about more general contrasts in the treatment
means than the pairwise comparison illustrated above.

3.8 Other Examples of Single-Factor Experiments

3.8.1 Chocolate and Cardiovascular Health

An article in Nature describes an experiment to investigate the effect of consuming chocolate on cardiovascular health
(“Plasma Antioxidants from Chocolate,” Nature, Vol. 424, 2003, pp. 1013). The experiment consisted of using three
different types of chocolates: 100 g of dark chocolate, 100 g of dark chocolate with 200 mL of full-fat milk, and 200 g
of milk chocolate. A total of 12 subjects were used, 7 women and 5 men, with an average age range of 32.2 ± 1 years,
an average weight of 65.8 ± 3.1 kg, and body-mass index of 21.9 ± 0.4 kg m−2. On different days a subject consumed
one of the chocolate-factor levels and 1 hour later the total antioxidant capacity of their blood plasma was measured
in an assay. Data similar to that summarized in the article are shown in Table 3.12.

Figure 3.15 presents box plots for the data from this experiment. The result is an indication that the blood
antioxidant capacity one hour after eating the dark chocolate is higher than for the other two treatments. The variability
in the sample data from all three treatments seems very similar. Table 3.13 is the Minitab ANOVA output. The test
statistic is highly significant (Minitab reports a P-value of 0.000, which is clearly wrong because P-values cannot be
zero; this means that the P-value is less than 0.001), indicating that some of the treatment means are different. The
output also contains the Fisher LSD analysis for this experiment. This indicates that the mean antioxidant capacity
after consuming dark chocolate is higher than after consuming dark chocolate plus milk or milk chocolate alone is
the mean antioxidant capacity after consuming dark chocolate plus milk or milk chocolate alone is equal. Figure 3.16
is the normal probability plot of the residual and Figure 3.17 is the plot of residuals versus predicted values. These
plots do not suggest any problems with model assumptions. We conclude that consuming dark chocolate results
in higher mean blood antioxidant capacity after one hour than consuming either dark chocolate plus milk or milk
chocolate alone.

◾ T A B L E 3 . 12
Blood Plasma Levels One Hour Following Chocolate Consumption

Subjects (Observations)

Factor 1 2 3 4 5 6 7 8 9 10 11 12

DC 118.8 122.6 115.6 113.6 119.5 115.9 115.8 115.1 116.9 115.4 115.6 107.9
DC + MK 105.4 101.1 102.7 97.1 101.9 98.9 100.0 99.8 102.6 100.9 104.5 93.5
MC 102.1 105.8 99.6 102.7 98.8 100.9 102.8 98.7 94.7 97.8 99.7 98.6
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◾ F I G U R E 3 . 15 Box plots of the blood antioxidant
capacity data from the chocolate consumption experiment
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◾ T A B L E 3 . 13
Minitab ANOVA Output, Chocolate Consumption Experiment

One-way ANOVA: DC, DC+MK, MC 

Source  DF      SS     MS      F      P
Factor   2  1952.6  976.3  93.58  0.000
Error   33   344.3   10.4
Total   35  2296.9

S = 3.230   R-Sq = 85.01%   R-Sq(adj) = 84.10%

Individual 95% CIs For Mean Based on
Pooled StDev

Level   N    Mean  StDev   ---+---------+---------+---------+------
DC     12  116.06   3.53                                  (---*---)
DC+MK  12  100.70   3.24    (--*---)
MC     12  100.18   2.89   (--*---)

---+---------+---------+---------+------
100.0     105.0     110.0     115.0

Pooled StDev = 3.23

Fisher 95% Individual Confidence Intervals
All Pairwise Comparisons
Simultaneous confidence level = 88.02
DC subtracted from:

Lower   Center    Upper    -+---------+---------+---------+---
DC+MK   -18.041  -15.358  -12.675      (---*----)
MC      -18.558  -15.875  -13.192     (----*---)

-+---------+---------+---------+---
-18.0     -12.0      -6.0       0.0

DC+MK subtracted from:

Lower  Center  Upper     -+---------+---------+---------+--------
MC   -3.200  -0.517  2.166                               (---*----)

-+---------+---------+---------+--------
-18.0     -12.0      -6.0       0.0
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◾ F I G U R E 3 . 16 Normal probability plot of the
residuals from the chocolate consumption experiment

5.0

2.5

0.0

–2.5

–5.0

–7.5

–10.0

Fitted value

R
e

si
d

u
a

l

100     102     104     106     108     110     112     114     116     118

◾ F I G U R E 3 . 17 Plot of residuals versus the predicted
values from the chocolate consumption experiment

3.8.2 A Real Economy Application of a Designed Experiment

Designed experiments have had tremendous impact on manufacturing industries, including the design of new
products and the improvement of existing ones, development of new manufacturing processes, and process
improvement. In the last 15 years, designed experiments have begun to be widely used outside of this traditional
environment. These applications are in financial services, telecommunications, health care, e-commerce, legal
services, marketing, logistics and transportation, and many of the nonmanufacturing components of manufacturing
businesses. These types of businesses are sometimes referred to as the real economy. It has been estimated that
manufacturing accounts for only about 20 percent of the total US economy, so applications of experimental design
in the real economy are of growing importance. In this section, we present an example of a designed experiment
in marketing.

A soft drink distributor knows that end-aisle displays are an effective way to increase sales of the product.
However, there are several ways to design these displays: by varying the text displayed, the colors used, and the visual
images. The marketing group has designed three new end-aisle displays and wants to test their effectiveness. They
have identified 15 stores of similar size and type to participate in the study. Each store will test one of the displays
for a period of one month. The displays are assigned at random to the stores, and each display is tested in five stores.
The response variable is the percentage increase in sales activity over the typical sales for that store when the end-aisle
display is not in use. The data from this experiment are shown in Table 3.14.

Table 3.15 shows the analysis of the end-aisle display experiment. This analysis was conducted using JMP. The
P-value for the model F-statistic in the ANOVA indicates that there is a difference in the mean percentage increase in
sales between the three display types. In this application, we had JMP use the Fisher LSD procedure to compare the

◾ T A B L E 3 . 14
The End-Aisle Display Experimental Design

Display
Design Sample Observations, Percent Increase in Sales

1 5.43 5.71 6.22 6.01 5.29

2 6.24 6.71 5.98 5.66 6.60

3 8.79 9.20 7.90 8.15 7.55
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◾ T A B L E 3 . 15
JMP Output for the End-Aisle Display Experiment

Response Sales Increase

Whole Model

Actual by Predicted Plot
9.5

8.5

8

7

6.5

5.5

5

6.0 6.55.0

P < .0001 RSq = 0.86 RMSE = 0.5124
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Sales increase predicted

7.5 8.5 9.5

Summary of Fit

RSquare 0.856364

RSquare Adj 0.832425

Root Mean Square Error 0.512383

Mean of Response 6.762667

Observations (or Sum Wgts) 15

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio

Model 2 18.783053 9.39153 35.7722

Error 12 3.150440 0.26254 Prob > F

C.Total 14 21.933493 < .0001

Effect Tests

Source Nparm DF Sum of Squares F Ratio Prob > F

Display 2 2 18.783053 35.7722 < .001

Residual by Predicted Plot
1.0

0.5

0.0

–0.5

–1.0

Sales increase predicted
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s 
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 r
e
si

d
u

a
l

6.0 6.55.0 7.5 8.5 9.5

(Continued)
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◾ T A B L E 3 . 15 (Continued)

Least Squares Means Table

Level Least Sq Mean Std Error Mean

1 5.7320000 0.22914479 5.73200

2 6.2380000 0.22914479 6.23800

3 8.3180000 0.22914479 8.31800

LSMeans Differences Student’s t

a = 0.050 t = 2.17881

LSMean[i] By LSMean [i]

Mean[i]-Mean [i] 1 2 3
Std Err Dif
Lower CL Dif
Upper CL Dif

1 0 −0.506 −2.586
0 0.32406 −2.586
0 −1.2121 −3.2921
0 0.20007 −1.8799

2 0.506 0 −2.08
0.32406 0 0.32406
−0.2001 0 −2.7861
1.21207 0 −1.3739

3 2.586 2.08 0
0.32406 0.32406 0
1.87993 1.37393 0
3.29207 2.78607 0

Level Least Sq Mean

3 A 8.3180000

2 B 6.2380000

1 B 5.7320000

Levels not connected by same letter are significantly different.

pairs of treatment means (JMP labels these as the least squares means). The results of this comparison are presented
as confidence intervals on the difference in pairs of means. For pairs of means where the confidence interval includes
zero, we would not declare that the pairs of means are different. The JMP output indicates that display designs 1 and
2 are similar in that they result in the same mean increase in sales, but that display design 3 is different from both
designs 1 and 2 and that the mean increase in sales for display 3 exceeds that of both designs 1 and 2. Notice that JMP
automatically includes some useful graphics in the output, a plot of the actual observations versus the predicted values
from the model, and a plot of the residuals versus the predicted values. There is some mild indication that display
design 3 may exhibit more variability in sales increase than the other two designs.

3.8.3 Discovering Dispersion Effects

We have focused on using the analysis of variance and related methods to determine which factor levels result in
differences among treatment or factor level means. It is customary to refer to these effects as location effects. If there
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◾ T A B L E 3 . 16
Data for the Smelting Experiment

ObservationsRatio
Control
Algorithm 1 2 3 4 5 6

1 4.93(0.05) 4.86(0.04) 4.75(0.05) 4.95(0.06) 4.79(0.03) 4.88(0.05)

2 4.85(0.04) 4.91(0.02) 4.79(0.03) 4.85(0.05) 4.75(0.03) 4.85(0.02)

3 4.83(0.09) 4.88(0.13) 4.90(0.11) 4.75(0.15) 4.82(0.08) 4.90(0.12)

4 4.89(0.03) 4.77(0.04) 4.94(0.05) 4.86(0.05) 4.79(0.03) 4.76(0.02)

was inequality of variance at the different factor levels, we used transformations to stabilize the variance to improve
our inference on the location effects. In some problems, however, we are interested in discovering whether the different
factor levels affect variability; that is, we are interested in discovering potential dispersion effects. This will occur
whenever the standard deviation, variance, or some other measure of variability is used as a response variable.

To illustrate these ideas, consider the data in Table 3.16, which resulted from a designed experiment in an alu-
minum smelter. Aluminum is produced by combining alumina with other ingredients in a reaction cell and applying
heat by passing electric current through the cell. Alumina is added continuously to the cell to maintain the proper
ratio of alumina to other ingredients. Four different ratio control algorithms were investigated in this experiment. The
response variables studied were related to cell voltage. Specifically, a sensor scans cell voltage several times each sec-
ond, producing thousands of voltage measurements during each run of the experiment. The process engineers decided
to use the average voltage and the standard deviation of cell voltage (shown in parentheses) over the run as the response
variables. The average voltage is important because it affects cell temperature, and the standard deviation of voltage
(called “pot noise” by the process engineers) is important because it affects the overall cell efficiency.

An analysis of variance was performed to determine whether the different ratio control algorithms affect average
cell voltage. This revealed that the ratio control algorithm had no location effect; that is, changing the ratio control
algorithms does not change the average cell voltage. (Refer to Problem 3.38.)

To investigate dispersion effects, it is usually best to use

log(s) or log(s2)

as a response variable since the log transformation is effective in stabilizing variability in the distribution of the sample
standard deviation. Because all sample standard deviations of pot voltage are less than unity, we will use

y = − ln(s)

as the response variable. Table 3.17 presents the analysis of variance for this response, the natural logarithm of “pot
noise.” Notice that the choice of a ratio control algorithm affects pot noise; that is, the ratio control algorithm has a
dispersion effect. Standard tests of model adequacy, including normal probability plots of the residuals, indicate that
there are no problems with experimental validity. (Refer to Problem 3.39.)

◾ T A B L E 3 . 17
Analysis of Variance for the Natural Logarithm of Pot Noise

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F0 P-Value

Ratio control algorithm 6.166 3 2.055 21.96 < 0.001

Error 1.872 20 0.094

Total 8.038 23
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3 1 4 2

Average log pot noise [–ln (s)]

4.003.002.00

◾ F I G U R E 3 . 18 Average log pot noise [−ln (s)] for
four ratio control algorithms relative to a scaled t

distribution with scale factor
√

MSE∕n =
√

0.094∕6 = 0.125

Figure 3.18 plots the average log pot noise for each ratio control algorithm and also presents a scaled t distribution
for use as a reference distribution in discriminating between ratio control algorithms. This plot clearly reveals that
ratio control algorithm 3 produces greater pot noise or greater cell voltage standard deviation than the other algorithms.
There does not seem to be much difference between algorithms 1, 2, and 4.

3.9 The Random Effects Model

3.9.1 A Single Random Factor

An experimenter is frequently interested in a factor that has a large number of possible levels. If the experimenter
randomly selects a of these levels from the population of factor levels, then we say that the factor is random. Because
the levels of the factor actually used in the experiment were chosen randomly, inferences are made about the entire
population of factor levels. We assume that the population of factor levels is either of infinite size or is large enough to
be considered infinite. Situations in which the population of factor levels is small enough to employ a finite population
approach are not encountered frequently. Refer to Bennett and Franklin (1954) and Searle and Fawcett (1970) for a
discussion of the finite population case.

The linear statistical model is

yij = 𝜇 + 𝜏i + 𝜖ij

{
i = 1, 2, . . . , a
j = 1, 2, . . . , n

(3.44)

where both the treatment effects 𝜏i and 𝜖ij are random variables. We will assume that the treatment effects 𝜏i are
NID (0, 𝜎2

𝜏
), random variables3 and that the errors are NID(0, 𝜎2), random variables, and that the 𝜏i and 𝜖ij are inde-

pendent. Because 𝜏i is independent of 𝜖ij, the variance of any observation is

V(yij) = 𝜎
2
𝜏
+ 𝜎

2

The variances 𝜎2
𝜏

and 𝜎
2 are called variance components, and the model (Equation 3.44) is called the components of

variance or random effects model. The observations in the random effects model are normally distributed because
they are linear combinations of the two normally and independently distributed random variables 𝜏i and 𝜖ij. However,
unlike the fixed effects case in which all of the observations yij are independent, in the random model the observations
yij are only independent if they come from different factor levels. Specifically, we can show that the covariance of any
two observations is

Cov (yij,yij′ ) = 𝜎
2
𝜏

j ≠ j′

Cov (yij,yi′j′ ) = 0 i ≠ i′

Note that the observations within a specific factor level all have the same covariance, because before the experiment
is conducted, we expect the observations at that factor level to be similar because they all have the same random
component. Once the experiment has been conducted, we can assume that all observations can be assumed to be
independent, because the parameter 𝜏i has been determined and the observations in that treatment differ only because
of random error.

3 The assumption that the [𝜏i] are independent random variables implies that the usual assumption of
∑a

i=1 𝜏i = 0 from the fixed effects model does not apply to the
random effects model.
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We can express the covariance structure of the observations in the single-factor random effects model through
the covariance matrix of the observations. To illustrate, suppose that we have a = 3 treatments and n = 2 replicates.
There are N = 6 observations, which we can write as a vector

y =

⎡⎢⎢⎢⎢⎢⎢⎣

y11
y12
y21
y22
y31
y32

⎤⎥⎥⎥⎥⎥⎥⎦
and the 6 × 6 covariance matrix of these observations is

Cov(y) =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜎
2
𝜏
+ 𝜎

2
𝜎

2
𝜏

0 0 0 0
𝜎

2
𝜏

𝜎
2
𝜏
+ 𝜎

2 0 0 0 0
0 0 𝜎

2
𝜏
+ 𝜎

2
𝜎

2
𝜏

0 0
0 0 𝜎

2
𝜏

𝜎
2
𝜏
+ 𝜎

2 0 0
0 0 0 0 𝜎

2
𝜏
+ 𝜎

2
𝜎

2

0 0 0 0 𝜎
2
𝜏

𝜎
2
𝜏
+ 𝜎

2

⎤⎥⎥⎥⎥⎥⎥⎦
The main diagonals of this matrix are the variances of each individual observation and every off-diagonal element is
the covariance of a pair of observations.

3.9.2 Analysis of Variance for the Random Model

The basic ANOVA sum of squares identity

SST = SSTreatments + SSE (3.45)

is still valid. That is, we partition the total variability in the observations into a component that measures the varia-
tion between treatments (SSTreatments) and a component that measures the variation within treatments (SSE). Testing
hypotheses about individual treatment effects is not very meaningful because they were selected randomly, we are
more interested in the population of treatments, so we test hypotheses about the variance component 𝜎2

𝜏
.

H0∶𝜎2
𝜏
= 0

H1∶𝜎2
𝜏
> 0 (3.46)

If 𝜎2
𝜏
= 0, all treatments are identical; but if 𝜎2

𝜏
= 0, variability exists between treatments. As before, SSE∕𝜎2 is dis-

tributed as chi-square with N − a degrees of freedom and, under the null hypothesis, SSTreatments∕𝜎2 is distributed as
chi-square with a − 1 degrees of freedom. Both random variables are independent. Thus, under the null hypothesis
𝜎

2
𝜏
= 0, the ratio

F0 =
SSTreatments

a−1
SSE
N−a

=
MSTreatments

MSE
(3.47)

is distributed as F with a − 1 and N − a degrees of freedom. However, we need to examine the expected mean squares
to fully describe the test procedure.

Consider

E(MSTreatments) =
1

a − 1
E(SSTreatments) =

1
a − 1

E

[
a∑
i=1

y2
i.

n
−

y2
..

N

]

= 1
a − 1

E
⎡⎢⎢⎣

1
n

a∑
i=1

(
n∑
j=1

𝜇 + 𝜏i + 𝜖ij

)2

− 1
N

(
a∑
i=1

n∑
j=1

𝜇 + 𝜏i + 𝜖ij

)2⎤⎥⎥⎦



�

� �

�

3.9 The Random Effects Model 113

When squaring and taking expectation of the quantities in brackets, we see that terms involving 𝜏
2
i are replaced by 𝜎

2
𝜏

as
E(𝜏i) = 0. Also, terms involving 𝜖2

i. , 𝜖
2
..
, and

∑a
i=1

∑n
j=1 𝜏

2
i are replaced by n𝜎2, an𝜎2, and an2, respectively. Furthermore,

all cross-product terms involving 𝜏i and 𝜖ij have zero expectation. This leads to

E(MSTreatments) =
1

a − 1
[N𝜇2 + N𝜎2

𝜏
+ a𝜎2 − N𝜇2 − n𝜎2

𝜏
− 𝜎

2]

or
E(MSTreatments) = 𝜎

2 + n𝜎2
𝜏

(3.48)

Similarly, we may show that
E(MSE) = 𝜎

2 (3.49)

From the expected mean squares, we see that under H0 both the numerator and denominator of the test statistic
(Equation 3.47) are unbiased estimators of 𝜎2, whereas under H1 the expected value of the numerator is greater than
the expected value of the denominator. Therefore, we should reject H0 for values of F0 that are too large. This implies
an upper-tail, one-tail critical region, so we reject H0 if F0 > F

𝛼,a−1,N−a.
The computational procedure and ANOVA for the random effects model are identical to those for the fixed effects

case. The conclusions, however, are quite different because they apply to the entire population of treatments.

3.9.3 Estimating the Model Parameters

We are usually interested in estimating the variance components (𝜎2 and 𝜎
2
𝜏
) in the model. One very simple procedure

that we can use to estimate 𝜎
2 and 𝜎

2
𝜏

is called the analysis of variance method because it makes use of the lines in
the analysis of variance table. The procedure consists of equating the expected mean squares to their observed values
in the ANOVA table and solving for the variance components. In equating observed and expected mean squares in the
single-factor random effects model, we obtain

MSTreatments = 𝜎
2 + n𝜎2

𝜏

and
MSE = 𝜎

2

Therefore, the estimators of the variance components are

�̂�
2 = MSE (3.50)

and

�̂�
2
𝜏
=

MSTreatments −MSE
n

(3.51)

For unequal sample sizes, replace n in Equation 3.51 by

n0 = 1
a − 1

⎡⎢⎢⎢⎢⎢⎣

a∑
i=1

ni −

a∑
i=1

n2
i

a∑
i=1

ni

⎤⎥⎥⎥⎥⎥⎦
(3.52)

The analysis of variance method of variance component estimation is a method of moments procedure. It
does not require the normality assumption. It does yield estimators of 𝜎

2 and 𝜎
2
𝜏

that are best quadratic unbiased
(i.e., of all unbiased quadratic functions of the observations, these estimators have minimum variance). There is a
different method based on maximum likelihood that can be used to estimate the variance components that will be
introduced later.
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Occasionally, the analysis of variance method produces a negative estimate of a variance component. Clearly,
variance components are by definition nonnegative, so a negative estimate of a variance component is viewed with
some concern. One course of action is to accept the estimate and use it as evidence that the true value of the variance
component is zero, assuming that sampling variation led to the negative estimate. This has intuitive appeal, but it suffers
from some theoretical difficulties. For instance, using zero in place of the negative estimate can disturb the statistical
properties of other estimates. Another alternative is to reestimate the negative variance component using a method
that always yields nonnegative estimates. Still another alternative is to consider the negative estimate as evidence that
the assumed linear model is incorrect and reexamine the problem. Comprehensive treatment of variance component
estimation is given by Searle (1971a, 1971b), Searle, Casella, and McCullogh (1992), and Burdick and Graybill (1992).

EXAMPLE 3 . 10

A textile company weaves a fabric on a large number of
looms. It would like the looms to be homogeneous so that it
obtains a fabric of uniform strength. The process engineer
suspects that, in addition to the usual variation in strength
within samples of fabric from the same loom, there may
also be significant variations in strength between looms. To
investigate this, she selects four looms at random and makes
four strength determinations on the fabric manufactured on
each loom. This experiment is run in random order, and
the data obtained are shown in Table 3.18. The ANOVA is
conducted and is shown in Table 3.19. from the ANOVA,
we conclude that the looms in the plant differ significantly.

The variance components are estimated by �̂�
2 = 1.90

and

�̂�
2
𝜏
= 29.73 − 1.90

4
= 6.96

Therefore, the variance of any observation on strength is
estimated by

�̂�y = �̂�
2 + �̂�

2
𝜏
= 1.90 + 6.96 = 8.86.

Most of this variability is attributable to differences between
looms.

◾ T A B L E 3 . 18
Strength Data for Example 3.10

Observations

Looms 1 2 3 4 yi.

1 98 97 99 96 390

2 91 90 93 92 366

3 96 95 97 95 383

4 95 96 99 98 388

1527 = y
..

◾ T A B L E 3 . 19
Analysis of Variance for the Strength Data

Source of Variation Sum of Squares Degrees of Freedom Mean Square F0 P-Value

Looms 89.19 3 29.73 15.68 <0.001

Error 22.75 12 1.90

Total 111.94 15
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(a) Variability of process output

LSL USL

 y = 8.86
2σ

(b) Variability of process output if    2 = 0

LSL USL

 y = 1.90
  2σ

σ τ

›

›

μ μ

◾ F I G U R E 3 . 19 Process
output in the fiber strength
problem

This example illustrates an important use of variance components—isolating different sources of variability
that affect a product or system. The problem of product variability frequently arises in quality assurance, and it is
often difficult to isolate the sources of variability. For example, this study may have been motivated by an observation
that there is too much variability in the strength of the fabric, as illustrated in Figure 3.19a. This graph displays the
process output (fiber strength) modeled as a normal distribution with variance �̂�

2
y = 8.86. (This is the estimate of the

variance of any observation on strength from Example 3.10.) Upper and lower specifications on strength are also
shown in Figure 3.19a, and it is relatively easy to see that a fairly large proportion of the process output is outside
the specifications (the shaded tail areas in Figure 3.19a). The process engineer has asked why so much fabric is
defective and must be scrapped, reworked, or downgraded to a lower quality product. The answer is that most of
the product strength variability is the result of differences between looms. Different loom performance could be the
result of faulty setup, poor maintenance, ineffective supervision, poorly trained operators, defective input fiber, and
so forth.

The process engineer must now try to isolate the specific causes of the differences in loom performance. If she
could identify and eliminate these sources of between-loom variability, the variance of the process output could be
reduced considerably, perhaps to as low as �̂�2

y = 1.90, the estimate of the within-loom (error) variance component in
Example 3.10. Figure 3.19b shows a normal distribution of fiber strength with �̂�

2
y = 1.90. Note that the proportion of

defective product in the output has been dramatically reduced. Although it is unlikely that all of the between-loom
variability can be eliminated, it is clear that a significant reduction in this variance component would greatly increase
the quality of the fiber produced.

We may easily find a confidence interval for the variance component 𝜎2. If the observations are normally and
independently distributed, then (N − a)MSE∕𝜎2 is distributed as 𝜒2

N−a. Thus,

P

[
𝜒

2
1−(𝛼∕2),N−a ≤

(N − a)MSE
𝜎2

≤ 𝜒
2
𝛼∕2,N−a

]
= 1 − 𝛼

and a 100(1 − 𝛼) percent confidence interval for 𝜎2 is

(N − a)MSE
𝜒

2
𝛼∕2,N−a

≤ 𝜎
2 ≤

(N − a)MSE
𝜒

2
1−(𝛼∕2),N−a

(3.53)

Since MSE = 190,N = 16, a = 4, 𝜒2
0.025,12 = 23,3367 and 𝜒

2
0.975,12 = 4.4038, the 95% CI on 𝜎

2 is 0.9770 ≤ 𝜎
2 ≤

5.1775.
Now consider the variance component 𝜎2

𝜏
. The point estimator of 𝜎2

𝜏
is

�̂�
2
𝜏
=

MSTreatments −MSE
n

The random variable (a − 1)MSTreatments∕(𝜎2 + n𝜎2
𝜏
) is distributed as 𝜒2

a−1, and (N − a)MSE∕𝜎2 is distributed as 𝜒2
N−a.

Thus, the probability distribution of �̂�2
𝜏

is a linear combination of two chi-square random variables, say

u1𝜒
2
a−1 − u2𝜒

2
N−a
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where

u1 =
𝜎

2 + n𝜎2
𝜏

n(a − 1)
and u2 = 𝜎

2

n(N − a)

Unfortunately, a closed-form expression for the distribution of this linear combination of chi-square random variables
cannot be obtained. Thus, an exact confidence interval for 𝜎2

𝜏
cannot be constructed. Approximate procedures are given

in Graybill (1961) and Searle (1971a). Also see Section 13.6 of Chapter 13.
It is easy to find an exact expression for a confidence interval on the ratio 𝜎

2
𝜏
∕(𝜎2

𝜏
+ 𝜎

2). This ratio is called
the intraclass correlation coefficient, and it reflects the proportion of the variance of an observation [recall that
V(yij) = 𝜎

2
𝜏
+ 𝜎

2] that is the result of differences between treatments. To develop this confidence interval for the case
of a balanced design, note that MSTreatments and MSE are independent random variables and, furthermore, it can be
shown that

MSTreatments∕(n𝜎2
𝜏
+ 𝜎

2)
MSE∕𝜎2

∼ Fa−1,N−a

Thus,

P

(
F1−𝛼∕2,a−1,N−a ≤

MSTreatments

MSE

𝜎
2

n𝜎2
𝜏 + 𝜎2

≤ F
𝛼∕2,a−1,N−a

)
= 1 − 𝛼 (3.54)

By rearranging Equation 3.54, we may obtain the following:

P

(
L ≤

𝜎
2
𝜏

𝜎2
≤ U

)
= 1 − 𝛼 (3.55)

where

L = 1
n

(
MSTreatments

MSE

1
F
𝛼∕2,a−1,N−a

− 1

)
(3.56a)

and

U = 1
n

(
MSTreatments

MSE

1
F1−𝛼∕2,a−1,N−a

− 1

)
(3.56b)

Note that L andU are 100(1 − 𝛼) percent lower and upper confidence limits, respectively, for the ratio 𝜎2
𝜏
∕𝜎2. Therefore,

a 100(1 − 𝛼) percent confidence interval for 𝜎2
𝜏
∕(𝜎2

𝜏
+ 𝜎

2) is

L
1 + L

≤
𝜎

2
𝜏

𝜎
2
𝜏 + 𝜎2

≤
U

1 + U
(3.57)

To illustrate this procedure, we find a 95 percent confidence interval on 𝜎
2
𝜏
∕(𝜎2

𝜏
+ 𝜎

2) for the strength data
in Example 3.10. Recall that MSTreatments = 29.73,MSE = 1.90, a = 4, n = 4,F0.025,3,12 = 4.47, and F0.975,3,12 =
1∕F0.025,12,3 = 1∕14.34 = 0.070. Therefore, from Equation 3.56a and b,

L = 1
4

[(29.73
1.90

)( 1
4.47

)
− 1

]
= 0.625

U = 1
4

[(29.73
1.90

)( 1
0.070

)
− 1

]
= 55.633

and from Equation 3.57, the 95 percent confidence interval on 𝜎
2
𝜏
∕(𝜎2

𝜏
+ 𝜎

2) is

0.625
1.625

≤
𝜎

2

𝜎
2
𝜏 + 𝜎2

≤
55.633
56.633

or

0.38 ≤
𝜎

2

𝜎
2
𝜏 + 𝜎2

≤ 0.98
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We conclude that variability between looms accounts for between 38 and 98 percent of the variability in the observed
strength of the fabric produced. This confidence interval is relatively wide because of the small number of looms used
in the experiment. Clearly, however, the variability between looms (𝜎2

𝜏
) is not negligible.

Estimation of the Overall Mean 𝝁. In many random effects experiments, the experimenter is interested
in estimating the overall mean 𝜇. From the basic model assumptions, it is easy to see that the expected value of any
observation is just the overall mean. Consequently, an unbiased estimator of the overall mean is

�̂� = y
..

So for Example 3.10 the estimate of the overall mean strength is

�̂� = y
..
=

y
..

N
= 1527

16
= 95.44

It is also possible to find a 100(1 − 𝛼)% confidence interval on the overall mean. The variance of y is

V(y
..
) = V

⎛⎜⎜⎜⎜⎜⎝

a∑
i=1

n∑
j=1

yij

an

⎞⎟⎟⎟⎟⎟⎠
=

n𝜎2
𝜏
+ 𝜎

2

an

The numerator of this ratio is estimated by the treatment mean square, so an unbiased estimator of V(y) is

V̂(y
..
) =

MSTreatments

an

Therefore, the 100(1 − 𝛼)% CI on the overall mean is

y
..
− t

𝛼∕2,a(n−1)

√
MSTreatments

an
≤ 𝜇 ≤ y

..
+ t

𝛼∕2,a(n−1)

√
MSTreatments

an
(3.58)

To find a 95% CI on the overall mean in the fabric strength experiment from Example 3.10, we need MSTreatments =
29.73 and t0.025,12 = 2.18. The CI is computed from Equation 3.58 as follows:

y
..
− t

𝛼∕2,a(n−1)

√
MSTreatments

an
≤ 𝜇 ≤ y

..
+ t

𝛼∕2,a(n−1)

√
MSTreatments

an

95.44 − 2.18

√
29.73

16
≤ 𝜇 ≤ 95.44 + 2.18

√
29.73

16

92.47 ≤ 𝜇 ≤ 98.41

So, at 95 percent confidence the mean strength of the fabric produced by the looms in this facility is between
92.47 and 98.41. This is a relatively wide confidence interval because a small number of looms were sampled and
there is a large difference between looms as reflected by the large portion of total variability that is accounted for by
the differences between looms.

Maximum Likelihood Estimation of the Variance Components. Earlier in this section we presented the
analysis of variance method of variance component estimation. This method is relatively straightforward to apply and
makes use of familiar quantities—the mean squares in the analysis of variance table. However, the method has some
disadvantages. As we pointed out previously, it is a method of moments estimator, a technique that mathematical
statisticians generally do not prefer to use for parameter estimation because it often results in parameter estimates that
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do not have good statistical properties. One obvious problem is that it does not always lead to an easy way to construct
confidence intervals on the variance components of interest. For example, in the single-factor random model, there
is not a simple way to construct confidence intervals on 𝜎

2
𝜏
, which is certainly a parameter of primary interest to

the experimenter. The preferred parameter estimation technique is called the method of maximum likelihood. The
implementation of this method can be somewhat involved, particularly for an experimental design model, but it has
been incorporated in some modern computer software packages that support designed experiments, including JMP.

A complete presentation of the method of maximum likelihood is beyond the scope of this book, but the general
idea can be illustrated very easily. Suppose that x is a random variable with probability distribution f (x, 𝜃), where 𝜃 is
an unknown parameter. Let x1, x2, . . . , xn be a random sample of n observations. The joint probability distribution of

the sample is
n∏
i=1

f (xi, 𝜃). The likelihood function is just this joint probability distribution with the sample observations

consider fixed and the parameter 𝜃 unknown. Note that the likelihood function, say

L(x1, x2, . . . , xn; 𝜃) =
n∏
i=1

f (xi, 𝜃)

is now a function of only the unknown parameter 𝜃. The maximum likelihood estimator of 𝜃 is the value of 𝜃

that maximizes the likelihood function L(x1, x2, . . . , xn; 𝜃). To illustrate how this applies to an experimental design
model with random effects, let y be the an × 1 vector of observations for a single-factor random effects model with
a treatments and n replicates and let

∑
be the an × an covariance matrix of the observations. Refer to Section 3.9.1

where we developed this covariance matrix for the special case where a = 3 and n = 2. The likelihood function is

L(x11, x12, . . . , xa,n;𝜇, 𝜎2
𝜏
, 𝜎

2) = 1

(2𝜋)N∕2
[∑]1∕2

exp

[
−1

2
(y − jN𝜇)′

−1∑
(y − jN𝜇)

]

where N = an is the total number of observations, jN is an N × 1 vector of 1s, and 𝜇 is the overall mean in the model.
The maximum likelihood estimates of the parameters 𝜇, 𝜎

2
𝜏
, and 𝜎

2 are the values of these quantities that maximize
the likelihood function.

Maximum likelihood estimators (MLEs) have some very useful properties. For large samples, they are unbiased,
and they have a normal distribution. Furthermore, the inverse of the matrix of second derivatives of the likelihood
function (multiplied by −1) is the covariance matrix of the MLEs. This makes it relatively easy to obtain approximate
confidence intervals on the MLEs.

The standard variant of maximum likelihood estimation that is used for estimating variance components is known
as the residual maximum likelihood (REML) method. It is popular because it produces unbiased estimators and like
all MLEs, it is easy to find CIs. The basic characteristic of REML is that it takes the location parameters in the model
into account when estimating the random effects. As a simple example, suppose that we want to estimate the mean
and variance of a normal distribution using the method of maximum likelihood. It is easy to show that the MLEs are

�̂� =

n∑
i=1

yi

n
= y

�̂�
2 =

n∑
i=1

(yi − y)2

n

Notice that the MLE �̂�
2 is not the familiar sample standard deviation. It does not take the estimation of the location

parameter 𝜇 into account. The REML estimator would be

S2 =

n∑
i=1

(yi − y)2

n − 1
The REML estimator is unbiased.
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◾ T A B L E 3 . 20
JMP Output for the Loom Experiment in Example 3.10

Response Y

Summary of Fit

RSquare 0.793521

RSquare Adj 0.793521

Root Mean Square Error 1.376893

Mean of Response 95.4375

Observations (or Sum Wgts) 16

Parameter Estimates

Term Estimate Std Error DFDen t Ratio Prob > |t|
Intercept 95.4375 1.363111 3 70.01 < .0001∗

REML Variance Component Estimates

Random Effect Var Ratio Var Component Std Error 95% Lower 95% Upper Pct of Total

X1 3.6703297 6.9583333 6.0715247 −4.941636 18.858303 78.588

Residual 1.8958333 0.7739707 0.9748608 5.1660065 21.412

Total 8.8541667 100.000

Covariance Matrix of Variance Component Estimates

Random Effect X1 Residual

X1 36.863412 −0.149758

Residual −0.149758 0.5990307

To illustrate the REML method, Table 3.20 presents the JMP output for the loom experiment in Example 3.10.
The REML estimates of the model parameters 𝜇, 𝜎2

𝜏
, and 𝜎

2 are shown in the output. Note that the REML estimates of
the variance components are identical to those found earlier by the ANOVA method. These two methods will agree for
balanced designs. However, the REML output also contains the covariance matrix of the variance components. The
square roots of the main diagonal elements of this matrix are the standard errors of the variance components. If �̂� is
the MLE of 𝜃 and �̂�(�̂�) is its estimated standard error, then the approximate 100(1 − 𝛼) percent confidence interval on
𝜃 is

�̂� − Z
𝛼∕2�̂�(�̂�) ≤ 𝜃 ≤ �̂� + Z

𝛼∕2�̂�(�̂�)

JMP uses this approach to find the approximate CIs of 𝜎2
𝜏

and 𝜎
2 shown in the output. The 95 percent CI from REML

for 𝜎2 is very similar to the chi-square-based interval computed earlier in Section 3.9.

3.10 The Regression Approach to the Analysis of Variance

We have given an intuitive or heuristic development of the analysis of variance. However, it is possible to give a more
formal development. The method will be useful later in understanding the basis for the statistical analysis of more
complex designs. Called the general regression significance test, the procedure essentially consists of finding the
reduction in the total sum of squares for fitting the model with all parameters included and the reduction in sum of
squares when the model is restricted to the null hypotheses. The difference between these two sums of squares is
the treatment sum of squares with which a test of the null hypothesis can be conducted. The procedure requires the
least squares estimators of the parameters in the analysis of variance model. We have given these parameter estimates
previously (in Section 3.3.3); however, we now give a formal development.
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3.10.1 Least Squares Estimation of the Model Parameters

We now develop estimators for the parameter in the single-factor ANOVA fixed-effects model

yij = 𝜇 + 𝜏i + 𝜖ij

using the method of least squares. To find the least squares estimators of 𝜇 and 𝜏i, we first form the sum of squares of
the errors

L =
a∑
i=1

n∑
j=1

𝜖
2
ij =

a∑
i=1

n∑
j=1

(yij − 𝜇 − 𝜏i)2 (3.59)

and then choose values of 𝜇 and 𝜏i, say �̂� and 𝜏i, that minimize L. The appropriate values would be the solutions to the
a + 1 simultaneous equations

𝜕L
𝜕𝜇

||||�̂�,𝜏i = 0

𝜕L
𝜕𝜏i

||||�̂�,𝜏i
= 0 i = 1, 2, . . . , a

Differentiating Equation 3.59 with respect to 𝜇 and 𝜏i and equating to zero, we obtain

−2
a∑
i=1

n∑
j=1

(yij − �̂� − 𝜏i) = 0

and

−2
n∑
j=1

(yij + �̂� − 𝜏i) = 0 i = 1, 2, . . . , a

which, after simplification, yield
N�̂� + n𝜏1 + n𝜏2 + · · · + n𝜏a = y..
n�̂� + n𝜏1 = y1•

n�̂� + n𝜏2 = y2•

⋮ ⋮
n�̂� + n𝜏a = ya.

(3.60)

The a + 1 equations (Equation 3.60) in a + 1 unknowns are called the least squares normal equations. Notice
that if we add the last a normal equations, we obtain the first normal equation. Therefore, the normal equations are
not linearly independent, and no unique solution for 𝜇, 𝜏i, . . . , 𝜏a exists. This has happened because the effects model
is overparameterized. This difficulty can be overcome by several methods. Because we have defined the treatment
effects as deviations from the overall mean, it seems reasonable to apply the constraint

a∑
i=1

𝜏i = 0 (3.61)

Using this constraint, we obtain as the solution to the normal equations

�̂� = y..

𝜏i = yi. − y.. i = 1, 2, . . . , a (3.62)

This solution is obviously not unique and depends on the constraint (Equation 3.61) that we have chosen. At
first this may seem unfortunate because two different experimenters could analyze the same data and obtain different
results if they apply different constraints. However, certain functions of the model parameters are uniquely estimated,
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regardless of the constraint. Some examples are 𝜏i − 𝜏j, which would be estimated by 𝜏i − 𝜏j = yi. − yj., and the ith
treatment mean 𝜇i = 𝜇 + 𝜏i, which would be estimated by �̂�i = �̂� + 𝜏i = yi..

Because we are usually interested in differences among the treatment effects rather than their actual values, it
causes no concern that the 𝜏i cannot be uniquely estimated. In general, any function of the model parameters that
is a linear combination of the left-hand side of the normal equations (Equations 3.60) can be uniquely estimated.
Functions that are uniquely estimated regardless of which constraint is used are called estimable functions. For more
information, see the supplemental material for this chapter. We are now ready to use these parameter estimates in a
general development of the analysis of variance.

3.10.2 The General Regression Significance Test

A fundamental part of this procedure is writing the normal equations for the model. These equations may always be
obtained by forming the least squares function and differentiating it with respect to each unknown parameter, as we
did in Section 3.9.1. However, an easier method is available. The following rules allow the normal equations for any
experimental design model to be written directly:

RULE 1. There is one normal equation for each parameter in the model to be estimated.

RULE 2. The right-hand side of any normal equation is just the sum of all observations that contain the parameter
associated with that particular normal equation.

To illustrate this rule, consider the single-factor model. The first normal equation is for the parameter
𝜇; therefore, the right-hand side is y

..
because all observations contain 𝜇.

RULE 3. The left-hand side of any normal equation is the sum of all model parameters, where each parameter
is multiplied by the number of times it appears in the total on the right-hand side. The parameters are written
with a circumflex (̂) to indicate that they are estimators and not the true parameter values.

For example, consider the first normal equation in a single-factor experiment. According to the aforementioned
rules, it would be

N�̂� + n𝜏1 + n𝜏2 + · · · + n𝜏a = y
..

because 𝜇 appears in all N observations, 𝜏1 appears only in the n observations taken under the first treatment, 𝜏2 appears
only in the n observations taken under the second treatment, and so on. From Equation 3.60, we verify that the equation
shown above is correct. The second normal equation would correspond to 𝜏1 and is

n�̂� + n𝜏1 = y1.

because only the observations in the first treatment contain 𝜏1 (this gives y1. as the right-hand side), 𝜇 and 𝜏1 appear
exactly n times in y1., and all other 𝜏i appear zero times. In general, the left-hand side of any normal equation is the
expected value of the right-hand side.

Now, consider finding the reduction in the sum of squares by fitting a particular model to the data. By fitting a
model to the data, we “explain” some of the variability; that is, we reduce the unexplained variability by some amount.
The reduction in the unexplained variability is always the sum of the parameter estimates, each multiplied by the
right-hand side of the normal equation that corresponds to that parameter. For example, in a single-factor experiment,
the reduction due to fitting the full model yij = 𝜇 + 𝜏i + 𝜖ij is

R(𝜇, 𝜏) = �̂�y
..
+ 𝜏1y1. + 𝜏2y2. + · · · + 𝜏aya.

= �̂�y
..
+

a∑
i=1

𝜏iyi. (3.63)

The notation R(𝜇, 𝜏) means that reduction in the sum of squares from fitting the model containing 𝜇 and {𝜏i}. R(𝜇, 𝜏)
is also sometimes called the “regression” sum of squares for the full model yij = 𝜇 + 𝜏i + 𝜖ij. The number of degrees
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of freedom associated with a reduction in the sum of squares, such as R(𝜇, 𝜏), is always equal to the number of linearly
independent normal equations. The remaining variability unaccounted for by the model is found from

SSE =
a∑
i=1

n∑
j=1

y2
ij − R(𝜇, 𝜏) (3.64)

This quantity is used in the denominator of the test statistic for H0 ∶ 𝜏1 = 𝜏2 = . . . = 𝜏a = 0.
We now illustrate the general regression significance test for a single-factor experiment and show that it yields

the usual one-way analysis of variance. The model is yij = 𝜇 + 𝜏i + 𝜖ij, and the normal equations are found from the
above rules as

N�̂� + n𝜏1 + n𝜏2 + · · · + n𝜏a = y..
n�̂� + n𝜏1 = y1•

n�̂� + n𝜏2 = y2•

⋮ ⋮
n�̂� + n𝜏a = ya.

Compare these normal equations with those obtained in Equation 3.60.
Applying the constraint

∑a
i=1 𝜏i = 0, we find that the estimators for 𝜇 and 𝜏i are

�̂� = y
..

𝜏i = yi. − y
..
i = 1, 2, . . . , a

The reduction in the sum of squares due to fitting this full model is found from Equation 3.48 as

R(𝜇, 𝜏) = �̂�y
..
+

a∑
i=1

𝜏iyi.

= (y
..
)y

..
+

a∑
i=1

(yi. − y
..
)yi.

=
y2
..

N
+

a∑
i=1

yi.yi. − y
..

a∑
i=1

yi.

=
a∑
i=1

y2
i.

n

which has a degrees of freedom because there are a linearly independent normal equations. The error sum of squares
is, from Equation 3.64,

SSE =
a∑
i=1

n∑
j=1

y2
ij − R(𝜇, 𝜏)

=
a∑
i=1

n∑
j=1

y2
ij −

a∑
i=1

y2
i.

n

and has N − a degrees of freedom.
To find the sum of squares resulting from the treatment effects (the {𝜏i}), we consider a reduced model; that is,

the model to be restricted to the null hypothesis (𝜏i = 0 for all i). The reduced model is yij = 𝜇 + 𝜖ij. There is only one
normal equation for this model:

N�̂� = y
..

and the estimator of 𝜇 is �̂� = y
..
. Thus, the reduction in the sum of squares that results from fitting the reduced model

containing only 𝜇 is

R(𝜇) = (y
..
)(y

..
) =

y2
..

N
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Because there is only one normal equation for this reduced model, R(𝜇) has one degree of freedom. The sum of squares
due to the {𝜏i}, given that 𝜇 is already in the model, is the difference between R(𝜇, 𝜏) and R(𝜇), which is

R(𝜏|𝜇) = R(𝜇, 𝜏) − R(𝜇)
= R(Full Model) − R(Reduced Model)

= 1
n

a∑
i=1

y2
i. −

y2
..

N

with a − 1 degrees of freedom, which we recognize from Equation 3.9 as SSTreatments. Making the usual normality
assumption, we obtain the appropriate statistic for testing H0 ∶ 𝜏1 = 𝜏2 = · · · = 𝜏a = 0

F0 =
R(𝜏|𝜇)(∕(a − 1)[

a∑
i=1

n∑
j=1

y2
ij − R(𝜇, 𝜏)

]
∕(N − a)

which is distributed as Fa−1,N−a under the null hypothesis. This is, of course, the test statistic for the single-factor
analysis of variance.

3.11 Nonparametric Methods in the Analysis of Variance

3.11.1 The Kruskal–Wallis Test

In situations where the normality assumption is unjustified, the experimenter may wish to use an alternative procedure
to the F-test analysis of variance that does not depend on this assumption. Such a procedure has been developed by
Kruskal and Wallis (1952). The Kruskal–Wallis test is used to test the null hypothesis that the a treatments are identical
against the alternative hypothesis that some of the treatments generate observations that are larger than others. Because
the procedure is designed to be sensitive for testing differences in means, it is sometimes convenient to think of the
Kruskal–Wallis test as a test for equality of treatment means. The Kruskal–Wallis test is a nonparametric alternative
to the usual analysis of variance.

To perform a Kruskal–Wallis test, first rank the observations yij in ascending order and replace each observation
by its rank, say Rij, with the smallest observation having rank 1. In the case of ties (observations having the same
value), assign the average rank to each of the tied observations. Let Ri. be the sum of the ranks in the ith treatment. The
test statistic is

H = 1
S2

[
a∑
i=1

R2
i.

ni
− N(N + 1)2

4

]
(3.65)

where ni is the number of observations in the ith treatment, N is the total number of observations, and

S2 = 1
N − 1

[
a∑
i=1

ni∑
j=1

R2
ij −

N(N + 1)2

4

]
(3.66)

Note that S2 is just the variance of the ranks. If there are no ties, S2 = N(N + 1)∕12 and the test statistic simplifies to

H = 12
N(N + 1)

a∑
i=1

R2
i.

ni
− 3(N + 1) (3.67)

When the number of ties is moderate, there will be little difference between Equations 3.66 and 3.67, and the simpler
form (Equation 3.67) may be used. If the ni are reasonably large, say ni ≥ 5,H is distributed approximately as 𝜒2

a−1
under the null hypothesis. Therefore, if

H > 𝜒
2
𝛼,a−1

the null hypothesis is rejected. The P-value approach could also be used.
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EXAMPLE 3 . 11

The data from Example 3.1 and their corresponding ranks
are shown in Table 3.21. There are ties, so we use Equation
3.65 as the test statistic. From Equation 3.65

S2 = 1
19

[
2869.50 − 20(21)2

4

]
= 34.97

and the test statistic is

H = 1
S2

[
a∑
i=1

R2
i.

ni
− N(N + 1)2

4

]

= 1
34.97

[2796.30 − 2205]

= 16.91

◾ T A B L E 3 . 21
Data and Ranks for the Plasma Etching Experiment in Example 3.1

Power

160 180 200 220

y1j R1j y2j R2j y3j R3j y4j R4j

575 6 565 4 600 10 725 20

542 3 593 9 651 15 700 17

530 1 590 8 610 11.5 715 19

539 2 579 7 637 14 685 16

570 5 610 11.5 629 13 710 18

Ri. 17 39.5 63.5 90

Because H > 𝜒
2
0.01,3 = 11.34, we would reject the null

hypothesis and conclude that the treatments differ. (The
P-value for H = 16.91 is P = 7.38 × 10−4.) This is the same
conclusion as given by the usual analysis of variance F-test.

3.11.2 General Comments on the Rank Transformation

The procedure used in the previous section of replacing the observations by their ranks is called the rank transfor-
mation. It is a very powerful and widely useful technique. If we were to apply the ordinary F-test to the ranks rather
than to the original data, we would obtain

F0 =
H∕(a − 1)

(N − 1 − H)∕(N − a)
(3.68)

as the test statistic [see Conover (1980), p. 337]. Note that as the Kruskal–Wallis statistic H increases or decreases, F0
also increases or decreases, so the Kruskal–Wallis test is equivalent to applying the usual analysis of variance to the
ranks.

The rank transformation has wide applicability in experimental design problems for which no nonparametric
alternative to the analysis of variance exists. This includes many of the designs in subsequent chapters of this book.
If the data are ranked and the ordinary F-test is applied, an approximate procedure that has good statistical properties
results [see Conover and Iman (1976, 1981)]. When we are concerned about the normality assumption or the effect
of outliers or “wild” values, we recommend that the usual analysis of variance be performed on both the original data
and the ranks. When both procedures give similar results, the analysis of variance assumptions are probably satisfied
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reasonably well, and the standard analysis is satisfactory. When the two procedures differ, the rank transformation
should be preferred because it is less likely to be distorted by nonnormality and unusual observations. In such cases,
the experimenter may want to investigate the use of transformations for nonnormality and examine the data and the
experimental procedure to determine whether outliers are present and why they have occurred.

3.12 Problems

3.1 An experimenter has conducted a single-factor exper-
iment with four levels of the factor, and each factor level has
been replicated six times. The computed value of theF-statistic
is F0 = 3.26. Find bounds on the P-value.

3.2 An experimenter has conducted a single-factor experi-
ment with six levels of the factor, and each factor level has been
replicated three times. The computed value of the F-statistic is
F0 = 5.81. Find bounds on the P-value.

3.3 An experimenter has conducted a single-factor com-
pletely randomized design with five levels of the factor and
three replicates. The computed value of the F-statistic is 4.87.
Find bounds on the P-value.

3.4 An experimenter has conducted a single-factor com-
pletely randomized design with three levels of the factor and
five replicates. The computed value of the F-statistic is 2.91.
Find bounds on the P-value.

3.5 The mean square for error in the ANOVA provides an
estimate of

(a) The variance of the random error

(b) The variance of an individual treatment average

(c) The standard deviation of an individual observation

(d) None of the above

3.6 It is always a good idea to check the normality assump-
tion in the ANOVA by applying a test for normality such as the
Anderson–Darling test to the residuals.

(a) True

(b) False

3.7 A computer ANOVA output is shown below. Fill in the
blanks. You may give bounds on the P-value.

One-way ANOVA

Source DF SS MS F P
Factor 3 36.15 ? ? ?
Error ? ? ?
Total 19 196.04

3.8 A computer ANOVA output is shown below. Fill in the
blanks. You may give bounds on the P-value.

One-way ANOVA

Source DF SS MS F P
Factor ? ? 246.93 ? ?
Error 25 186.53 ?
Total 29 1174.24

3.9 An article appeared in The Wall Street Journal on
Tuesday, April 27, 2010, with the title “Eating Chocolate
Is Linked to Depression.” The article reported on a study
funded by the National Heart, Lung and Blood Institute (part
of the National Institutes of Health) and conducted by faculty
at the University of California, San Diego, and the Univer-
sity of California, Davis. The research was also published
in the Archives of Internal Medicine (2010, pp. 699–703).
The study examined 931 adults who were not taking antide-
pressants and did not have known cardiovascular disease or
diabetes. The group was about 70% men and the average
age of the group was reported to be about 58. The par-
ticipants were asked about chocolate consumption and then
screened for depression using a questionnaire. People who
score less than 16 on the questionnaire were not consid-
ered depressed, while those with scores above 16 and less
than or equal to 22 were considered possibly depressed,
while those with scores above 22 were considered likely to
be depressed. The survey found that people who were not
depressed ate an average 5.4 servings of chocolate per month,
possibly depressed individuals ate an average of 8.4 serv-
ings of chocolate per month, while those individuals who
scored above 22 and were likely to be depressed ate the
most chocolate, an average of 11.8 servings per month. No
differentiation was made between dark and milk chocolate.
Other foods were also examined, but no pattern emerged
between other foods and depression. Is this study really a
designed experiment? Does it establish a cause-and-effect link
between chocolate consumption and depression? How would
the study have to be conducted to establish such a cause-and
effect link?

3.10 An article in Bioelectromagnetics (“Electromag-
netic Effects on Forearm Disuse Osteopenia: A Random-
ized, Double-Blind, Sham-Controlled Study,” Vol. 32,
2011, pp. 273–282) described a randomized, double-blind,
sham-controlled, feasibility and dosing study to determine if
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a common pulsing electromagnetic field (PEMF) treatment
could moderate the substantial osteopenia that occurs after
forearm disuse. Subjects were randomized into four groups
after a distal radius fracture, or carpal surgery requiring immo-
bilization in a cast. Active or identical sham PEMF transducers
were worn on the distal forearm for 1, 2, or 4 h/day for 8 weeks
starting after cast removal (“baseline”) when bone density
continues to decline. Bone mineral density (BMD) and bone
geometry were measured in the distal forearm by dual energy
X-ray absorptiometry (DXA) and peripheral quantitative
computed tomography (pQCT). The data below are the percent
losses in BMD measurements on the radius after 16 weeks for
patients wearing the active or sham PEMF transducers for 1,
2, or 4 h/day (data were constructed to match the means and
standard deviations read from a graph in the paper).

(a) Is there evidence to support a claim that PEMF usage
affects BMD loss? If so, analyze the data to determine
which specific treatments produce the differences.

(b) Analyze the residuals from this experiment and com-
ment on the underlying assumptions and model
adequacy.

Sham
PEMF
1 h/day

PEMF
2 h/day

PEMF
4 h/day

4.51 5.32 4.73 7.03

7.95 6.00 5.81 4.65

4.97 5.12 5.69 6.65

3.00 7.08 3.86 5.49

7.97 5.48 4.06 6.98

2.23 6.52 6.56 4.85

3.95 4.09 8.34 7.26

5.64 6.28 3.01 5.92

9.35 7.77 6.71 5.58

6.52 5.68 6.51 7.91

4.96 8.47 1.70 4.90

6.10 4.58 5.89 4.54

7.19 4.11 6.55 8.18

4.03 5.72 5.34 5.42

2.72 5.91 5.88 6.03

9.19 6.89 7.50 7.04

5.17 6.99 3.28 5.17

5.70 4.98 5.38 7.60

5.85 9.94 7.30 7.90

6.45 6.38 5.46 7.91

3.11 The tensile strength of Portland cement is being
studied. Four different mixing techniques can be used econom-
ically. A completely randomized experiment was conducted
and the following data were collected:

Mixing
Technique Tensile Strength (lb/in2)

1 3129 3000 2865 2890
2 3200 3300 2975 3150
3 2800 2900 2985 3050
4 2600 2700 2600 2765

(a) Test the hypothesis that mixing techniques affect the
strength of the cement. Use 𝛼 = 0.05.

(b) Construct a graphical display as described in Section
3.5.3 to compare the mean tensile strengths for the four
mixing techniques. What are your conclusions?

(c) Use the Fisher LSD method with 𝛼 = 0.05 to make
comparisons between pairs of means.

(d) Construct a normal probability plot of the residuals.
What conclusion would you draw about the validity of
the normality assumption?

(e) Plot the residuals versus the predicted tensile strength.
Comment on the plot.

(f) Prepare a scatter plot of the results to aid the interpre-
tation of the results of this experiment.

3.12 .(a) Rework part (c) of Problem 3.11 using Tukey’s test
with 𝛼 = 0.05. Do you get the same conclusions from
Tukey’s test that you did from the graphical proce-
dure and/or the Fisher LSD method?

(b) Explain the difference between the Tukey and Fisher
procedures.

3.13 Reconsider the experiment in Problem 3.11. Find a
95 percent confidence interval on the mean tensile strength
of the Portland cement produced by each of the four mixing
techniques. Also find a 95 percent confidence interval on the
difference in means for techniques 1 and 3. Does this aid you
in interpreting the results of the experiment?

3.14 A product developer is investigating the tensile
strength of a new synthetic fiber that will be used to make cloth
for men’s shirts. Strength is usually affected by the percent-
age of cotton used in the blend of materials for the fiber. The
engineer conducts a completely randomized experiment with
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five levels of cotton content and replicates the experiment five
times. The data are shown in the following table.

Cotton Weight Percent Observations

15 7 7 15 11 9

20 12 17 12 18 18

25 14 19 19 18 18

30 19 25 22 19 23

35 7 10 11 15 11

(a) Is there evidence to support the claim that cotton con-
tent affects the mean tensile strength? Use 𝛼 = 0.05.

(b) Use the Fisher LSD method to make comparisons
between the pairs of means. What conclusions can you
draw?

(c) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.15 Reconsider the experiment described in Problem 3.14.
Suppose that 30 percent cotton content is a control. Use Dun-
nett’s test with 𝛼 = 0.05 to compare all of the other means with
the control.

3.16 A pharmaceutical manufacturer wants to investigate
the bioactivity of a new drug. A completely randomized
single-factor experiment was conducted with three dosage lev-
els, and the following results were obtained.

Dosage Observations

20 g 24 28 37 30

30 g 37 44 31 35

40 g 42 47 52 38

(a) Is there evidence to indicate that dosage level affects
bioactivity? Use 𝛼 = 0.05.

(b) If it is appropriate to do so, make comparisons
between the pairs of means. What conclusions can
you draw?

(c) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.17 A rental car company wants to investigate whether the
type of car rented affects the length of the rental period. An
experiment is run for one week at a particular location, and

10 rental contracts are selected at random for each car type.
The results are shown in the following table.

Type of Car Observations

Subcompact 3 5 3 7 6 5 3 2 1 6

Compact 1 3 4 7 5 6 3 2 1 7

Midsize 4 1 3 5 7 1 2 4 2 7

Full size 3 5 7 5 10 3 4 7 2 7

(a) Is there evidence to support a claim that the type of
car rented affects the length of the rental contract? Use
𝛼 = 0.05. If so, which types of cars are responsible for
the difference?

(b) Analyze the residuals from this experiment and com-
ment on model adequacy.

(c) Notice that the response variable in this experiment is a
count. Should this cause any potential concerns about
the validity of the analysis of variance?

3.18 I belong to a golf club in my neighborhood. I divide
the year into three golf seasons: summer (June–September),
winter (November–March), and shoulder (October, April, and
May). I believe that I play my best golf during the sum-
mer (because I have more time and the course isn’t crowded)
and shoulder (because the course isn’t crowded) seasons, and
my worst golf is during the winter (because when all of the
part-year residents show up, the course is crowded, play is
slow, and I get frustrated). Data from the last year are shown
in the following table.

Season Observations

Summer 83 85 85 87 90 88 88 84 91 90

Shoulder 91 87 84 87 85 86 83

Winter 94 91 87 85 87 91 92 86

(a) Do the data indicate that my opinion is correct? Use
𝛼 = 0.05.

(b) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.19 A regional opera company has tried three approaches
to solicit donations from 24 potential sponsors. The 24 poten-
tial sponsors were randomly divided into three groups of eight,
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and one approach was used for each group. The dollar amounts
of the resulting contributions are shown in the following
table.

Approach Contributions (in $)

1 1000 1500 1200 1800 1600 1100 1000 1250

2 1500 1800 2000 1200 2000 1700 1800 1900

3 900 1000 1200 1500 1200 1550 1000 1100

(a) Do the data indicate that there is a difference in results
obtained from the three different approaches? Use
𝛼 = 0.05.

(b) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.20 An experiment was run to determine whether four spe-
cific firing temperatures affect the density of a certain type of
brick. A completely randomized experiment led to the follow-
ing data:

Temperature Density

100 21.8 21.9 21.7 21.6 21.7

125 21.7 21.4 21.5 21.4

150 21.9 21.8 21.8 21.6 21.5

175 21.9 21.7 21.8 21.4

(a) Does the firing temperature affect the density of the
bricks? Use 𝛼 = 0.05.

(b) Is it appropriate to compare the means using the Fisher
LSD method (for example) in this experiment?

(c) Analyze the residuals from this experiment. Are the
analysis of variance assumptions satisfied?

(d) Construct a graphical display of the treatment as
described in Section 3.5.3. Does this graph adequately
summarize the results of the analysis of variance in
part (a)?

3.21 Rework part (d) of Problem 3.20 using the Tukey
method. What conclusions can you draw? Explain carefully
how you modified the technique to account for unequal sample
sizes.

3.22 A manufacturer of television sets is interested in
the effect on tube conductivity of four different types of
coating for color picture tubes. A completely randomized

experiment is conducted and the following conductivity data
are obtained:

Coating Type Conductivity

1 143 141 150 146

2 152 149 137 143

3 134 136 132 127

4 129 127 132 129

(a) Is there a difference in conductivity due to coating
type? Use 𝛼 = 0.05.

(b) Estimate the overall mean and the treatment effects.

(c) Compute a 95 percent confidence interval estimate of
the mean of coating type 4. Compute a 99 percent
confidence interval estimate of the mean difference
between coating types 1 and 4.

(d) Test all pairs of means using the Fisher LSD method
with 𝛼 = 0.05.

(e) Use the graphical method discussed in Section 3.5.3 to
compare the means. Which coating type produces the
highest conductivity?

(f) Assuming that coating type 4 is currently in use, what
are your recommendations to the manufacturer? We
wish to minimize conductivity.

3.23 Reconsider the experiment from Problem 3.22. Ana-
lyze the residuals and draw conclusions about model
adequacy.

3.24 An article in the ACI Materials Journal (Vol. 84, 1987,
pp. 213–216) describes several experiments investigating the
rodding of concrete to remove entrapped air. A 3-inch × 6-inch
cylinder was used, and the number of times this rod was used
is the design variable. The resulting compressive strength of
the concrete specimen is the response. The data are shown in
the following table:

Rodding
Level Compressive Strength

10 1530 1530 1440

15 1610 1650 1500

20 1560 1730 1530

25 1500 1490 1510

(a) Is there any difference in compressive strength due to
the rodding level? Use 𝛼 = 0.05.

(b) Find the P-value for the F-statistic in part (a).
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(c) Analyze the residuals from this experiment. What con-
clusions can you draw about the underlying model
assumptions?

(d) Construct a graphical display to compare the treatment
means as described in Section 3.5.3.

3.25 An article in Environment International (Vol. 18,
No. 4, 1992) describes an experiment in which the amount of
radon released in showers was investigated. Radon-enriched
water was used in the experiment, and six different orifice
diameters were tested in shower heads. The data from the
experiment are shown in the following table:

Orifice Diameter Radon Released (%)

0.37 80 83 83 85

0.51 75 75 79 79

0.71 74 73 76 77

1.02 67 72 74 74

1.40 62 62 67 69

1.99 60 61 64 66

(a) Does the size of the orifice affect the mean percentage
of radon released? Use 𝛼 = 0.05.

(b) Find the P-value for the F-statistic in part (a).

(c) Analyze the residuals from this experiment.

(d) Find a 95 percent confidence interval on the mean per-
cent of radon released when the orifice diameter is 1.40.

(e) Construct a graphical display to compare the treatment
means as described in Section 3.5.3. What conclusions
can you draw?

3.26 The response time in milliseconds was determined
for three different types of circuits that could be used in an
automatic valve shutoff mechanism. The results from a com-
pletely randomized experiment are shown in the following
table:

Circuit Type Response Time

1 9 12 10 8 15

2 20 21 23 17 30

3 6 5 8 16 7

(a) Test the hypothesis that the three circuit types have the
same response time. Use 𝛼 = 0.01.

(b) Use Tukey’s test to compare pairs of treatment means.
Use 𝛼 = 0.01.

(c) Use the graphical procedure in Section 3.5.3 to com-
pare the treatment means. What conclusions can you
draw? How do they compare with the conclusions from
part (b)?

(d) Construct a set of orthogonal contrasts, assuming that
at the outset of the experiment you suspected the
response time of circuit type 2 to be different from the
other two.

(e) If you were the design engineer and you wished to min-
imize the response time, which circuit type would you
select?

(f) Analyze the residuals from this experiment. Are the
basic analysis of variance assumptions satisfied?

3.27 The effective life of insulating fluids at an accelerated
load of 35 kV is being studied. Test data have been obtained for
four types of fluids. The results from a completely randomized
experiment are as follows:

Fluid Type Life (in h) at 35 kV Load

1 17.6 18.9 16.3 17.4 20.1 21.6

2 16.9 15.3 18.6 17.1 19.5 20.3

3 21.4 23.6 19.4 18.5 20.5 22.3

4 19.3 21.1 16.9 17.5 18.3 19.8

(a) Is there any indication that the fluids differ? Use
𝛼 = 0.05.

(b) Which fluid would you select, given that the objective
is long life?

(c) Analyze the residuals from this experiment. Are the
basic analysis of variance assumptions satisfied?

3.28 Four different designs for a digital computer circuit are
being studied to compare the amount of noise present. The fol-
lowing data have been obtained:

Circuit Design Noise Observed

1 19 20 19 30 8

2 80 61 73 56 80

3 47 26 25 35 50

4 95 46 83 78 97

(a) Is the same amount of noise present for all four
designs? Use 𝛼 = 0.05.

(b) Analyze the residuals from this experiment. Are the
analysis of variance assumptions satisfied?

(c) Which circuit design would you select for use? Low
noise is best.
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3.29 Four chemists are asked to determine the percent-
age of methyl alcohol in a certain chemical compound. Each
chemist makes three determinations, and the results are the
following:

Chemist
Percentage of

Methyl Alcohol

1 84.99 84.04 84.38

2 85.15 85.13 84.88

3 84.72 84.48 85.16

4 84.20 84.10 84.55

(a) Do chemists differ significantly? Use 𝛼 = 0.05.

(b) Analyze the residuals from this experiment.

(c) If chemist 2 is a new employee, construct a meaningful
set of orthogonal contrasts that might have been useful
at the start of the experiment.

3.30 Three brands of batteries are under study. It is sus-
pected that the lives (in weeks) of the three brands are different.
Five randomly selected batteries of each brand are tested with
the following results:

Weeks of Life

Brand 1 Brand 2 Brand 3

100 76 108

96 80 100

92 75 96

96 84 98

92 82 100

(a) Are the lives of these brands of batteries different?

(b) Analyze the residuals from this experiment.

(c) Construct a 95 percent confidence interval estimate
on the mean life of battery brand 2. Construct
a 99 percent confidence interval estimate on the
mean difference between the lives of battery brands
2 and 3.

(d) Which brand would you select for use? If the manufac-
turer will replace without charge any battery that fails
in less than 85 weeks, what percentage would the com-
pany expect to replace?

3.31 Four catalysts that may affect the concentration of
one component in a three-component liquid mixture are being

investigated. The following concentrations are obtained from
a completely randomized experiment:

Catalyst
1 2 3 4

58.2 56.3 50.1 52.9
57.2 54.5 54.2 49.9
58.4 57.0 55.4 50.0
55.8 55.3 51.7
54.9

(a) Do the four catalysts have the same effect on the con-
centration?

(b) Analyze the residuals from this experiment.

(c) Construct a 99 percent confidence interval estimate of
the mean response for catalyst 1.

3.32 An experiment was performed to investigate the effec-
tiveness of five insulating materials. Four samples of each
material were tested at an elevated voltage level to accelerate
the time to failure. The failure times (in minutes) are shown
below:

Material Failure Time (minutes)

1 110 157 194 178
2 1 2 4 18
3 880 1256 5276 4355
4 495 7040 5307 10,050
5 7 5 29 2

(a) Do all five materials have the same effect on mean fail-
ure time?

(b) Plot the residuals versus the predicted response. Con-
struct a normal probability plot of the residuals. What
information is conveyed by these plots?

(c) Based on your answer to part (b), conduct another
analysis of the failure time data and draw appropriate
conclusions.

3.33 A semiconductor manufacturer has developed three
different methods for reducing particle counts on wafers. All
three methods are tested on five different wafers and the after
treatment particle count obtained. The data are shown below:

Method Count

1 31 10 21 4 1
2 62 40 24 30 35
3 53 27 120 97 68
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(a) Do all methods have the same effect on mean particle
count?

(b) Plot the residuals versus the predicted response. Con-
struct a normal probability plot of the residuals. Are
there potential concerns about the validity of the
assumptions?

(c) Based on your answer to part (b), conduct another anal-
ysis of the particle count data and draw appropriate
conclusions.

3.34 A manufacturer suspects that the batches of raw mate-
rial furnished by his supplier differ significantly in calcium
content. There are a large number of batches currently in the
warehouse. Five of these are randomly selected for study. A
chemist makes five determinations on each batch and obtains
the following data:

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

23.46 23.59 23.51 23.28 23.29

23.48 23.46 23.64 23.40 23.46

23.56 23.42 23.46 23.37 23.37

23.39 23.49 23.52 23.46 23.32

23.40 23.50 23.49 23.39 23.38

(a) Is there significant variation in calcium content from
batch to batch? Use 𝛼 = 0.05.

(b) Estimate the components of variance.

(c) Find a 95 percent confidence interval for σ2
𝜏
∕(σ2

𝜏
+ σ2).

(d) Analyze the residuals from this experiment. Are the
analysis of variance assumptions satisfied?

(e) Use the REML method to analyze this data. Compare
the 95 percent confidence interval on the error vari-
ance from REML with the exact chi-square confidence
interval.

3.35 Several ovens in a metal working shop are used to heat
metal specimens. All the ovens are supposed to operate at the
same temperature, although it is suspected that this may not be
true. Three ovens are selected at random, and their tempera-
tures on successive heats are noted. The data collected are as
follows:

Oven Temperature

1 491.50 498.30 498.10 493.50 493.60

2 488.50 484.65 479.90 477.35

3 490.10 484.80 488.25 473.00 471.85 478.65

(a) Is there significant variation in temperature between
ovens? Use 𝛼 = 0.05.

(b) Estimate the components of variance for this model.

(c) Analyze the residuals from this experiment and draw
conclusions about model adequacy.

3.36 An article in the Journal of the Electrochemical Society
(Vol. 139, No. 2, 1992, pp. 524–532) describes an experiment
to investigate the low-pressure vapor deposition of polysil-
icon. The experiment was carried out in a large-capacity
reactor at Sematech in Austin, Texas. The reactor has sev-
eral wafer positions, and four of these positions are selected
at random. The response variable is film thickness uniformity.
Three replicates of the experiment were run, and the data are
as follows:

Wafer Position Uniformity

1 2.76 5.67 4.49

2 1.43 1.70 2.19

3 2.34 1.97 1.47

4 0.94 1.36 1.65

(a) Is there a difference in the wafer positions? Use
𝛼 = 0.05.

(b) Estimate the variability due to wafer positions.

(c) Estimate the random error component.

(d) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.37 Consider the vapor-deposition experiment described in
Problem 3.36.

(a) Estimate the total variability in the uniformity
response.

(b) How much of the total variability in the uniformity
response is due to the difference between positions in
the reactor?

(c) To what level could the variability in the uniformity
response be reduced if the position-to-position vari-
ability in the reactor could be eliminated? Do you
believe this is a significant reduction?

3.38 A single-factor completely randomized design has four
levels of the factor. There are three replicates and the total sum
of squares is 330.56. The treatment sum of squares is 250.65.

(a) What is the estimate of the error variance 𝜎
2?

(b) What proportion of the variability in the response vari-
able is explained by the treatment effect?
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3.39 A single-factor completely randomized design has six
levels of the factor. There are five replicates and the total sum
of squares is 900.25. The treatment sum of squares is 750.50.

(a) What is the estimate of the error variance 𝜎
2?

(b) What proportion of the variability in the response vari-
able is explained by the treatment effect?

3.40 Find a 95% confidence interval on the intraclass corre-
lation coefficient for the experiment in Problem 3.38.

3.41 Find a 95% confidence interval on the intraclass corre-
lation coefficient for the experiment in Problem 3.39.

3.42 An article in the Journal of Quality Technology
(Vol. 13, No. 2, 1981, pp. 111–114) describes an experiment
that investigates the effects of four bleaching chemicals on
pulp brightness. These four chemicals were selected at random
from a large population of potential bleaching agents. The data
are as follows:

Oven Temperature

1 77.199 74.466 92.746 76.208 82.876

2 80.522 79.306 81.914 80.346 73.385

3 79.417 78.017 91.596 80.802 80.626

4 78.001 78.358 77.544 77.364 77.386

(a) Is there a difference in the chemical types? Use
𝛼 = 0.05.

(b) Estimate the variability due to chemical types.

(c) Estimate the variability due to random error.

(d) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.43 Consider the single-factor random effects model dis-
cussed in this chapter. Develop a procedure for finding
a 100(1 − 𝛼) percent confidence interval on the ratio 𝜎

2∕
(𝜎2

𝜏
+ 𝜎

2). Assume that the experiment is balanced.

3.44 Consider testing the equality of the means of two
normal populations, where the variances are unknown but
are assumed to be equal. The appropriate test procedure is
the pooled t-test. Show that the pooled t-test is equivalent to
the single-factor analysis of variance.

3.45 Show that the variance of the linear combination∑a
i=1 ciyi. is σ2 ∑a

i=1 nic
2
i .

3.46 In a fixed effects experiment, suppose that there are n
observations for each of the four treatments. Let Q2

1, Q2
2, Q2

3 be
single-degree-of-freedom components for the orthogonal con-
trasts. Prove that SSTreatments = Q2

1 + Q2
2 + Q2

3.

3.47 Use Bartlett’s test to determine if the assumption of
equal variances is satisfied in Problem 3.30. Use 𝛼 = 0.05. Did

you reach the same conclusion regarding equality of variances
by examining residual plots?

3.48 Use the modified Levene test to determine if the
assumption of equal variances is satisfied in Problem 3.30.
Use 𝛼 = 0.05. Did you reach the same conclusion regarding
the equality of variances by examining residual plots?

3.49 Refer to Problem 3.26. If we wish to detect a maximum
difference in mean response times of 10 milliseconds with a
probability of at least 0.90, what sample size should be used?
How would you obtain a preliminary estimate of σ2?

3.50 Refer to Problem 3.30.

(a) If we wish to detect a maximum difference in battery
life of 10 hours with a probability of at least 0.90, what
sample size should be used? Discuss how you would
obtain a preliminary estimate of 𝜎2 for answering this
question.

(b) If the maximum difference between brands is 8 hours,
what sample size should be used if we wish to detect
this with a probability of at least 0.90?

3.51 Consider the experiment in Problem 3.30. If we wish
to construct a 95 percent confidence interval on the difference
in two mean battery lives that has an accuracy of ±2 weeks,
how many batteries of each brand must be tested?

3.52 Suppose that four normal populations have means of
𝜇1 = 50, 𝜇2 = 60, 𝜇3 = 50, and 𝜇4 = 60. How many obser-
vations should be taken from each population so that the
probability of rejecting the null hypothesis of equal popu-
lation means is at least 0.90? Assume that 𝛼 = 0.05 and that a
reasonable estimate of the error variance is 𝜎2 = 25.

3.53 Refer to Problem 3.52.

(a) How would your answer change if a reasonable
estimate of the experimental error variance were
𝜎

2 = 36?

(b) How would your answer change if a reasonable esti-
mate of the experimental error variance were 𝜎2 = 49?

(c) Can you draw any conclusions about the sensitivity of
your answer in this particular situation about how your
estimate of 𝜎 affects the decision about sample size?

(d) Can you make any recommendations about how we
should use this general approach to choosin g n in
practice?

3.54 Refer to the aluminum smelting experiment described
in Section 3.8.3. Verify that ratio control methods do not affect
average cell voltage. Construct a normal probability plot of
the residuals. Plot the residuals versus the predicted values.
Is there an indication that any underlying assumptions are
violated?
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3.55 Refer to the aluminum smelting experiment in Section
3.8.3. Verify the ANOVA for pot noise summarized in
Table 3.17. Examine the usual residual plots and comment on
the experimental validity.

3.56 Four different feed rates were investigated in an exper-
iment on a CNC machine producing a component part used in
an aircraft auxiliary power unit. The manufacturing engineer
in charge of the experiment knows that a critical part dimen-
sion of interest may be affected by the feed rate. However, prior
experience has indicated that only dispersion effects are likely
to be present. That is, changing the feed rate does not affect
the average dimension, but it could affect dimensional vari-
ability. The engineer makes five production runs at each feed
rate and obtains the standard deviation of the critical dimen-
sion (in 10−3 mm). The data are shown below. Assume that all
runs were made in random order.

Production RunFeed Rate
(in/min) 1 2 3 4 5

10 0.09 0.10 0.13 0.08 0.07

12 0.06 0.09 0.12 0.07 0.12

14 0.11 0.08 0.08 0.05 0.06

16 0.19 0.13 0.15 0.20 0.11

(a) Does feed rate have any effect on the standard deviation
of this critical dimension?

(b) Use the residuals from this experiment to investigate
model adequacy. Are there any problems with experi-
mental validity?

3.57 Consider the data shown in Problem 3.26.

(a) Write out the least squares normal equations for this
problem and solve them for �̂� and 𝜏i, using the usual

constraint
(∑3

i=1 𝜏i = 0
)

. Estimate 𝜏1 − 𝜏2.

(b) Solve the equations in (a) using the constraint 𝜏3 = 0.
Are the estimators 𝜏i and �̂� the same as you found
in (a)? Why? Now estimate 𝜏1 − 𝜏2 and compare your
answer with that for (a). What statement can you make
about estimating contrasts in the 𝜏i?

(c) Estimate 𝜇 + 𝜏1, 2𝜏1 − 𝜏2 − 𝜏3, and 𝜇 + 𝜏1 + 𝜏2 using
the two solutions to the normal equations. Compare the
results obtained in each case.

3.58 Apply the general regression significance test to the
experiment in Example 3.6. Show that the procedure yields
the same results as the usual analysis of variance.

3.59 Use the Kruskal–Wallis test for the experiment in
Problem 3.27. Compare the conclusions obtained with those
from the usual analysis of variance.

3.60 Use the Kruskal–Wallis test for the experiment in
Problem 3.28. Are the results comparable to those found by
the usual analysis of variance?

3.61 Consider the experiment in Example 3.6. Suppose that
the largest observation on etch rate is incorrectly recorded as
250 Å/min. What effect does this have on the usual analysis of
variance? What effect does it have on the Kruskal–Wallis test?

3.62 A textile mill has a large number of looms. Each loom
is supposed to provide the same output of cloth per minute.
To investigate this assumption, five looms are chosen at ran-
dom, and their output is noted at different times. The following
data are obtained:

Loom Output (lb/min)

1 14.0 14.1 14.2 14.0 14.1
2 13.9 13.8 13.9 14.0 14.0
3 14.1 14.2 14.1 14.0 13.9
4 13.6 13.8 14.0 13.9 13.7
5 13.8 13.6 13.9 13.8 14.0

(a) Explain why this is a random effects experiment.
Are the looms equal in output? Use 𝛼 = 0.05.

(b) Estimate the variability between looms.

(c) Estimate the experimental error variance.

(d) Find a 95 percent confidence interval for 𝜎2
𝜏
∕(𝜎2

𝜏
+ 𝜎

2).
(e) Analyze the residuals from this experiment. Do you

think that the analysis of variance assumptions are
satisfied?

(f) Use the REML method to analyze this data. Compare
the 95 percent confidence interval on the error vari-
ance from REML with the exact chi-square confidence
interval.

3.63 The normality assumption is extremely important in
the analysis of variance.

(a) True

(b) False

3.64 The analysis of variance treats both quantitative and
qualitative factors alike so far as the basic computations for
sums of squares are concerned.

(a) True

(b) False

3.65 If a single-factor experiment has a levels of the fac-
tor and a polynomial of degree a – 1 is fit to the experimental
data, the error sum of squares for the polynomial model will be
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exactly the same as the error sum of squares for the standard
ANOVA.

(a) True

(b) False

3.66 Fisher’s LSD procedure is an extremely conservative
method for comparing pairs of treatment means following an
ANOVA.

(a) True

(b) False

3.67 The REML method of estimating variance compo-
nents is a technique based on maximum likelihood, while the
ANOVA method is a method-of-moments procedure.

(a) True

(b) False

3.68 One advantage of the REML method of estimating
variance components is that it automatically produces confi-
dence intervals on the variance components.

(a) True

(b) False

3.69 The Tukey method is used to compare all treatment
means to a control.

(a) True

(b) False

3.70 An experiment with a single factor has been conducted
as a completely randomized design and analyzed using com-
puter software. A portion of the output is shown below.

Source DF SS MS F
Factor ? ? 25.69 3.65
Error 12 84.35 ?
Total 15 161.42

(a) Fill in the missing information.

(b) How many levels of the factor were used in this
experiment?

(c) How many replicates were used in this experiment?

(d) Find bounds on the P-value.

3.71 The estimate of the standard deviation of any observa-
tion in the experiment in Problem 3.70 is

(a) 7.03 (b) 2.65 (c) 5.91

(d) 1.95 (e) none of the above
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CHAPTER LEARNING OBJECTIVES
1. Learn about how the blocking principle can be effective in reducing the variability arising from

controllable nuisance factors.

2. Learn about the randomized complete block design.

3. Understand how the analysis of variance can be extended to the randomized complete block design.

4. Know how to do model adequacy checking for the randomized complete block design.

5. Understand how a Latin square design can be used to control two sources of nuisance variability in
an experiment.

4.1 The Randomized Complete Block Design

In any experiment, variability arising from a nuisance factor can affect the results. Generally, we define a nuisance
factor as a design factor that probably has an effect on the response, but we are not interested in that effect. Sometimes
a nuisance factor is unknown and uncontrolled; that is, we don’t know that the factor exists, and it may even be
changing levels while we are conducting the experiment. Randomization is the design technique used to guard
against such a “lurking” nuisance factor. In other cases, the nuisance factor is known but uncontrollable. If we can at
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least observe the value that the nuisance factor takes on at each run of the experiment, we can compensate for it in the
statistical analysis by using the analysis of covariance, a technique we will discuss in Chapter 15. When the nuisance
source of variability is known and controllable, a design technique called blocking can be used to systematically
eliminate its effect on the statistical comparisons among treatments. Blocking is an extremely important design
technique used extensively in industrial experimentation and is the subject of this chapter.

To illustrate the general idea, reconsider the hardness testing experiment first described in Section 2.5.1. Suppose
now that we wish to determine whether or not four different tips produce different readings on a hardness testing
machine. An experiment such as this might be part of a gauge capability study. Themachine operates by pressing the tip
into a metal test coupon, and from the depth of the resulting depression, the hardness of the coupon can be determined.
The experimenter has decided to obtain four observations on Rockwell C-scale hardness for each tip. There is only one
factor—tip type—and a completely randomized single-factor design would consist of randomly assigning each one of
the 4 × 4 = 16 runs to an experimental unit, that is, a metal coupon, and observing the hardness reading that results.
Thus, 16 different metal test coupons would be required in this experiment, one for each run in the design.

There is a potentially serious problem with a completely randomized experiment in this design situation. If the
metal coupons differ slightly in their hardness, as might happen if they are taken from ingots that are produced in
different heats, the experimental units (the coupons) will contribute to the variability observed in the hardness data.
As a result, the experimental error will reflect both random error and variability between coupons.

Wewould like to make the experimental error as small as possible; that is, we would like to remove the variability
between coupons from the experimental error. A design that would accomplish this requires the experimenter to test
each tip once on each of four coupons. This design, shown in Table 4.1, is called a randomized complete block
design (RCBD). The word “complete” indicates that each block (coupon) contains all the treatments (tips). By using
this design, the blocks, or coupons, form a more homogeneous experimental unit on which to compare the tips.
Effectively, this design strategy improves the accuracy of the comparisons among tips by eliminating the variability
among the coupons. Within a block, the order in which the four tips are tested is randomly determined. Notice the
similarity of this design problem to the paired t-test of Section 2.5.1. The randomized complete block design is a
generalization of that concept.

The RCBD is one of the most widely used experimental designs. Situations for which the RCBD is appropriate
are numerous. Units of test equipment or machinery are often different in their operating characteristics and would be
a typical blocking factor. Batches of raw material, people, and time are also common nuisance sources of variability
in an experiment that can be systematically controlled through blocking.1

Blocking may also be useful in situations that do not necessarily involve nuisance factors. For example, suppose
that a chemical engineer is interested in the effect of catalyst feed rate on the viscosity of a polymer. She knows that
there are several factors, such as raw material source, temperature, operator, and raw material purity that are very
difficult to control in the full-scale process. Therefore, she decides to test the catalyst feed rate factor in blocks, where

◾ TABLE 4 . 1
Randomized Complete Block Design for the Hardness Testing Experiment

Test Coupon (Block)

1 2 3 4

Tip 3 Tip 3 Tip 2 Tip 1

Tip 1 Tip 4 Tip 1 Tip 4

Tip 4 Tip 2 Tip 3 Tip 2

Tip 2 Tip 1 Tip 4 Tip 3

1 A special case of blocking occurs where the blocks are experimental units such as people, and each block receives the treatments over time or the treatment effects are
measured at different times. These are called repeated measures designs. They are discussed in Chapter 15.
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each block consists of some combination of these uncontrollable factors. In effect, she is using the blocks to test the
robustness of her process variable (feed rate) to conditions she cannot easily control. For more discussion of this, see
Coleman and Montgomery (1993).

4.1.1 Statistical Analysis of the RCBD

Suppose we have, in general, a treatments that are to be compared and b blocks. The randomized complete block design
is shown in Figure 4.1. There is one observation per treatment in each block, and the order in which the treatments are
run within each block is determined randomly. Because the only randomization of treatments is within the blocks, we
often say that the blocks represent a restriction on randomization.

The statistical model for the RCBD can be written in several ways. The traditional model is an effects model:

yij = 𝜇 + 𝜏i + 𝛽j + 𝜖ij

{
i = 1, 2, . . . , a
j = 1, 2, . . . , b

(4.1)

where 𝜇 is an overall mean, 𝜏i is the effect of the ith treatment, 𝛽j is the effect of the jth block, and 𝜖ij is the usual
NID (0, 𝜎2) random error term. We will initially consider treatments and blocks to be fixed factors. The case of random
blocks, which is very important, is considered in Section 4.1.3. Just as in the single-factor experimental design model in
Chapter 3, the effects model for the RCBD is an overspecified model. Consequently, we usually think of the treatment
and block effects as deviations from the overall mean so that

a∑
i=1

𝜏i = 0 and
b∑
j=1

𝛽j = 0

It is also possible to use ameans model for the RCBD, say

yij = 𝜇ij + 𝜖ij

{
i = 1, 2, . . . , a
j = 1, 2, . . . , b

where 𝜇ij = 𝜇 + 𝜏i + 𝛽j. However, we will use the effects model in Equation 4.1 throughout this chapter.
In an experiment involving the RCBD, we are interested in testing the equality of the treatment means. Thus, the

hypotheses of interest are
H0∶𝜇1 = 𝜇2 = · · · = 𝜇a
H1∶at least one 𝜇i ≠ 𝜇j

Because the ith treatment mean 𝜇i = (1∕b)
∑b

j=1(𝜇 + 𝜏i + 𝛽j) = 𝜇 + 𝜏i, an equivalent way to write the above hypotheses
is in terms of the treatment effects, say

H0∶𝜏1 = 𝜏2 = · · · = 𝜏a = 0
H1∶𝜏i ≠ 0 at least one i

◾ F I GURE 4 . 1 The randomized complete block design
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The analysis of variance can be easily extended to the RCBD. Let yi. be the total of all observations taken under
treatment i, y

.j be the total of all observations in block j, y
..
be the grand total of all observations, and N = ab be the

total number of observations. Expressed mathematically,

yi. =
b∑
j=1

yij i = 1, 2, . . . , a (4.2)

y
.j =

a∑
i=1

yij j = 1, 2, . . . , b (4.3)

and

y
..
=

a∑
i=1

b∑
j=1

yij =
a∑
i=1

yi. =
b∑
j=1

y
.j (4.4)

Similarly, yi. is the average of the observations taken under treatment i, y
.j is the average of the observations in block j,

and y
..
is the grand average of all observations. That is,

yi. = yi.∕b y
.j = y

.j∕a y
..
= y

..
∕N (4.5)

We may express the total corrected sum of squares as

a∑
i=1

b∑
j=1

(yij − y
..
)2 =

a∑
i=1

b∑
j=1

[(yi. − y
..
) + (y

.j − y
..
) + (yij − yi. − y

.j + y
..
]2 (4.6)

By expanding the right-hand side of Equation 4.6, we obtain

a∑
i=1

b∑
j=1

(yij − y
..
)2 = b

a∑
i=1

(yi. − y
..
)2 + a

b∑
j=1

(y
.j − y

..
)2

+
a∑
i=1

b∑
j=1

(yij − yi. − y
.j + y

..
)2 + 2

a∑
i=1

b∑
j=1

(yi. − y
..
)(y

.j − y
..
)

+ 2
a∑
i=1

b∑
j=1

(y
.j − y

..
)(yij − yi. − y

.j + y
..
)

+ 2
a∑
i=1

b∑
j=1

(yi. − y
..
)(yij − yi. − y

.j + y
..
)

Simple but tedious algebra proves that the three cross products are zero. Therefore,

a∑
i=1

b∑
j=1

(yij − y
..
)2 = b

a∑
i=1

(yi. − y
..
)2 + a

b∑
j=1

(y
.j − y

..
)2

+
a∑
i=1

b∑
j=1

(yij − y
.j − yi. + y

..
)2 (4.7)

represents a partition of the total sum of squares. This is the fundamental ANOVA equation for the RCBD. Expressing
the sums of squares in Equation 4.7 symbolically, we have

SST = SSTreatments + SSBlocks + SSE (4.8)
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Because there are N observations, SST has N − 1 degrees of freedom. There are a treatments and b blocks, so
SSTreatments and SSBlocks have a − 1 and b − 1 degrees of freedom, respectively. The error sum of squares is just a sum
of squares between cells minus the sum of squares for treatments and blocks. There are ab cells with ab − 1 degrees
of freedom between them, so SSE has ab − 1 − (a − 1) − (b − 1) = (a − 1)(b − 1) degrees of freedom. Furthermore,
the degrees of freedom on the right-hand side of Equation 4.8 add to the total on the left; therefore, making the usual
normality assumptions on the errors, one may use Theorem 3-1 to show that SSTreatments∕𝜎2

, SSBlocks∕𝜎2
, and SSE∕𝜎2

are independently distributed chi-square random variables. Each sum of squares divided by its degrees of freedom is
a mean square. The expected value of the mean squares, if treatments and blocks are fixed, can be shown to be

E(MSTreatments) = 𝜎
2 +

b
a∑
i=1

𝜏
2
i

a − 1

E(MSBlocks) = 𝜎
2 +

a
b∑
j=1

𝛽
2
j

b − 1
E(MSE) = 𝜎

2

Therefore, to test the equality of treatment means, we would use the test statistic

F0 =
MSTreatments

MSE

which is distributed as F
𝛼−1,(a−1)(b−1) if the null hypothesis is true. The critical region is the upper tail of the F

distribution, and we would reject H0 if F0 > F
𝛼,a−1,(a−1)(b−1). A P-value approach can also be used.

We may also be interested in comparing block means because, if these means do not differ greatly, blocking
may not be necessary in future experiments. From the expected mean squares, it seems that the hypothesis H0∶𝛽j = 0
may be tested by comparing the statistic F0 = MSBlocls∕MSE to F

𝛼,b−1,(a−1)(b−1). However, recall that randomization
has been applied only to treatments within blocks; that is, the blocks represent a restriction on randomization.
What effect does this have on the statistic F0 = MSBlocks∕MSE? Some differences in treatment of this question exist.
For example, Box, Hunter, and Hunter (2005) point out that the usual analysis of variance F-test can be justified on
the basis of randomization only,2 without direct use of the normality assumption. They further observe that the test to
compare block means cannot appeal to such a justification because of the randomization restriction; but if the errors
are NID(0, 𝜎2), the statistic F0 = MSBlocks∕MSE can be used to compare block means. On the other hand, Anderson
and McLean (1974) argue that the randomization restriction prevents this statistic from being a meaningful test for
comparing block means and that this F ratio really is a test for the equality of the block means plus the randomization
restriction [which they call a restriction error; see Anderson and McLean (1974) for further details].

In practice, then, what do we do? Because the normality assumption is often questionable, to view
F0 = MSBlocks∕MSE as an exact F-test on the equality of block means is not a good general practice. For that
reason, we exclude this F-test from the analysis of variance table. However, as an approximate procedure to
investigate the effect of the blocking variable, examining the ratio of MSBlocks to MSE is certainly reasonable. If this
ratio is large, it implies that the blocking factor has a large effect and that the noise reduction obtained by blocking
was probably helpful in improving the precision of the comparison of treatment means.

The procedure is usually summarized in an ANOVA table, such as the one shown in Table 4.2. The computing
would usually be done with a statistical software package. However, computing formulas for the sums of squares may
be obtained for the elements in Equation 4.7 by working directly with the identity

yij − y
..
= (yi. − y

..
) + (y

.j − y
..
) + (yij − yi. − y

.j + y
..
)

2 Actually, the normal-theory F distribution is an approximation to the randomization distribution generated by calculating F0 from every possible assignment of the
responses to the treatments.
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◾ TABLE 4 . 2
Analysis of Variance for a Randomized Complete Block Design

Source of
Variation Sum of Squares

Degrees of
Freedom Mean Square F0

Treatments SSTreatments a − 1
SSTreatments

a − 1

MSTreatments

MSE

Blocks SSBlocks b − 1
SSBlocks
b − 1

Error SSE (a − 1)(b − 1)
SSE

(a − 1)(b − 1)
Total SST N − 1

These quantities can be computed in the columns of a spreadsheet (Excel). Then each column can be squared and
summed to produce the sum of squares. Alternatively, computing formulas can be expressed in terms of treatment and
block totals. These formulas are

SST =
a∑
i=1

b∑
j=1

y2ij −
y2
..

N
(4.9)

SSTreatments =
1
b

a∑
i=1

y2i. −
y2
..

N
(4.10)

SSBlocks =
1
a

b∑
j=1

y2
.j −

y2
..

N
(4.11)

and the error sum of squares is obtained by subtraction as

SSE = SST − SSTreatments − SSBlocks (4.12)

EXAMPLE 4 . 1

A medical device manufacturer produces vascular grafts
(artificial veins). These grafts are produced by extruding
billets of polytetrafluoroethylene (PTFE) resin combined
with a lubricant into tubes. Frequently, some of the tubes in a
production run contain small, hard protrusions on the exter-
nal surface. These defects are known as “flicks.” The defect
is cause for rejection of the unit.

The product developer responsible for the vascular grafts
suspects that the extrusion pressure affects the occurrence
of flicks and therefore intends to conduct an experiment to
investigate this hypothesis. However, the resin is manufac-
tured by an external supplier and is delivered to the medical
device manufacturer in batches. The engineer also sus-
pects that there may be significant batch-to-batch variation,

because while the material should be consistent with respect
to parameters such as molecular weight, mean particle size,
retention, and peak height ratio, it probably isn’t due to
manufacturing variation at the resin supplier and natural
variation in the material. Therefore, the product developer
decides to investigate the effect of four different levels of
extrusion pressure on flicks using a randomized complete
block design considering batches of resin as blocks. The
RCBD is shown in Table 4.3. Note that there are four lev-
els of extrusion pressure (treatments) and six batches of
resin (blocks). Remember that the order in which the extru-
sion pressures are tested within each block is random. The
response variable is yield, or the percentage of tubes in the
production run that did not contain any flicks.
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◾ TABLE 4 . 3
Randomized Complete Block Design for the Vascular Graft Experiment

Batch of Resin (Block)Extrusion
Pressure (PSI) 1 2 3 4 5 6

Treatment
Total

8500 90.3 89.2 98.2 93.9 87.4 97.9 556.9

8700 92.5 89.5 90.6 94.7 87.0 95.8 550.1

8900 85.5 90.8 89.6 86.2 88.0 93.4 533.5

9100 82.5 89.5 85.6 87.4 78.9 90.7 514.6

Block totals 350.8 359.0 364.0 362.2 341.3 377.8 y
..
= 2155.1

To perform the analysis of variance, we need the following
sums of squares:

SST =
4∑
i=1

6∑
j=1

y2ij −
y2
..

N

= 193,999.31 − (2155.1)2

24
= 480.31

SSTreatments =
1
b

4∑
i=1

y2i. −
y2
..

N

= 1
6
[(556.9)2 + (550.1)2 + (533.5)2

+(514.6)2] − (2155.1)2

24
= 178.17

SSBlocks =
1
a

6∑
j=1

y2
.j −

y2
..

N

= 1
4
[(350.8)2 + (359.0)2 + · · · + (377.8)2]

− (2155.1)2

24
= 192.25

SSE = SST − SSTreatments − SSBlocks
= 480.31 − 178.17 − 192.25 = 109.89

The ANOVA is shown in Table 4.4. Using 𝛼 = 0.05, the
critical value of F is F0.05,3,15 = 3.29. Because 8.11 > 3.29,
we conclude that extrusion pressure affects the mean yield.
The P-value for the test is also quite small. Also, the resin
batches (blocks) seem to differ significantly, because the
mean square for blocks is large relative to error.

◾ TABLE 4 . 4
Analysis of Variance for the Vascular Graft Experiment

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F0 P-Value

Treatments (extrusion pressure) 178.17 3 59.39 8.11 0.0019

Blocks (batches) 192.25 5 38.45

Error 109.89 15 7.33

Total 480.31 23

It is interesting to observe the results we would have obtained from this experiment had we not been aware of
randomized block designs. Suppose that this experiment had been run as a completely randomized design, and (by
chance) the same design resulted as in Table 4.3. The incorrect analysis of these data as a completely randomized
single-factor design is shown in Table 4.5.

Because the P-value is less than 0.05, we would still reject the null hypothesis and conclude that extrusion pres-
sure significantly affects themean yield. However, note that themean square for error hasmore than doubled, increasing
from 7.33 in the RCBD to 15.11. All of the variability due to blocks is now in the error term. This makes it easy to see
why we sometimes call the RCBD a noise-reducing design technique; it effectively increases the signal-to-noise ratio
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◾ TABLE 4 . 5
Incorrect Analysis of the Vascular Graft Experiment as a Completely Randomized Design

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F𝟎 P-Value

Extrusion pressure 178.17 3 59.39 3.95 0.0235

Error 302.14 20 15.11

Total 480.31 23

in the data, or it improves the precision with which treatment means are compared. This example also illustrates an
important point. If an experimenter fails to block when he or she should have, the effect may be to inflate the exper-
imental error, and it would be possible to inflate the error so much that important differences among the treatment
means could not be identified.

Sample Computer Output. Condensed computer output for the vascular graft experiment in Example 4.1,
obtained from Design-Expert and JMP, is shown in Figure 4.2. The Design-Expert output is in Figure 4.2a and the
JMP output is in Figure 4.2b. Both outputs are very similar and match the manual computation given earlier. Note
that JMP computes an F-statistic for blocks (the batches). The sample means for each treatment are shown in the
output. At 8500 psi, the mean yield is y1. = 92.82, at 8700 psi the mean yield is y2. = 91.68, at 8900 psi the mean
yield is y3. = 88.92, and at 9100 psi the mean yield is y4. = 85.77. Remember that these sample mean yields estimate
the treatment means 𝜇1, 𝜇2, 𝜇3, and 𝜇4. The model residuals are shown at the bottom of the Design-Expert output. The
residuals are calculated from

eij = yij − ŷij

and, as we will later show, the fitted values are ŷij = yi. + y
.j − y

..
, so

eij = yij − yi. − y
.j + y

..
(4.13)

In the next section, we will show how the residuals are used in model adequacy checking.

Multiple Comparisons. If the treatments in an RCBD are fixed, and the analysis indicates a significant
difference in treatment means, the experimenter is usually interested in multiple comparisons to discover which
treatment means differ. Any of the multiple comparison procedures discussed in Section 3.5 may be used for this
purpose. In the formulas of Section 3.5, simply replace the number of replicates in the single-factor completely
randomized design (n) by the number of blocks (b). Also, remember to use the number of error degrees of freedom
for the randomized block [(a − 1)(b − 1)] instead of those for the completely randomized design [a(n − 1)].

The Design-Expert output in Figure 4.2 illustrates the Fisher LSD procedure. Notice that we would conclude
that 𝜇1 = 𝜇2, because the P-value is very large. Furthermore, 𝜇1 differs from all other means. Now the P-value for
H0∶𝜇2 = 𝜇3 is 0.097, so there is some evidence to conclude that 𝜇2 ≠ 𝜇3, and 𝜇2 ≠ 𝜇4 because the P-value is 0.0018.
Overall, we would conclude that lower extrusion pressures (8500 psi and 8700 psi) lead to fewer defects.

We can also use the graphical procedure of Section 3.5.1 to compare mean yield at the four extrusion pressures.
Figure 4.3 plots the four means from Example 4.1 relative to a scaled t distribution with a scale factor

√
MSE∕b =√

7.33∕6 = 1.10. This plot indicates that the two lowest pressures result in the same mean yield, but that the mean
yields for 8700 psi and 8900 psi (𝜇2 and 𝜇3) are also similar. The highest pressure (9100 psi) results in a mean yield
that is much lower than all other means. This figure is a useful aid in interpreting the results of the experiment and the
Fisher LSD calculations in the Design-Expert output in Figure 4.2.
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(a)

◾ F I GURE 4 . 2 Computer output for Example 4.1. (a) Design-Expert; (b) JMP
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Oneway Analysis of Yield by Pressure
Block
Batch

Oneway Anova
Summary of Fit

0.771218Rsquare
0.649201Adj Rsquare
2.706612Root Mean Square Error
89.79583Mean of Response

24Observations (or Sum Wgts)

Analysis of Variance
Mean SquareSum of SquaresDFSource F Prob > FRatio

0.00198.107159.3904178.171253Pressure

0.00555.248738.4504192.252085Batch

7.3257109.8862515Error

480.3095823C.Total

Means for Oneway Anova
Upper 95%Lower 95%ErrorStd.MeanNumberLevel

95.17290.4611.105092.816768500

94.03989.3281.105091.683368700

91.27286.5611.105088.916768900

88.12283.4111.105085.766769100

Std. Error uses a pooled estimate of error variance

Block Means
NumberMeanBatch

487.70001

489.75002

491.00003

490.55004

485.32505

494.45006

(b)

◾ F I GURE 4 . 2 (Continued)

◾ F I GURE 4 . 3 Mean yields for the four extrusion
pressures relative to a scaled t distribution with a scale

factor
√

MSE∕b =
√
7.33∕6 = 1.10

80 85 90

234 1

95
Yield
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4.1.2 Model Adequacy Checking

We have previously discussed the importance of checking the adequacy of the assumed model. Generally, we should
be alert for potential problems with the normality assumption, unequal error variance by treatment or block, and
block–treatment interaction. As in the completely randomized design, residual analysis is the major tool used in this
diagnostic checking. The residuals for the randomized block design in Example 4.1 are listed at the bottom of the
Design-Expert output in Figure 4.2.

A normal probability plot of these residuals is shown in Figure 4.4. There is no severe indication of nonnormality,
nor is there any evidence pointing to possible outliers. Figure 4.5 plots the residuals versus the fitted values ŷij. There
should be no relationship between the size of the residuals and the fitted values ŷij. This plot reveals nothing of unusual
interest. Figure 4.6 shows plots of the residuals by treatment (extrusion pressure) and by batch of resin or block.
These plots are potentially very informative. If there is more scatter in the residuals for a particular treatment, it could
indicate that this treatment produces more erratic response readings than the others. More scatter in the residuals for
a particular block could indicate that the block is not homogeneous. However, in our example, Figure 4.6 gives no
indication of inequality of variance by treatment, but there is an indication that there is less variability in the yield for
batch 6. However, since all of the other residual plots are satisfactory, we will ignore this.

Sometimes the plot of residuals versus ŷij has a curvilinear shape; for example, there may be a tendency for
negative residuals to occur with low ŷij values, positive residuals with intermediate ŷij values, and negative residuals
with high ŷij values. This type of pattern is suggestive of interaction between blocks and treatments. If this pattern
occurs, a transformation should be used in an effort to eliminate or minimize the interaction. In Section 5.3.7, we
describe a statistical test that can be used to detect the presence of interaction in a randomized block design.

4.1.3 Some Other Aspects of the Randomized Complete Block Design

Additivity of the Randomized Block Model. The linear statistical model that we have used for the random-
ized block design

yij = 𝜇 + 𝜏i + 𝛽j + 𝜖ij

–3.57083 –6.63333 0.304167 4.179172.24167
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◾ F I GURE 4 . 4 Normal probability plot
of residuals for Example 4.1

–1.63333
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81.30 85.34 89.38 97.4793.43

4.17917
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R
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d

u
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ls

Predicted

◾ F I GURE 4 . 5 Plot of residuals versus ŷij for
Example 4.1
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4.17917

2.24167

0.304167

–1.63333

–3.57083

1 2 3 4

R
e
si

d
u

a
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Extrusion pressure

(a)

1 2 3 4

Batch of raw material (block)

(b)

5 6

4.17917

2.24167
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–1.63333

–3.57083

R
e
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◾ F I GURE 4 . 6 Plot of residuals by extrusion pressure (treatment) and by batches of resin (block) for Example 4.1

is completely additive. This says that, for example, if the first treatment causes the expected response to increase by
five units (𝜏1 = 5) and if the first block increases the expected response by 2 units (𝛽1 = 2), the expected increase in
response of both treatment 1 and block 1 together is E(y11) = 𝜇 + 𝜏1 + 𝛽1 = 𝜇 + 5 + 2 = 𝜇 + 7. In general, treatment
1 always increases the expected response by 5 units over the sum of the overall mean and the block effect.

Although this simple additivemodel is often useful, in some situations it is inadequate. Suppose, for example, that
we are comparing four formulations of a chemical product using six batches of raw material; the raw material batches
are considered blocks. If an impurity in batch 2 affects formulation 2 adversely, resulting in an unusually low yield,
but does not affect the other formulations, an interaction between formulations (or treatments) and batches (or blocks)
has occurred. Similarly, interactions between treatments and blocks can occur when the response is measured on the
wrong scale. Thus, a relationship that is multiplicative in the original units, say

E(yij) = 𝜇𝜏i𝛽j

is linear or additive in a log scale since, for example,

lnE(yij) = ln𝜇 + ln 𝜏i + ln 𝛽j

or
E(y∗ij) = 𝜇

∗ + 𝜏
∗
i + 𝛽

∗
j

Although this type of interaction can be eliminated by a transformation, not all interactions are so easily treated.
For example, transformations do not eliminate the formulation–batch interaction discussed previously. Residual anal-
ysis and other diagnostic checking procedures can be helpful in detecting nonadditivity.

If interaction is present, it can seriously affect and possibly invalidate the analysis of variance. In general, the
presence of interaction inflates the error mean square and may adversely affect the comparison of treatment means.
In situations where both factors, as well as their possible interaction, are of interest, factorial designs must be used.
These designs are discussed extensively in Chapters 5 through 9.
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Random Treatments and Blocks. Our presentation of the randomized complete block design thus far has
focused on the case when both the treatments and blocks were considered as fixed factors. There are many situations
where either treatments or blocks (or both) are random factors. It is very common to find that the blocks are random.
This is usually what the experimenter would like to do, because we would like for the conclusions from the experiment
to be valid across the population of blocks that the ones selected for the experiments were sampled from. First, we con-
sider the case where the treatments are fixed and the blocks are random. Equation 4.1 is still the appropriate statistical
model, but now the block effects are random, that is, we assume that the 𝛽j, j = 1, 2, . . . , b are NID(0, 𝜎2

𝛽
) random

variables. This is a special case of a mixed model (because it contains both fixed and random factors). In Chapters 13
and 14 we will discuss mixed models in more detail and provide several examples of situations where they occur.
Our discussion here is limited to the RCBD.

Assuming that the RCBD model Equation 4.1 is appropriate, if the blocks are random and the treatments are
fixed we can show that

E(yij) = 𝜇 + 𝜏i, i = 1, 2, . . . , a

V(yij) = 𝜎
2
𝛽
+ 𝜎

2

Cov(yij, yi′j′ ) = 0, j ≠ j′

Cov(yij, yi′j) = 𝜎
2
𝛽
i ≠ i′

(4.14)

Thus, the variance of the observations is constant, the covariance between any two observations in different blocks is
zero, but the covariance between two observations from the same block is 𝜎2

𝛽
. The expected mean squares from the

usual ANOVA partitioning of the total sum of squares are

E(MSTreatments) = 𝜎
2 +

b
a∑
i=1

𝜏
2
i

a − 1
E(MSBlocks) = 𝜎

2 + a𝜎2
𝛽

E(MSE) = 𝜎
2

(4.15)

The appropriate statistic for testing the null hypothesis of no treatment effects (all 𝜏i = 0) is

F0 =
MSTreatment

MSE

which is exactly the same test statistic we used in the case where the blocks were fixed. Based on the expected mean
squares, we can obtain an ANOVA-type estimator of the variance component for blocks as

�̂�
2
𝛽
=

MSBlocks −MSE
a

(4.16)

For example, for the vascular graft experiment in Example 4.1 the estimate of 𝜎2
𝛽
is

�̂�
2
𝛽
=

MSBlocks −MSE
a

= 38.45 − 7.33
4

= 7.78

This is a method-of-moments estimate and there is no simple way to find a confidence interval on the block variance
component 𝜎2

𝛽
. The REMLmethod would be preferred here. Table 4.6 is the JMP output for Example 4.1 assuming that

blocks are random. The REML estimate of 𝜎2
𝛽
is exactly the same as the ANOVA estimate, but REML automatically

produces the standard error of the estimate (6.116215) and the approximate 95 percent confidence interval. JMP gives
the test for the fixed effect (pressure), and the results are in agreement with those originally reported in Example 4.1.
REML also produces the point estimate and confidence interval for the error variance 𝜎

2. The ease with which
confidence intervals can be constructed is a major reason why REML has been so widely adopted.



�

� �

�

148 Chapter 4 Randomized Blocks, Latin Squares, and Related Designs

◾ TABLE 4 . 6
JMP Output for Example 4.1 with Blocks Assumed Random

Response Y

Summary of Fit

RSquare 0.756688

RSquare Adj 0.720192

Root Mean Square Error 2.706612

Mean of Response 89.79583

Observations (or Sum Wgts) 24

REML Variance Component Estimates

Random Effect Var Ratio Var Component Std Error 95% Lower 95% Upper Pct of Total

Block 1.0621666 7.7811667 6.116215 −4.206394 19.768728 51.507

Residual 7.32575 2.6749857 3.9975509 17.547721 48.493

Total 15.106917 100.000

Covariance Matrix of Variance Component Estimates

Random Effect Block Residual

Block 37.408085 −1.788887
Residual −1.788887 7.1555484

Fixed Effect Tests

Source Nparm DF DFDen F Ratio Prob > F

Pressure 3 3 15 8.1071 0.0019*

*Significant at the 0.01 level.

Now consider a situation where there is an interaction between treatments and blocks. This could be accounted
for by adding an interaction term to the original statistical model Equation 4.1. Let (𝜏𝛽)ij be the interaction effect of
treatment I in block j. Then the model is

yij = 𝜇 + 𝜏i + 𝛽j + (𝜏𝛽)ij + 𝜖ij

{
i = 1, 2, . . . , a
j = 1, 2, . . . , b

(4.17)

The interaction effect is assumed to be random because it involves the random block effects. If 𝜎2
𝜏𝛽

is the variance
component for the block treatment interaction, then we can show that the expected mean squares are

E(MSTreatments) = 𝜎
2 + 𝜎

2
𝜏𝛽

+

b
a∑
i=1

𝜏
2
i

a − 1
E(MSBlocks) = 𝜎

2 + a𝜎2
𝛽

E(MSE) = 𝜎
2 + 𝜎

2
𝜏𝛽

(4.18)

From the expected mean squares, we see that the usual F-statistic F = MSTreatments∕MSE would be used to test for
no treatment effects. So another advantage of the random block model is that the assumption of no interaction in the
RCBD is not important. However, if blocks are fixed and there is an interaction, then the interaction effect is not in
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the expected mean square for treatments but it is in the error expected mean square, so there would not be a statistical
test for the treatment effects.

Estimating Missing Values. When using the RCBD, sometimes an observation in one of the blocks is miss-
ing. This may happen because of carelessness or error or for reasons beyond our control, such as unavoidable damage
to an experimental unit. A missing observation introduces a new problem into the analysis because treatments are no
longer orthogonal to blocks; that is, every treatment does not occur in every block. There are two general approaches
to the missing value problem. The first is an approximate analysis in which the missing observation is estimated and
the usual analysis of variance is performed just as if the estimated observations were real data, with the error degrees
of freedom reduced by 1. This approximate analysis is the subject of this section. The second is an exact analysis,
which is discussed in Section 4.1.4.

Suppose the observation yij for treatment i in block j is missing. Denote the missing observation by x. As an
illustration, suppose that in the vascular graft experiment of Example 4.1 there was a problem with the extrusion
machine when the 8700 psi run was conducted in the fourth batch of material, and the observation y24 could not be
obtained. The data might appear as in Table 4.7.

In general, we will let y′ij represent the grand total with one missing observation, y′i. represent the total for the
treatment with one missing observation, and y′

.j be the total for the block with one missing observation. Suppose we
wish to estimate the missing observation x so that x will have a minimum contribution to the error sum of squares.
Because SSE =

∑a
i=1

∑b
j=1 (yij − yi. − y

.j + y
..
)2, this is equivalent to choosing x to minimize

SSE =
a∑
i=1

b∑
j=1

y2ij −
1
b

a∑
i=1

(
b∑
j=1

yij

)2

− 1
a

b∑
j=1

(
a∑
i=1

yij

)2

+ 1
ab

(
a∑
i=1

b∑
j=1

yij

)2

or
SSE = x2 − 1

b
(y′i. + x)2 − 1

a
(y′

.j + x)2 + 1
ab

(y′
..
+ x)2 + R (4.19)

where R includes all terms not involving x. From dSSE∕dx = 0, we obtain

x =
ay′i. + by′

.j + y′
..

(a − 1)(b − 1)
(4.20)

as the estimate of the missing observation.
For the data in Table 4.7, we find that y′2. = 455.4, y′.4 = 267.5, and y′

..
= 2060.4. Therefore, from Equation 4.16,

x ≡ y24 =
4(455.4) + 6(267.5) − 2060.4

(3)(5)
= 91.08

◾ TABLE 4 . 7
Randomized Complete Block Design for the Vascular Graft Experiment with One Missing Value

Batch of Resin (Block)Extrusion
Pressures (PSI) 1 2 3 4 5 6

8500 90.3 89.2 98.2 93.9 87.4 97.9 556.9

8700 92.5 89.5 90.6 x 87.0 95.8 455.4

8900 85.5 90.8 89.6 86.2 88.0 93.4 533.5

9100 82.5 89.5 85.6 87.4 78.9 90.7 514.6

Block totals 350.8 359.0 364.0 267.5 341.3 377.8 y′
..
= 2060.4
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◾ TABLE 4 . 8
Approximate Analysis of Variance for Example 4.1 with One Missing Value

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F𝟎 P-Value

Extrusion pressure 166.14 3 55.38 7.63 0.0029

Batches of raw material 189.52 5 37.90

Error 101.70 14 7.26

Total 457.36 23

The usual analysis of variance may now be performed using y24 = 91.08 and reducing the error degrees of freedom
by 1. The analysis of variance is shown in Table 4.8. Compare the results of this approximate analysis with the results
obtained for the full data set (Table 4.4).

If several observations are missing, they may be estimated by writing the error sum of squares as a function of the
missing values, differentiating with respect to each missing value, equating the results to zero, and solving the resulting
equations. Alternatively, we may use Equation 4.20 iteratively to estimate the missing values. To illustrate the iterative
approach, suppose that two values are missing. Arbitrarily estimate the first missing value, and then use this value
along with the real data and Equation 4.20 to estimate the second. Now Equation 4.20 can be used to reestimate the
first missing value, and following this, the second can be reestimated. This process is continued until convergence is
obtained. In any missing value problem, the error degrees of freedom are reduced by one for each missing observation.

4.1.4 Estimating Model Parameters and the General Regression Significance Test

If both treatments and blocks are fixed, we may estimate the parameters in the RCBD model by least squares. Recall
that the linear statistical model is

yij = 𝜇 + 𝜏i + 𝛽j + 𝜖ij

{
i = 1, 2, . . . , a
j = 1, 2, . . . , b

(4.21)

Applying the rules in Section 3.9.2 for finding the normal equations for an experimental design model, we obtain

𝜇 ∶ ab�̂� + b𝜏1 + b𝜏2 + · · · + b𝜏a + a𝛽1 + a𝛽2 + · · · + a𝛽b = y..
𝜏1∶ b�̂� + b𝜏1 + 𝛽1 + 𝛽2 + · · · + 𝛽b = y1.
𝜏2∶ b�̂� + b𝜏2 + 𝛽1 + 𝛽2 + · · · + 𝛽b = y2.
⋮ ⋮ ⋮
𝜏a∶ b�̂� b𝜏a + 𝛽1 + 𝛽2 + · · · + 𝛽b = ya.
𝛽1∶ a�̂� + 𝜏1 + 𝜏2 + · · · + 𝜏a + a𝛽1 = y.1
𝛽2∶ a�̂� + 𝜏1 + 𝜏2 + · · · + 𝜏a + a𝛽2 = y.2
⋮ ⋮ ⋮
𝛽b∶ a�̂� + 𝜏1 + 𝜏2 + · · · + 𝜏a + a𝛽b = y

.b (4.22)

Notice that the second through the (a + 1)st equations in Equation 4.22 sum to the first normal equation, as do
the last b equations. Thus, there are two linear dependencies in the normal equations, implying that two constraints
must be imposed to solve Equation 4.22. The usual constraints are

a∑
i=1

𝜏i = 0
b∑
j=1

𝛽j = 0 (4.23)
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Using these constraints helps simplify the normal equations considerably. In fact, they become

ab �̂� = y
..

b �̂� + b𝜏i = yi. i = 1, 2, . . . , a
a �̂� + a𝛽j = y

.j j = 1, 2, . . . , b
(4.24)

whose solution is

�̂� = y
..

𝜏i = yi. − y
..

i = 1, 2, . . . , a

𝛽j = y
.j − y

..
j = 1, 2, . . . , b (4.25)

Using the solution to the normal equation in Equation 4.25, we may find the estimated or fitted values of yij as

ŷij = �̂� + 𝜏i + 𝛽j

= y
..
+ (yi. − y

..
) + (y

.j − y
..
)

= yi. + y
.j − y

..

This result was used previously in Equation 4.13 for computing the residuals from a randomized block design.
The general regression significance test can be used to develop the analysis of variance for the randomized

complete block design. Using the solution to the normal equations given by Equation 4.25, the reduction in the sum
of squares for fitting the full model is

R(𝜇, 𝜏, 𝛽) = �̂�y
..
+

a∑
i=1

𝜏iyi. +
b∑
j=1

𝛽jy.j

= y
..
y
..
+

a∑
i=1

(yi. − y
..
)yi. +

b∑
j=1

(y
.j − y

..
)y

.j

=
y2
..

ab
+

a∑
i=1

yi.yi. −
y2
..

ab
+

b∑
j=1

y
.jy.j −

y2
..

ab

=
a∑
i=1

y2i.
b

+
b∑
j=1

y2
.j

a
−

y2
..

ab

with a + b − 1 degrees of freedom, and the error sum of squares is

SSE =
a∑
i=1

b∑
j=1

y2ij − R(𝜇, 𝜏, 𝛽)

=
a∑
i=1

b∑
j=1

y2ij −
a∑
i=1

y2i.
b

−
b∑
j=1

y2
.j

a
+

y2
..

ab

=
a∑
i=1

b∑
j=1

(yij − yi. − y
.j + y

..
)2

with (a − 1)(b − 1) degrees of freedom. Compare this last equation with SSE in Equation 4.7.
To test the hypothesis H0∶𝜏i = 0, the reduced model is

yij = 𝜇 + 𝛽j + ∈ij
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which is just a single-factor analysis of variance. By analogy with Equation 3.5, the reduction in the sum of squares
for fitting the reduced model is

R(𝜇, 𝛽) =
b∑
j=1

y2
.j

a

which has b degrees of freedom. Therefore, the sum of squares due to {𝜏i} after fitting 𝜇 and {𝛽j} is

R(𝜏|𝜇, 𝛽) = R(𝜇, 𝜏, 𝛽) − R(𝜇, 𝛽)

= R(full model) − R(reduced model)

=
a∑
i=1

y2i.
b

+
b∑
j=1

y2
.j

a
−

y2
..

ab
−

b∑
j=1

y2
.j

a

=
a∑
i=1

y2i.
b

−
y2
..

ab

which we recognize as the treatment sum of squares with a − 1 degrees of freedom (Equation 4.10).
The block sum of squares is obtained by fitting the reduced model

yij = 𝜇 + 𝜏i + 𝜖ij

which is also a single-factor analysis. Again, by analogy with Equation 3.5, the reduction in the sum of squares for
fitting this model is

R(𝜇, 𝜏) =
a∑
i=1

y2i.
b

with a degrees of freedom. The sum of squares for blocks {𝛽j} after fitting 𝜇 and {𝜏i} is

R(𝛽|𝜇, 𝜏) = R(𝜇, 𝜏, 𝛽) − R(𝜇, 𝜏)

=
a∑
i=1

y2i.
b

+
b∑
j=1

y2
.j

a
−

y2
..

ab
−

a∑
i=1

y2i.
b

=
b∑
j=1

y2
.j

a
−

y2
..

ab

with b − 1 degrees of freedom, which we have given previously as Equation 4.11.
We have developed the sums of squares for treatments, blocks, and error in the randomized complete block

design using the general regression significance test. Although we would not ordinarily use the general regression
significance test to actually analyze data in a randomized complete block, the procedure occasionally proves useful in
more general randomized block designs, such as those discussed in Section 4.4.

Exact Analysis of the Missing Value Problem. In Section 4.1.3 an approximate procedure for dealing
with missing observations in the RCBD was presented. This approximate analysis consists of estimating the missing
value so that the error mean square is minimized. It can be shown that the approximate analysis produces a biased mean
square for treatments in the sense that E(MSTreatments) is larger than E(MSE) if the null hypothesis is true. Consequently,
too many significant results are reported.

The missing value problem may be analyzed exactly by using the general regression significance test. The
missing value causes the design to be unbalanced, and because all the treatments do not occur in all blocks,



�

� �

�

4.2 The Latin Square Design 153

◾ TABLE 4 . 9
Latin Square Design for the Rocket Propellant Problem

OperatorsBatches of
Raw Material 1 2 3 4 5

1 A = 24 B = 20 C = 19 D = 24 E = 24

2 B = 17 C = 24 D = 30 E = 27 A = 36

3 C = 18 D = 38 E = 26 A = 27 B = 21

4 D = 26 E = 31 A = 26 B = 23 C = 22

5 E = 22 A = 30 B = 20 C = 29 D = 31

we say that the treatments and blocks are not orthogonal. This method of analysis is also used in more general
types of randomized block designs; it is discussed further in Section 4.4. Many computer packages will perform
this analysis.

4.2 The Latin Square Design

In Section 4.1 we introduced the randomized complete block design as a design to reduce the residual error in an
experiment by removing variability due to a known and controllable nuisance variable. There are several other types
of designs that utilize the blocking principle. For example, suppose that an experimenter is studying the effects of five
different formulations of a rocket propellant used in aircrew escape systems on the observed burning rate. Each formu-
lation is mixed from a batch of raw material that is only large enough for five formulations to be tested. Furthermore,
the formulations are prepared by several operators, and there may be substantial differences in the skills and experience
of the operators. Thus, it would seem that there are two nuisance factors to be “averaged out” in the design: batches
of raw material and operators. The appropriate design for this problem consists of testing each formulation exactly
once in each batch of raw material and for each formulation to be prepared exactly once by each of five operators.
The resulting design, shown in Table 4.9, is called a Latin square design. Notice that the design is a square arrange-
ment and that the five formulations (or treatments) are denoted by the Latin letters A, B, C, D, and E; hence the name
Latin square. We see that both batches of raw material (rows) and operators (columns) are orthogonal to treatments.

The Latin square design is used to eliminate two nuisance sources of variability; that is, it systematically allows
blocking in two directions. Thus, the rows and columns actually represent two restrictions on randomization. In
general, a Latin square for p factors, or a p × p Latin square, is a square containing p rows and p columns. Each of the
resulting p2 cells contains one of the p letters that corresponds to the treatments, and each letter occurs once and only
once in each row and column. Some examples of Latin squares are

𝟒× 𝟒 𝟓×𝟓 𝟔×𝟔
A B D C A D B E C A D C E B F

B C A D D A C B E B A E C F D

C D B A C B E D A C E D F A B

D A C B B E A C D D C F B E A

E C D A B F B A D C E

E F B A D C
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Latin squares are closely related to a popular puzzle called a sudoku puzzle that originated in Japan (sudoku
means “single number” in Japanese). The puzzle typically consists of a 9 × 9 grid, with nine additional 3 × 3 blocks
contained within. A few of the squares contain numbers and the others are blank. The goal is to fill the blanks with the
integers from 1 to 9 so that each row, each column, and each of the nine 3 × 3 blocks making up the grid contains just
one of each of the nine integers. The additional constraint that a standard 9 × 9 sudoku puzzle have 3 × 3 blocks that
also contain each of the nine integers reduces the large number of possible 9 × 9 Latin squares to a smaller but still
quite large number, approximately 6 × 1021.

Depending on the number of clues and the size of the grid, sudoku puzzles can be extremely difficult to solve.
Solving an n × n sudoku puzzle belongs to a class of computational problems called NP-complete (the NP refers to
nonpolynomial computing time). An NP-complete problem is one for which it’s relatively easy to check whether a
particular answer is correct but may require an impossibly long time to solve by any simple algorithm as n gets larger.

Solving a sudoku puzzle is also equivalent to “coloring” a graph—an array of points (vertices) and lines (edges)
in a particular way. In this case, the graph has 81 vertices, one for each cell of the grid. Depending on the puzzle, only
certain pairs of vertices are joined by an edge. Given that some vertices have already been assigned a “color” (chosen
from the nine number possibilities), the problem is to “color” the remaining vertices so that any two vertices joined by
an edge don’t have the same “color.”

The statistical model for a Latin square is

yijk = 𝜇 + 𝛼i + 𝜏j + 𝛽k + 𝜖ijk

⎧⎪⎨⎪⎩

i = 1, 2, . . . , p

j = 1, 2, . . . , p

k = 1, 2, . . . , p

(4.26)

where yijk is the observation in the ith row and kth column for the jth treatment, 𝜇 is the overall mean, 𝛼i is the ith row
effect, 𝜏j is the jth treatment effect, 𝛽k is the kth column effect, and 𝜖ijk is the random error. Note that this is an effects
model. The model is completely additive; that is, there is no interaction between rows, columns, and treatments.
Because there is only one observation in each cell, only two of the three subscripts i, j, and k are needed to denote
a particular observation. For example, referring to the rocket propellant problem in Table 4.8, if i = 2 and k = 3, we
automatically find j = 4 (formulation D), and if i = 1 and j = 3 (formulation C), we find k = 3. This is a consequence
of each treatment appearing exactly once in each row and column.

The analysis of variance consists of partitioning the total sum of squares of the N = p2 observations into com-
ponents for rows, columns, treatments, and error, for example,

SST = SSRows + SSColumns + SSTreatments + SSE (4.27)

with respective degrees of freedom

p2 − 1 = p − 1 + p − 1 + p − 1 + (p − 2)(p − 1)

Under the usual assumption that ∈ijk is NID (0, 𝜎2), each sum of squares on the right-hand side of Equation 4.27 is,
upon division by 𝜎2, an independently distributed chi-square random variable. The appropriate statistic for testing for
no differences in treatment means is

F0 =
MSTreatments

MSE

which is distributed as Fp−1,(p−2)(p−1) under the null hypothesis. We may also test for no row effect and no column effect
by forming the ratio ofMSRows orMSColumns toMSE. However, because the rows and columns represent restrictions on
randomization, these tests may not be appropriate.

The computational procedure for the ANOVA in terms of treatment, row, and column totals is shown in
Table 4.10. From the computational formulas for the sums of squares, we see that the analysis is a simple extension
of the RCBD, with the sum of squares resulting from rows obtained from the row totals.
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◾ TABLE 4 . 10
Analysis of Variance for the Latin Square Design

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F0

Treatments SSTreatments =
1
p

p∑
j=1

y2
.j. −

y2
..

N
p − 1

SSTreatments

p − 1
F0 =

MSTreatments

MSE

Rows SSRows =
1
p

p∑
i=1

y2i.. −
y2
...

N
p − 1

SSRows
p − 1

Columns SSColumns =
1
p

p∑
k=1

y2
..k −

y2
...

N
p − 1

SSColumns

p − 1

Error SSE (by subtraction) (p − 2)(p − 1)
SSE

(p − 2)(p − 1)

Total SST =
∑
i

∑
j

∑
k

y2ijk −
y2
...

N
p2 − 1

EXAMPLE 4 . 2

Consider the rocket propellant problem previously
described, where both batches of raw material and oper-
ators represent randomization restrictions. The design for
this experiment, shown in Table 4.8, is a 5 × 5 Latin square.
After coding by subtracting 25 from each observation, we
have the data in Table 4.11. The sums of squares for the
total, batches (rows), and operators (columns) are computed
as follows:

SST =
∑
i

∑
j

∑
k

y2ijk −
y2
...

N

= 680 − (10)2

25
= 676.00

SSBatches =
1
p

p∑
i=1

y2i.. −
y2
...

N

= 1
5

[
(−14)2 + 92 + 52 + 32 + 72

]

−(10)2

25
= 68.00

SSOperators =
1
p

p∑
k=1

y2
..k −

y2
...

N

= 1
5

[
(−18)2 + 182 + (−4)2 + 52 + 92

]

−(10)2

25
= 150.00

The totals for the treatments (Latin letters) are

Latin Letter Treatment Total

A y.1. = 18

B y.2. = −24
C y.3. = −13
D y.4. = 24

E y.5. = 5

The sum of squares resulting from the formulations is com-
puted from these totals as

SSFormulations =
1
p

p∑
j=1

y2
.j. −

y2
...

N

= 182 + (−24)2 + (−13)2 + 242 + 52

5

−(10)2

25
= 330.00

The error sum of squares is found by subtraction

SSE = SST − SSBatches − SSOperators − SSFormulations

= 676.00 − 68.00 − 150.00 − 330.00 = 128.00

The analysis of variance is summarized in Table 4.12.
We conclude that there is a significant difference in the mean
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burning rate generated by the different rocket propellant
formulations. There is also an indication that differences
between operators exist, so blocking on this factor was a
good precaution. There is no strong evidence of a difference

between batches of raw material, so it seems that in this
particular experiment we were unnecessarily concerned
about this source of variability. However, blocking on
batches of raw material is usually a good idea.

◾ TABLE 4 . 11
Coded Data for the Rocket Propellant Problem

OperatorsBatches of
Raw Material 1 2 3 4 5 yi..

1 A = −1 B = −5 C = −6 D = −1 E = −1 −14
2 B = −8 C = −1 D = 5 E = 2 A = 11 9

3 C = −7 D = 13 E = 1 A = 2 B = −4 5

4 D = 1 E = 6 A = 1 B = −2 C = −3 3

5 E = −3 A = 5 B = −5 C = 4 D = 6 7

y
..k −18 18 −4 5 9 10 = y

...

◾ TABLE 4 . 12
Analysis of Variance for the Rocket Propellant Experiment

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F𝟎 P-Value

Formulations 330.00 4 82.50 7.73 0.0025

Batches of raw material 68.00 4 17.00

Operators 150.00 4 37.50

Error 128.00 12 10.67

Total 676.00 24

As in any design problem, the experimenter should investigate the adequacy of the model by inspecting and plotting
the residuals. For a Latin square, the residuals are given by

eijk = yijk − ŷijk
= yijk − yi.. − y

.j. − y
..k + 2y

...

The reader should find the residuals for Example 4.2 and construct appropriate plots.
A Latin square in which the first row and column consists of the letters written in alphabetical order is called

a standard Latin square, which is the design shown in Example 4.3. A standard Latin square can always be
obtained by writing the first row in alphabetical order and then writing each successive row as the row of letters just
above shifted one place to the left. Table 4.13 summarizes several important facts about Latin squares and standard
Latin squares.

As with any experimental design, the observations in the Latin square should be taken in random order.
The proper randomization procedure is to select the particular square employed at random. As we see in Table 4.13,
there are a large number of Latin squares of a particular size, so it is impossible to enumerate all the squares and
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◾ TABLE 4 . 13
Standard Latin Squares and Number of Latin Squares of Various Sizesa

Size 3 × 3 4 × 4 5 × 5 6 × 6 7 × 7 p × p

Examples of
standard squares

A B C A B C D A B C D E A B C D E F A B C D E F G ABC . . . P

B C A B C D A B A E C D B C F A D E B C D E F G A BCD . . . A

C A B C D A B C D A E B C F B E A D C D E F G A B CDE . . . B

D A B C D E B A C D E A B F C D E F G A B C ⋮

E C D B A E A D F C B E F G A B C D

F D E C B A F G A B C D E PAB . . . (P − 1)
G A B C D E F

Number of
standard squares

1 4 56 9408 16,942,080 —

Total number of
Latin squares

12 576 161,280 818,851,200 61,479,419,904,000 p!(p − 1)!×

(number of
standard squares)

aSome of the information in this table is found in Fisher and Yates (1953). Little is known about the properties of Latin squares larger than 7 × 7.

select one randomly. The usual procedure is to select an arbitrary Latin square from a table of such designs, as in
Fisher and Yates (1953), or start with a standard square, and then arrange the order of the rows, columns, and letters
at random. This is discussed more completely in Fisher and Yates (1953).

Occasionally, one observation in a Latin square is missing. For a p × p Latin square, the missing value may be
estimated by

yijk =
p(y′i.. + y′

.j. + y′
...k) − 2y′

...

(p − 2)(p − 1)
(4.28)

where the primes indicate totals for the row, column, and treatment with the missing value, and y′
...
is the grand total

with the missing value.
Latin squares can be useful in situations where the rows and columns represent factors the experimenter actually

wishes to study and where there are no randomization restrictions. Thus, three factors (rows, columns, and letters),
each at p levels, can be investigated in only p2 runs. This design assumes that there is no interaction between the factors.
More will be said later on the subject of interaction.

Replication of Latin Squares. A disadvantage of small Latin squares is that they provide a relatively small
number of error degrees of freedom. For example, a 3 × 3 Latin square has only two error degrees of freedom, a 4 × 4
Latin square has only six error degrees of freedom, and so forth. When small Latin squares are used, it is frequently
desirable to replicate them to increase the error degrees of freedom.

A Latin square may be replicated in several ways. To illustrate, suppose that the 5 × 5 Latin square used in
Example 4.3 is replicated n times. This could have been done as follows:

1. Use the same batches and operators in each replicate.

2. Use the same batches but different operators in each replicate (or, equivalently, use the same operators but
different batches).

3. Use different batches and different operators.

The analysis of variance depends on the method of replication.
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Consider case 1, where the same levels of the row and column blocking factors are used in each replicate. Let yijkl
be the observation in row i, treatment j, column k, and replicate l. There are N = np2 total observations. The ANOVA
is summarized in Table 4.14.

Now consider case 2 and assume that new batches of raw material but the same operators are used in each
replicate. Thus, there are now five new rows (in general, p new rows) within each replicate. The ANOVA is summarized
in Table 4.15. Note that the source of variation for the rows really measures the variation between rows within the
n replicates.

◾ TABLE 4 . 14
Analysis of Variance for a Replicated Latin Square, Case 1

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F𝟎

Treatments
1
np

p∑
j=1

y2
.j.. −

y2
....

N
p − 1

SSTreatments

p − 1

MSTreatments

MSE

Rows
1
np

p∑
i=1

y2i... −
y2
....

N
p − 1

SSRows
p − 1

Columns
1
np

p∑
k=1

y2
..k. −

y2
....

N
p − 1

SSColumns

p − 1

Replicates
1
p2

n∑
l=1

y2
...l −

y2
....

N
n − 1

SSReplicates
n − 1

Error Subtraction (p − 1)[n(p + 1) − 3]
SSE

(p − 1)[n(p + 1) − 3]
Total

∑∑∑∑
y2ijkl −

y2
....

N
np2 − 1

◾ TABLE 4 . 15
Analysis of Variance for a Replicated Latin Square, Case 2

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F𝟎

Treatments
1
np

p∑
j=1

y2
.j.. −

y2
....

N
p − 1

SSTreatments

p − 1

MSTreatments

MSE

Rows
1
p

n∑
l=1

p∑
i=1

y2i..l −
n∑
l=1

y2
...l

p2
n(p − 1)

SSRows
n(p − 1)

Columns
1
np

p∑
k=1

y2
..k. −

y2
....

N
p − 1 SSColumns

p−1

Replicates
1
p2

n∑
l=1

y2
...l −

y2
....

N
n − 1

SSReplicates
n − 1

Error Subtraction (p − 1)(np − 1)
SSE

(p − 1)(np − 1)

Total
∑
i

∑
j

∑
k

∑
l

y2ijkl −
y2
....

N
np2 − 1
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◾ TABLE 4 . 16
Analysis of Variance for a Replicated Latin Square, Case 3

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F𝟎

Treatments
1
np

p∑
j=1

y2
.j.. −

y2
....

N
p − 1

SSTreatments

p − 1

MSTreatments

MSE

Rows
1
p

n∑
l=1

p∑
i=1

y2i..l −
n∑
l=1

y2
...l

p2
n(p − 1)

SSRows
n(p − 1)

Columns
1
p

n∑
l=1

p∑
k=1

y2
..kl −

n∑
l=1

y2
...l

p2
n(p − 1)

SSColumns

n(p − 1)

Replicates 1

p2

n∑
l=1

y2
...l −

y2
....

N
n − 1

SSReplicates
n − 1

Error Subtraction (p − 1)[n(p − 1) − 1]
SSE

(p − 1)[n(p − 1) − 1]

Total
∑
i

∑
j

∑
k

∑
l

y2ijkl −
y2
....

N
np2 − 1

Finally, consider case 3, where new batches of raw material and new operators are used in each replicate. Now
the variation that results from both the rows and columns measures the variation resulting from these factors within
the replicates. The ANOVA is summarized in Table 4.16.

There are other approaches to analyzing replicated Latin squares that allow some interactions between treatments
and squares (refer to Problem 4.35).

Crossover Designs and Designs Balanced for Residual Effects. Occasionally, one encounters a problem
in which time periods are a factor in the experiment. In general, there are p treatments to be tested in p time periods
using np experimental units. For example, a human performance analyst is studying the effect of two replacement
fluids on dehydration in 20 subjects. In the first period, half of the subjects (chosen at random) are given fluid A and
the other half fluid B. At the end of the period, the response is measured and a period of time is allowed to pass in
which any physiological effect of the fluids is eliminated. Then the experimenter has the subjects who took fluid A
take fluid B and those who took fluid B take fluid A. This design is called a crossover design. It is analyzed as a set
of 10 Latin squares with two rows (time periods) and two treatments (fluid types). The two columns in each of the 10
squares correspond to subjects.

The layout of this design is shown in Figure 4.7. Notice that the rows in the Latin square represent the time
periods and the columns represent the subjects. The 10 subjects who received fluid A first (1, 4, 6, 7, 9, 12, 13, 15, 17,
and 19) are randomly determined.

An abbreviated analysis of variance is summarized in Table 4.17. The subject sum of squares is computed as
the corrected sum of squares among the 20 subject totals, the period sum of squares is the corrected sum of squares

◾ F I GURE 4 . 7 A crossover design
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◾ TABLE 4 . 17
Analysis of Variance for the Crossover Design in Figure 4.7

Source of Variation Degrees of Freedom

Subjects (columns) 19

Periods (rows) 1

Fluids (letters) 1

Error 18

Total 39

among the rows, and the fluid sum of squares is computed as the corrected sum of squares among the letter totals. For
further details of the statistical analysis of these designs, see Cochran and Cox (1957), John (1971), and Anderson and
McLean (1974).

It is also possible to employ Latin square type designs for experiments in which the treatments have a residual
effect—that is, for example, if the data for fluid B in period 2 still reflected some effect of fluid A taken in period 1.
Designs balanced for residual effects are discussed in detail by Cochran and Cox (1957) and John (1971).

4.3 The Graeco-Latin Square Design

Consider a p × p Latin square, and superimpose on it a second p × p Latin square in which the treatments are denoted
by Greek letters. If the two squares when superimposed have the property that each Greek letter appears once and
only once with each Latin letter, the two Latin squares are said to be orthogonal, and the design obtained is called a
Graeco-Latin square. An example of a 4 × 4 Graeco-Latin square is shown in Table 4.18.

The Graeco-Latin square design can be used to control systematically three sources of extraneous variability,
that is, to block in three directions. The design allows investigation of four factors (rows, columns, Latin letters, and
Greek letters), each at p levels in only p2 runs. Graeco-Latin squares exist for all p ≥ 3 except p = 6.

The statistical model for the Graeco-Latin square design is

yijkl = 𝜇 + 𝜃i + 𝜏j + 𝜔k + Ψl + 𝜖ijkl

⎧⎪⎨⎪⎩

i = 1, 2, . . . , p
j = 1, 2, . . . , p
k = 1, 2, . . . , p
l = 1, 2, . . . , p

(4.29)

where yijkl is the observation in row i and column l for Latin letter j and Greek letter k, 𝜃i is the effect of the ith row,
𝜏j is the effect of Latin letter treatment j, 𝜔k is the effect of Greek letter treatment k, Ψl is the effect of column l, and
𝜖ijkl is an NID(0, 𝜎2) random error component. Only two of the four subscripts are necessary to completely identify an
observation.

◾ TABLE 4 . 18
4 × 4 Graeco-Latin Square Design

Column

Row 1 2 3 4

1 A𝛼 B𝛽 C𝛾 D𝛿

2 B𝛿 A𝛾 D𝛽 C𝛼

3 C𝛽 D𝛼 A𝛿 B𝛾

4 D𝛾 C𝛿 B𝛼 A𝛽
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◾ TABLE 4 . 19
Analysis of Variance for a Graeco-Latin Square Design

Source of Variation Sum of Squares Degrees of Freedom

Latin letter treatments SSL =
1

p

p∑
j=1

y2
.j.. −

y2
....

N
p − 1

Greek letter treatments SSG = 1

p

p∑
k=1

y2
..k. −

y2
....

N
p − 1

Rows SSRows =
1

p

p∑
i=1

y2i... −
y2
....

N
p − 1

Columns SSColumns =
1

p

p∑
l=1

y2
...l −

y2
....

N
p − 1

Error SSE (by subtraction) (p − 3)(p − 1)

Total SST =
∑
i

∑
j

∑
k

∑
l

y2ijkl −
y2
....

N
p2 − 1

The analysis of variance is very similar to that of a Latin square. Because the Greek letters appear exactly
once in each row and column and exactly once with each Latin letter, the factor represented by the Greek letters is
orthogonal to rows, columns, and Latin letter treatments. Therefore, a sum of squares due to the Greek letter factor
may be computed from the Greek letter totals, and the experimental error is further reduced by this amount. The
computational details are illustrated in Table 4.19. The null hypotheses of equal row, column, Latin letter, and Greek
letter treatments would be tested by dividing the corresponding mean square by mean square error. The rejection
region is the upper tail point of the Fp−1,(p−3)(p−1) distribution.

EXAMPLE 4 . 3

Suppose that in the rocket propellant experiment of Example
4.2 an additional factor, test assemblies, could be of impor-
tance. Let there be five test assemblies denoted by the Greek
letters 𝛼, 𝛽, 𝛾, 𝛿, and 𝜖. The resulting 5 × 5 Graeco-Latin
square design is shown in Table 4.20.

Notice that because the totals for batches of raw material
(rows), operators (columns), and formulations (Latin letters)
are identical to those in Example 4.2, we have

SSBatches = 68.00, SSOperators = 150.00,
and SSFormulations = 330.00

The totals for the test assemblies (Greek letters) are

Greek Letter Test Assembly Total

𝛼 y..1. = 10

𝛽 y..2. = −6
𝛾 y..3. = −3
𝛿 y..4. = −4
𝜖 y..5. = 13

Thus, the sum of squares due to the test assemblies is

SSAssemblies =
1
p

p∑
k=1

y2
..k. −

y2. . . .
N

= 1
5
[102 + (−6)2 + (−3)2

+(−4)2 + 132] − (10)2

25
= 62.00

The complete ANOVA is summarized in Table 4.21.
Formulations are significantly different at 1 percent. In
comparing Tables 4.21 and 4.12, we observe that remov-
ing the variability due to test assemblies has decreased the
experimental error. However, in decreasing the experimen-
tal error, we have also reduced the error degrees of freedom
from 12 (in the Latin square design of Example 4.2) to 8.
Thus, our estimate of error has fewer degrees of freedom,
and the test may be less sensitive.
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◾ TABLE 4 . 20
Graeco-Latin Square Design for the Rocket Propellant Problem

OperatorsBatches of
Raw Material 1 2 3 4 5 yi...

1 A𝛼 = −1 B𝛾 = −5 C𝜖 = −6 D𝛽 = −1 E𝛿 = −1 −14
2 B𝛽 = −8 C𝛿 = −1 D𝛼 = 5 E𝛾 = 2 A𝜖 = 11 9

3 C𝛾 = −7 D𝜖 = 13 E𝛽 = 1 A𝛿 = 2 B𝛼 = −4 5

4 D𝛿 = 1 E𝛼 = 6 A𝛾 = 1 B𝜖 = −2 C𝛽 = −3 3

5 E𝜖 = −3 A𝛽 = 5 B𝛿 = −5 C𝛼 = 4 D𝛾 = 6 7

y
...l −18 18 −4 5 9 10 = y

...

◾ TABLE 4 . 21
Analysis of Variance for the Rocket Propellant Problem

Source of Variation
Sum of
Squares

Degrees of
Freedom

Mean
Square F𝟎 P-Value

Formulations 330.00 4 82.50 10.00 0.0033

Batches of raw material 68.00 4 17.00

Operators 150.00 4 37.50

Test assemblies 62.00 4 15.50

Error 66.00 8 8.25

Total 676.00 24

The concept of orthogonal pairs of Latin squares forming a Graeco-Latin square can be extended somewhat.
A p × p hypersquare is a design in which three or more orthogonal p × p Latin squares are superimposed. In general,
up to p + 1 factors could be studied if a complete set of p − 1 orthogonal Latin squares is available. Such a design
would utilize all (p + 1) (p − 1) = p2 − 1 degrees of freedom, so an independent estimate of the error variance is
necessary. Of course, there must be no interactions between the factors when using hypersquares.

4.4 Balanced Incomplete Block Designs

In certain experiments using randomized block designs, we may not be able to run all the treatment combinations in
each block. Situations like this usually occur because of shortages of experimental apparatus or facilities or the physical
size of the block. For example, in the vascular graft experiment (Example 4.1), suppose that each batch of material is
only large enough to accommodate testing three extrusion pressures. Therefore, each pressure cannot be tested in each
batch. For this type of problem it is possible to use randomized block designs in which every treatment is not present
in every block. These designs are known as randomized incomplete block designs.

When all treatment comparisons are equally important, the treatment combinations used in each block should
be selected in a balanced manner, so that any pair of treatments occur together the same number of times as any other
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pair. Thus, a balanced incomplete block design (BIBD) is an incomplete block design in which any two treatments
appear together an equal number of times. Suppose that there are a treatments and that each block can hold exactly
k (k < a) treatments. A balanced incomplete block design may be constructed by taking

(
a
k

)
blocks and assigning a

different combination of treatments to each block. Frequently, however, balance can be obtained with fewer than
(
a
k

)
blocks. Tables of BIBDs are given in Fisher and Yates (1953), Davies (1956), and Cochran and Cox (1957).

As an example, suppose that a chemical engineer thinks that the time of reaction for a chemical process is a
function of the type of catalyst employed. Four catalysts are currently being investigated. The experimental procedure
consists of selecting a batch of raw material, loading the pilot plant, applying each catalyst in a separate run of the pilot
plant, and observing the reaction time. Because variations in the batches of raw material may affect the performance of
the catalysts, the engineer decides to use batches of raw material as blocks. However, each batch is only large enough
to permit three catalysts to be run. Therefore, a randomized incomplete block design must be used. The balanced
incomplete block design for this experiment, along with the observations recorded, is shown in Table 4.22. The order
in which the catalysts are run in each block is randomized.

4.4.1 Statistical Analysis of the BIBD

As usual, we assume that there are a treatments and b blocks. In addition, we assume that each block contains k
treatments, that each treatment occurs r times in the design (or is replicated r times), and that there are N = ar = bk
total observations. Furthermore, the number of times each pair of treatments appears in the same block is

λ = r(k − 1)
a − 1

If a = b, the design is said to be symmetric.
The parameter λ must be an integer. To derive the relationship for λ, consider any treatment, say treatment 1.

Because treatment 1 appears in r blocks and there are k − 1 other treatments in each of those blocks, there are r(k − 1)
observations in a block containing treatment 1. These r(k − 1) observations also have to represent the remaining a − 1
treatments λ times. Therefore, λ(a − 1) = r(k − 1).

The statistical model for the BIBD is

yij = 𝜇 + 𝜏i + 𝛽j + 𝜖ij (4.30)

where yij is the ith observation in the jth block, 𝜇 is the overall mean, 𝜏i is the effect of the ith treatment, 𝛽j is the effect
of the jth block, and 𝜖ij is the NID(0, 𝜎2) random error component. The total variability in the data is expressed by the
total corrected sum of squares:

SST =
∑
i

∑
j

y2ij −
y2
..

N
(4.31)

◾ TABLE 4 . 22
Balanced Incomplete Block Design for Catalyst Experiment

Block (Batch of Raw Material)Treatment
(Catalyst) 1 2 3 4 yi.

1 73 74 — 71 218

2 — 75 67 72 214

3 73 75 68 — 216

4 75 — 72 75 222

y
.j 221 224 207 218 870 = yi.
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Total variability may be partitioned into

SST = SSTreatments(adjusted) + SSBlocks + SSE

where the sum of squares for treatments is adjusted to separate the treatment and the block effects. This adjustment
is necessary because each treatment is represented in a different set of r blocks. Thus, differences between unadjusted
treatment totals y1., y2., . . . , ya. are also affected by differences between blocks.

The block sum of squares is

SSBlocks =
1
k

b∑
j=1

y2
.j −

y2
..

N
(4.32)

where y
.j is the total in the jth block. SSBlocks has b − 1 degrees of freedom. The adjusted treatment sum of squares is

SSTreatments(adjusted) =

k
a∑
i=1

Q2
i

λa
(4.33)

where Qi is the adjusted total for the ith treatment, which is computed as

Qi = yi. −
1
k

b∑
j=1

nijy.j i = 1, 2, . . . , a (4.34)

with nij = 1 if treatment i appears in block j and nij = 0 otherwise. The adjusted treatment totals will always sum to
zero. SSTreatments(adjusted) has a − 1 degrees of freedom. The error sum of squares is computed by subtraction as

SSE = SST − SSTreatments(adjusted) − SSBlocks (4.35)

and has N − a − b + 1 degrees of freedom.
The appropriate statistic for testing the equality of the treatment effects is

F0 =
MSTreatments(adjusted)

MSE

The ANOVA is summarized in Table 4.23.

◾ TABLE 4 . 23
Analysis of Variance for the Balanced Incomplete Block Design

Source of
Variation Sum of Squares

Degrees of
Freedom Mean Square F𝟎

Treatments (adjusted)
k
∑

Q2
i

𝜆a
a − 1

SSTreatments(adjusted)

a − 1
F0 =

MSTreatments(adjusted)

MSE

Blocks
1
k

∑
y2
.j −

y2
..

N
b − 1

SSBlocks
b − 1

Error SSE (by subtraction) N − a − b + 1
SSE

N − a − b + 1

Total
∑∑

y2ij −
y2
..

N
N − 1
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EXAMPLE 4 . 4

Consider the data in Table 4.22 for the catalyst experiment.
This is a BIBD with a = 4, b = 4, k = 3, r = 3, 𝜆 = 2, and
N = 12. The analysis of this data is as follows. The total sum
of squares is

SST =
∑
i

∑
j

y2ij −
y2
..

12

= 63,156 − (870)2

12
= 81.00

The block sum of squares is found from Equation 4.32 as

SSBlocks =
1
3

4∑
j=1

y2
.j −

y2
..

12

= 1
3
[(221)2 + (207)2 + (224)2 + (218)2] − (870)2

12
= 55.00

To compute the treatment sum of squares adjusted for
blocks, we first determine the adjusted treatment totals using
Equation 4.34 as

Q1 = (218) − 1

3
(221 + 224 + 218) = −9∕3

Q2 = (214) − 1

3
(207 + 224 + 218) = −7∕3

Q3 = (216) − 1

3
(221 + 207 + 224) = −4∕3

Q4 = (222) − 1

3
(221 + 207 + 218) = 20∕3

The adjusted sum of squares for treatments is computed
from Equation 4.33 as

SSTreatments(adjusted) =
k

4∑
i=1

Q2
i

𝜆a

=
3[(−9∕3)2 + (−7∕3)2 + (−4∕3)2 + (20∕3)2]

(2)(4)
= 22.75

The error sum of squares is obtained by subtraction as

SSE = SST − SSTreatments(adjusted) − SSBlocks
= 81.00 − 22.75 − 55.00 = 3.25

The analysis of variance is shown in Table 4.24. Because the
P-value is small, we conclude that the catalyst employed has
a significant effect on the time of reaction.

◾ TABLE 4 . 24
Analysis of Variance for Example 4.4

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F𝟎 P-Value

Treatments (adjusted for blocks) 22.75 3 7.58 11.66 0.0107

Blocks 55.00 3 —

Error 3.25 5 0.65

Total 81.00 11

If the factor under study is fixed, tests on individual treatment means may be of interest. If orthogonal contrasts are
employed, the contrasts must be made on the adjusted treatment totals, the {Qi} rather than the {yi.}. The contrast
sum of squares is

SSc =

k

(
a∑
i=1

ciQi

)2

𝜆a
a∑
i=1

c2i
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where {ci} are the contrast coefficients. Other multiple comparison methods may be used to compare all the pairs of
adjusted treatment effects, which we will find in Section 4.4.2 are estimated by 𝜏i = kQi∕(𝜆a). The standard error of
an adjusted treatment effect is

s =
√

kMSE
𝜆a

(4.36)

In the analysis that we have described, the total sum of squares has been partitioned into an adjusted sum of
squares for treatments, an unadjusted sum of squares for blocks, and an error sum of squares. Sometimes we would
like to assess the block effects. To do this, we require an alternate partitioning of SST , that is,

SST = SSTreatments + SSBlocks(adjusted) + SSE

Here SSTreatments is unadjusted. If the design is symmetric, that is, if a = b, a simple formula may be obtained for
SSBlocks(adjusted). The adjusted block totals are

Q′
j = y

.j −
1
4

a∑
i=1

nijyi. j = 1, 2, . . . , b (4.37)

and

SSBlocks(adjusted) =

r
b∑
j=1

(Q′
j)
2

𝜆b
(4.38)

The BIBD in Example 4.4 is symmetric because a = b = 4. Therefore,

Q′
1 = (221) − 1

3
(218 + 216 + 222) = 7∕3

Q′
2 = (224) − 1

3
(218 + 214 + 216) = 24∕3

Q′
3 = (207) − 1

3
(214 + 216 + 222) = −31∕3

Q′
4 = (218) − 1

3
(218 + 214 + 222) = 0

and

SSBlocks(adjusted) =
3[(7∕3)2 + (24∕3)2 + (−31∕3)2 + (0)2]

(2)(4)
= 66.08

Also,

SSTreatments =
(218)2 + (214)2 + (216)2 + (222)2

3
− (870)2

12
= 11.67

A summary of the analysis of variance for the symmetric BIBD is given in Table 4.25. Notice that the sums of
squares associated with the mean squares in Table 4.25 do not add to the total sum of squares, that is,

SST ≠ SSTreatments(adjusted) + SSBlocks(adjusted) + SSE

This is a consequence of the nonorthogonality of treatments and blocks.

Computer Output. There are several computer packages that will perform the analysis for a balanced incom-
plete block design. The SAS General Linear Models procedure is one of these and Minitab and JMP are others. The
upper portion of Table 4.26 is the Minitab General Linear Model output for Example 4.4. Comparing Tables 4.26 and
4.25, we see that Minitab has computed the adjusted treatment sum of squares and the adjusted block sum of squares
(they are called “Adj SS” in the Minitab output).

The lower portion of Table 4.26 is a multiple comparison analysis, using the Tukey method. Confidence intervals
on the differences in all pairs of means and the Tukey test are displayed. Notice that the Tukey method would lead us
to conclude that catalyst 4 is different from the other three.
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◾ TABLE 4 . 25
Analysis of Variance for Example 4.4, Including Both Treatments and Blocks

Source of Variation
Sum of
Squares

Degrees of
Freedom

Mean
Square F𝟎 P-Value

Treatments (adjusted) 22.75 3 7.58 11.66 0.0107

Treatments (unadjusted) 11.67 3

Blocks (unadjusted) 55.00 3

Blocks (adjusted) 66.08 3 22.03 33.90 0.0010

Error 3.25 5 0.65

Total 81.00 11

4.4.2 Least Squares Estimation of the Parameters

Consider estimating the treatment effects for the BIBD model. The least squares normal equations are

𝜇∶N�̂� + r
a∑
i=1

𝜏i + k
b∑
j=1

𝛽j = y
..

𝜏i∶r�̂� + r𝜏i +
b∑
j=1

nij𝛽j = yi. i = 1, 2, . . . , a

𝛽j∶k�̂� +
a∑
i=1

nij𝜏i + k𝛽j = y
.j j = 1, 2, . . . , b

(4.39)

Imposing
∑

𝜏i =
∑

𝛽j = 0, we find that �̂� = y
..
. Furthermore, using the equations for {𝛽j} to eliminate the block effects

from the equations for {𝜏i}, we obtain

rk𝜏i − r𝜏i −
b∑
j=1

a∑
p=1
p≠1

nijnpj𝜏p = kyi. −
b∑
j=1

nijy.j (4.40)

Note that the right-hand side of Equation 4.41 is kQi, where Qi is the ith adjusted treatment total (see Equation 4.34).
Now, because

∑b
J=1 nijnpj = 𝜆 if p ≠ i and n2pj = npj (because npj = 0 or 1), we may rewrite Equation 4.40 as

r(k − 1)𝜏i − 𝜆

a∑
p=1
p≠1

𝜏p = kQi i = 1, 2, . . . , a (4.41)

Finally, note that the constraint
∑a

i=1 𝜏i = 0 implies that
∑a

p=1
p≠1

𝜏p = −𝜏i and recall that r(k − 1) = 𝜆(a − 1) to obtain

𝜆a𝜏i = kQi i = 1, 2, . . . , a (4.42)

Therefore, the least squares estimators of the treatment effects in the balanced incomplete block model are

𝜏i =
kQi

𝜆a
i = 1, 2, . . . , a (4.43)
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◾ TABLE 4 . 26
Minitab (General Linear Model) Analysis for Example 4.4

General Linear Model

Factor Type Levels Values
Catalyst fixed 4 1 2 3 4
Block fixed 4 1 2 3 4

Analysis of Variance for Time, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F P
Catalyst 3 11.667 22.750 7.583 11.67 0.011
Block 3 66.083 66.083 22.028 33.89 0.001
Error 5 3.250 3.250 0.650
Total 11 81.000

Tukey 95.0% Simultaneous Confidence Intervals
Response Variable Time
All Pairwise Comparisons among Levels of Catalyst

Catalyst = 1 subtracted from:

Catalyst Lower Center Upper ---------+--------+--------+------
2 -2.327 0.2500 2.827 (--------*--------)
3 -1.952 0.6250 3.202 (--------*--------)
4 1.048 3.6250 6.202 (--------*--------)

----------+--------+--------+----–
0.0 2.5 5.0

Catalyst = 2 subtracted from:
Catalyst Lower Center Upper ---------+--------+--------+------
3 -2.202 0.3750 2.952 (--------*--------)
4 0.798 3.3750 5.952 (--------*--------)

----------+--------+--------+----–
0.0 2.5 5.0

Catalyst = 3 subtracted from:
Catalyst Lower Center Upper ---------+--------+--------+------
4 0.4228 3.000 5.577 (--------*--------)

----------+--------+--------+----–
0.0 2.5 5.0

Tukey Simultaneous Tests
Response Variable Time
All Pairwise Comparisons among Levels of Catalyst

Catalyst = 1 subtracted from:

Level Difference SE of Adjusted
Catalyst of Means Difference T-Value P-Value
2 0.2500 0.6982 0.3581 0.9825
3 0.6250 0.6982 0.8951 0.8085
4 3.6250 0.6982 5.1918 0.0130

Catalyst = 2 subtracted from:

Level Difference SE of Adjusted
Catalyst of Means Difference T-Value P-Value
3 0.3750 0.6982 0.5371 0.9462
4 3.3750 0.6982 4.8338 0.0175

Catalyst = 3 subtracted from:

Level Difference SE of Adjusted
Catalyst of Means Difference T-Value P-Value
4 3.000 0.6982 4.297 0.0281
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As an illustration, consider the BIBD in Example 4.4. Because Q1 = −9∕3,Q2 = −7∕3,Q3 = −4∕3, and
Q4 = 20∕3, we obtain

𝜏1 =
3(−9∕3)
(2)(4)

= −9∕8 𝜏2 =
3(−7∕3)
(2)(4)

= −7∕8

𝜏3 =
3(−4∕3)
(2)(4)

= −4∕8 𝜏4 =
3(20∕3)
(2)(4)

= 20∕8

as we found in Section 4.4.1.

4.4.3 Recovery of Interblock Information in the BIBD

The analysis of the BIBD given in Section 4.4.1 is usually called the intrablock analysis because block differences
are eliminated and all contrasts in the treatment effects can be expressed as comparisons between observations in the
same block. This analysis is appropriate regardless of whether the blocks are fixed or random. Yates (1940) noted
that, if the block effects are uncorrelated random variables with zero means and variance 𝜎

2
𝛽
, one may obtain addi-

tional information about the treatment effects 𝜏i. Yates called the method of obtaining this additional information the
interblock analysis.

Consider the block totals y
.j as a collection of b observations. The model for these observations [following John

(1971)] is

y
.j = k𝜇 +

a∑
i=1

nij𝜏i +

(
k𝛽j +

a∑
i=1

𝜖ij

)
(4.44)

where the term in parentheses may be regarded as error. The interblock estimators of 𝜇 and 𝜏i are found by minimizing
the least squares function

L =
b∑
j=1

(
y
.j − k𝜇 −

a∑
i=1

nij𝜏i

)2

This yields the following least squares normal equations:

𝜇∶N�̃� + r
a∑
i=1

𝜏i = y
..

𝜏i∶kr�̃� + r𝜏i + 𝜆

a∑
p=1
p≠1

𝜏p =
b∑
j=1

nijy.j i = 1, 2, . . . , a
(4.45)

where �̃� and 𝜏i denote the interblock estimators. Imposing the constraint
a∑
i=1

𝜏i = 0, we obtain the solutions to

Equations 4.45 as
�̃� = y

..
(4.46)

𝜏i =

b∑
j=1

nijy.j − kry
..

r − 𝜆
i = 1, 2, . . . , a (4.47)

It is possible to show that the interblock estimators {𝜏i} and the intrablock estimators {𝜏i} are uncorrelated.
The interblock estimators {𝜏i} can differ from the intrablock estimators {𝜏i}. For example, the interblock esti-

mators for the BIBD in Example 4.4 are computed as follows:

𝜏1 =
663 − (3)(3)(72.50)

3 − 2
= 10.50

𝜏2 =
649 − (3)(3)(72.50)

3 − 2
= −3.50

𝜏3 =
652 − (3)(3)(72.50)

3 − 2
= −0.50

𝜏4 =
646 − (3)(3)(72.50)

3 − 2
= −6.50
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Note that the values of
b∑
j=1

nijy.j were used previously on page 164 in computing the adjusted treatment totals in the

intrablock analysis.
Now suppose we wish to combine the interblock and intrablock estimators to obtain a single, unbiased, minimum

variance estimate of each 𝜏i. It is possible to show that both 𝜏i and 𝜏i are unbiased and also that

V(𝜏i) =
k(a − 1)
𝜆a2

𝜎
2 (intrablock)

and

V(𝜏i) =
k(a − 1)
a(r − 𝜆)

(𝜎2 + k𝜎2
𝛽
) (intrablock)

We use a linear combination of the two estimators, say

𝜏
∗
i = 𝛼1𝜏i + 𝛼2𝜏i (4.48)

to estimate 𝜏i. For this estimation method, the minimum variance unbiased combined estimator 𝜏
∗
i should have

weights 𝛼1 = u1∕(u1 + u2) and 𝛼2 = u2∕(u1 + u2), where u1 = 1∕V(𝜏i) and u2 = 1∕V(𝜏i). Thus, the optimal weights
are inversely proportional to the variances of 𝜏i and 𝜏i. This implies that the best combined estimator is

𝜏
∗
i =

𝜏i
k(a − 1)
a(r − 𝜆)

(𝜎2 + k𝜎2
𝛽
) + 𝜏i

k(a − 1)
𝜆a2

𝜎
2

k(a − 1)
𝜆a2

𝜎
2 + k(a − 1)

a(r − 𝜆)
(𝜎2 + k𝜎2

𝛽
)

i = 1, 2, . . . , a

which can be simplified to

𝜏
∗
i =

kQi(𝜎2 + k𝜎2
𝛽
) +

(
b∑
j=1

nijy.j − kry
..

)
𝜎
2

(r − 𝜆)𝜎2 + 𝜆a(𝜎2 + k𝜎2
𝛽
)

i = 1, 2, . . . , a (4.49)

Unfortunately, Equation 4.49 cannot be used to estimate the 𝜏i because the variances 𝜎
2 and 𝜎2

𝛽
are unknown. The

usual approach is to estimate 𝜎2 and 𝜎2
𝛽
from the data and replace these parameters in Equation 4.49 by the estimates.

The estimate usually taken for 𝜎2 is the error mean square from the intrablock analysis of variance, or the intrablock
error. Thus,

�̂�
2 = MSE

The estimate of 𝜎2
𝛽
is found from the mean square for blocks adjusted for treatments. In general, for a balanced incom-

plete block design, this mean square is

MSBlocks(adjusted) =

(k
a∑
i=1

Q2
i

𝜆a
+

b∑
j=1

y2
.j

k
−

a∑
i=1

y2i.
r

)

(b − 1)
(4.50)

and its expected value [which is derived in Graybill (1961)] is

E[MSBlocks(adjusted)] = 𝜎
2 + a(r − 1)

(b − 1)
𝜎
2
𝛽
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Thus, if MSBlocks(adjusted) > MSE, the estimate of �̂�2
𝛽
is

�̂�
2
𝛽
=

[MSBlocks(adjusted) −MSE](b − 1)
a(r − 1)

(4.51)

and ifMSBlocks(adjusted) ≤ MSE, we set �̂�
2
𝛽
= 0. This results in the combined estimator

𝜏
∗
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

kQi(�̂�2 + k�̂�2
𝛽
) +

(
b∑
j=1

nijy•j − kry
..

)
�̂�
2

(r − 𝜆)�̂�2 + 𝜆a(�̂�2 + k�̂�2
𝛽
)

, �̂�
2
𝛽
> 0

yi. − (1∕a)y
..

r
, �̂�

2
𝛽
= 0

(4.52a)

(4.52b)

We now compute the combined estimates for the data in Example 4.4. From Table 4.25 we obtain �̂�
2 = MSE = 0.65

andMSBlocks(adjusted) = 22.03. (Note that in computingMSBlocks(adjusted) we make use of the fact that this is a symmetric
design.) In general, we must use Equation 4.50. Because MSBlocks(adjusted) > MSE, we use Equation 4.51 to estimate
𝜎
2
𝛽
as

�̂�
2
𝛽
= (22.03 − 0.65)(3)

4(3 − 1)
= 8.02

Therefore, we may substitute �̂�
2 = 0.65 and �̂�

2
𝛽
= 8.02 into Equation 4.52a to obtain the combined estimates listed

below. For convenience, the intrablock and interblock estimates are also given. In this example, the combined estimates
are close to the intrablock estimates because the variance of the interblock estimates is relatively large.

Parameter Intrablock Estimate Interblock Estimate Combined Estimate

𝜏1 −1.12 10.50 −1.09
𝜏2 −0.88 −3.50 −0.88
𝜏3 −0.50 −0.50 −0.50
𝜏4 2.50 −6.50 2.47

4.5 Problems

4.1 Suppose that a single-factor experiment with four lev-
els of the factor has been conducted. There are six replicates
and the experiment has been conducted in blocks. The error
sum of squares is 500 and the block sum of squares is 250. If
the experiment had been conducted as a completely random-
ized design the estimate of the error variance 𝜎2 would be.

(a) 25.0 (b) 25.5 (c) 35.0

(d) 37.5 (e) None of the above

4.2 Suppose that a single-factor experiment with five lev-
els of the factor has been conducted. There are three replicates

and the experiment has been conducted as a complete random-
ized design. If the experiment had been conducted in blocks,
the pure error degrees of freedom would be reduced by

(a) 3 (b) 5 (c) 2

(d) 4 (e) None of the above

4.3 Blocking is a technique that can be used to control the
variability transmitted by uncontrolled nuisance factors in an
experiment.

(a) True

(b) False
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4.4 The number of blocks in the RCBDmust always equal
the number of treatments or factor levels.

(a) True

(b) False

4.5 The key concept of the phrase “Block if you can,
randomize if you can’t.” is that:

(a) It is usually better to not randomize within blocks.

(b) Blocking violates the assumption of constant variance.

(c) Create blocks by using each level of the nuisance factor
as a block and randomize within blocks.

(d) Randomizing the runs is preferable to randomizing
blocks.

4.6 The ANOVA from a randomized complete block
experiment output is shown below.

Source DF SS MS F P

Treatment 4 1010.56 ? 29.84 ?

Block ? ? 64.765 ? ?

Error 20 169.33 ?

Total 29 1503.71

(a) Fill in the blanks. You may give bounds on the P-value.

(b) How many blocks were used in this experiment?

(c) What conclusions can you draw?

4.7 Consider the single-factor completely randomized
experiment shown in Problem 3.8. Suppose that this exper-
iment had been conducted in a randomized complete block
design and that the sum of squares for blocks was 80.00. Mod-
ify theANOVA for this experiment to show the correct analysis
for the randomized complete block experiment.

4.8 A chemist wishes to test the effect of four chemical
agents on the strength of a particular type of cloth. Because
there might be variability from one bolt to another, the chemist
decides to use a randomized block design, with the bolts of
cloth considered as blocks. She selects five bolts and applies
all four chemicals in random order to each bolt. The resulting
tensile strengths follow. Analyze the data from this experiment
(use 𝛼 = 0.05) and draw appropriate conclusions.

Bolt

Chemical 1 2 3 4 5

1 73 68 74 71 67

2 73 67 75 72 70

3 75 68 78 73 68

4 73 71 75 75 69

4.9 Three different washing solutions are being compared
to study their effectiveness in retarding bacteria growth in
5-gallon milk containers. The analysis is done in a labora-
tory, and only three trials can be run on any day. Because
days could represent a potential source of variability, the
experimenter decides to use a randomized block design. Obser-
vations are taken for four days, and the data are shown here.
Analyze the data from this experiment (use 𝛼 = 0.05) and
draw conclusions.

Days

Solution 1 2 3 4

1 13 22 18 39

2 16 24 17 44

3 5 4 1 22

4.10 Plot the mean tensile strengths observed for each
chemical type in Problem 4.8 and compare them to an appro-
priately scaled t distribution. What conclusions would you
draw from this display?

4.11 Plot the average bacteria counts for each solution in
Problem 4.9 and compare them to a scaled t distribution. What
conclusions can you draw?

4.12 Consider the hardness testing experiment described in
Section 4.1. Suppose that the experiment was conducted as
described and that the following Rockwell C-scale data (coded
by subtracting 40 units) obtained:

Coupon

Tip 1 2 3 4

1 9.3 9.4 9.6 10.0

2 9.4 9.3 9.8 9.9

3 9.2 9.4 9.5 9.7

4 9.7 9.6 10.0 10.2

(a) Analyze the data from this experiment.

(b) Use the Fisher LSD method to make comparisons
among the four tips to determine specifically which tips
differ in mean hardness readings.

(c) Analyze the residuals from this experiment.

4.13 A consumer products company relies on direct mail
marketing pieces as a major component of its advertising cam-
paigns. The company has three different designs for a new
brochure and wants to evaluate their effectiveness, as there
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are substantial differences in costs between the three designs.
The company decides to test the three designs by mailing 5000
samples of each to potential customers in four different regions
of the country. Since there are known regional differences in
the customer base, regions are considered as blocks. The num-
ber of responses to each mailing is as follows.

Region

Design NE NW SE SW

1 250 350 219 375

2 400 525 390 580

3 275 340 200 310

(a) Analyze the data from this experiment.

(b) Use the Fisher LSD method to make comparisons
among the three designs to determine specifically
which designs differ in the mean response rate.

(c) Analyze the residuals from this experiment.

4.14 The effect of three different lubricating oils on fuel
economy in diesel truck engines is being studied. Fuel econ-
omy is measured using brake-specific fuel consumption after
the engine has been running for 15 minutes. Five different
truck engines are available for the study, and the experimenters
conduct the following RCBD.

Truck

Oil 1 2 3 4 5

1 0.500 0.634 0.487 0.329 0.512

2 0.535 0.675 0.520 0.435 0.540

3 0.513 0.595 0.488 0.400 0.510

(a) Analyze the data from this experiment.

(b) Use the Fisher LSD method to make compar-
isons among the three lubricating oils to determine
specifically which oils differ in brake-specific fuel
consumption.

(c) Analyze the residuals from this experiment.

4.15 An article in the Fire Safety Journal (“The Effect of
Nozzle Design on the Stability and Performance of Turbulent
Water Jets,” Vol. 4, August 1981) describes an experiment in
which a shape factor was determined for several different noz-
zle designs at six levels of jet efflux velocity. Interest focused
on potential differences between nozzle designs, with velocity
considered as a nuisance variable. The data are shown below:

Jet Efflux Velocity (m∕s)Nozzle
Design 11.73 14.37 16.59 20.43 23.46 28.74

1 0.78 0.80 0.81 0.75 0.77 0.78

2 0.85 0.85 0.92 0.86 0.81 0.83

3 0.93 0.92 0.95 0.89 0.89 0.83

4 1.14 0.97 0.98 0.88 0.86 0.83

5 0.97 0.86 0.78 0.76 0.76 0.75

(a) Does nozzle design affect the shape factor? Compare
the nozzles with a scatter plot and with an analysis of
variance, using 𝛼 = 0.05.

(b) Analyze the residuals from this experiment.

(c) Which nozzle designs are different with respect to
shape factor? Draw a graph of the average shape factor
for each nozzle type and compare this to a scaled t dis-
tribution. Compare the conclusions that you draw from
this plot to those from Duncan’s multiple range test.

4.16 An article inCommunications of the ACM (Vol. 30, No.
5, 1987) studied different algorithms for estimating software
development costs. Six algorithms were applied to several dif-
ferent software development projects and the percent error in
estimating the development cost was observed. Some of the
data from this experiment is shown in the table below.

(a) Do the algorithms differ in their mean cost estimation
accuracy?

(b) Analyze the residuals from this experiment.

(c) Which algorithm would you recommend for use in
practice?

Project

Algorithm 1 2 3 4 5 6

1(SLIM) 1244 21 82 2221 905 839

2(COCOMO-A) 281 129 396 1306 336 910

3(COCOMO-R) 220 84 458 543 300 794

4(COCONO-C) 225 83 425 552 291 826

5(FUNCTION POINTS) 19 11 −34 121 15 103

6(ESTIMALS) −20 35 −53 170 104 199

4.17 An article in Nature Genetics (2003, Vol. 34,
pp. 85–90) “Treatment-Specific Changes in Gene Expression
Discriminate in vivo Drug Response in Human Leukemia
Cells” studied gene expression as a function of different treat-
ments for leukemia. Three treatment groups are as follows:
mercaptopurine (MP) only; low-dose methotrexate (LDMTX)
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andMP; and high-dose methotrexate (HDMTX) andMP. Each
group contained ten subjects. The responses from a specific
gene are shown in the table below.

(a) Is there evidence to support the claim that the treatment
means differ?

(b) Check the normality assumption. Can we assume these
samples are from normal populations?

(c) Take the logarithm of the raw data. Is there evidence
to support the claim that the treatment means differ for
the transformed data?

(d) Analyze the residuals from the transformed data and
comment on model adequacy.

Treatments Observations

MP ONLY 334.5 31.6 701 41.2 61.2 69.6 67.5 66.6 120.7 881.9

MP + HDMTX 919.4 404.2 1024.8 54.1 62.8 671.6 882.1 354.2 321.9 91.1

MP + LDMTX 108.4 26.1 240.8 191.1 69.7 242.8 62.7 396.9 23.6 290.4

4.18 Consider the ratio control algorithm experiment
described in Section 3.8. The experiment was actually con-
ducted as a randomized block design, where six time periods
were selected as the blocks, and all four ratio control algo-
rithms were tested in each time period. The average cell volt-
age and the standard deviation of voltage (shown in parenthe-
ses) for each cell are as follows:

Time PeriodRatio
Control
Algorithm 1 2 3

1 4.93 (0.05) 4.86 (0.04) 4.75 (0.05)

2 4.85 (0.04) 4.91 (0.02) 4.79 (0.03)

3 4.83 (0.09) 4.88 (0.13) 4.90 (0.11)

4 4.89 (0.03) 4.77 (0.04) 4.94 (0.05)

Time PeriodRatio
Control
Algorithm 4 5 6

1 4.95 (0.06) 4.79 (0.03) 4.88 (0.05)

2 4.85 (0.05) 4.75 (0.03) 4.85 (0.02)

3 4.75 (0.15) 4.82 (0.08) 4.90 (0.12)

4 4.86 (0.05) 4.79 (0.03) 4.76 (0.02)

(a) Analyze the average cell voltage data. (Use 𝛼 = 0.05.)
Does the choice of ratio control algorithm affect the
average cell voltage?

(b) Perform an appropriate analysis on the standard devia-
tion of voltage. (Recall that this is called “pot noise.”)
Does the choice of ratio control algorithm affect the pot
noise?

(c) Conduct any residual analyses that seem appropriate.

(d) Which ratio control algorithm would you select if your
objective is to reduce both the average cell voltage and
the pot noise?

4.19 An aluminum master alloy manufacturer produces
grain refiners in ingot form. The company produces the prod-
uct in four furnaces. Each furnace is known to have its own
unique operating characteristics, so any experiment run in the
foundry that involves more than one furnace will consider fur-
naces as a nuisance variable. The process engineers suspect
that stirring rate affects the grain size of the product. Each fur-
nace can be run at four different stirring rates. A randomized
block design is run for a particular refiner, and the resulting
grain size data is as follows.

Furnace

Stirring Rate (rpm) 1 2 3 4

5 8 4 5 6

10 14 5 6 9

15 14 6 9 2

20 17 9 3 6

(a) Is there any evidence that stirring rate affects grain
size?

(b) Graph the residuals from this experiment on a normal
probability plot. Interpret this plot.

(c) Plot the residuals versus furnace and stirring rate. Does
this plot convey any useful information?

(d) What should the process engineers recommend con-
cerning the choice of stirring rate and furnace for
this particular grain refiner if small grain size is
desirable?

4.20 Analyze the data in Problem 4.9 using the general
regression significance test.

4.21 Assuming that chemical types and bolts are fixed, esti-
mate the model parameters 𝜏i and 𝛽j in Problem 4.8.

4.22 Draw an operating characteristic curve for the design
in Problem 4.9. Does the test seem to be sensitive to small dif-
ferences in the treatment effects?
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4.23 Suppose that the observation for chemical type 2 and
bolt 3 is missing in Problem 4.8. Analyze the problem by esti-
mating the missing value. Perform the exact analysis and com-
pare the results.

4.24 Consider the hardness testing experiment in Problem
4.12. Suppose that the observation for tip 2 in coupon 3
is missing. Analyze the problem by estimating the missing
value.

4.25 Two missing values in a randomized block. Suppose
that in Problem 4.8 the observations for chemical type 2 and
bolt 3 and chemical type 4 and bolt 4 are missing.

(a) Analyze the design by iteratively estimating the miss-
ing values, as described in Section 4.1.3.

(b) Differentiate SSE with respect to the two missing val-
ues, equate the results to zero, and solve for estimates
of the missing values. Analyze the design using these
two estimates of the missing values.

(c) Derive general formulas for estimating two miss-
ing values when the observations are in different
blocks.

(d) Derive general formulas for estimating two missing
values when the observations are in the same block.

4.26 An industrial engineer is conducting an experiment on
eye focus time. He is interested in the effect of the distance
of the object from the eye on the focus time. Four differ-
ent distances are of interest. He has five subjects available
for the experiment. Because there may be differences among
individuals, he decides to conduct the experiment in a ran-
domized block design. The data obtained follow. Analyze the
data from this experiment (use 𝛼 = 0.05) and draw appropriate
conclusions.

Subject

Distance (ft) 1 2 3 4 5

4 10 6 6 6 6

6 7 6 6 1 6

8 5 3 3 2 5

10 6 4 4 2 3

4.27 The effect of five different ingredients (A, B, C, D, E)
on the reaction time of a chemical process is being studied.
Each batch of new material is only large enough to permit five
runs to bemade. Furthermore, each run requires approximately
1 1

2
hours, so only five runs can be made in one day. The exper-

imenter decides to run the experiment as a Latin square so that
day and batch effects may be systematically controlled. She
obtains the data that follow. Analyze the data from this exper-
iment (use 𝛼 = 0.05) and draw conclusions.

Day

Batch 1 2 3 4 5

1 A = 8 B = 7 D = 1 C = 7 E = 3

2 C = 11 E = 2 A = 7 D = 3 B = 8

3 B = 4 A = 9 C = 10 E = 1 D = 5

4 D = 6 C = 8 E = 6 B = 6 A = 10

5 E = 4 D = 2 B = 3 A = 8 C = 8

4.28 An industrial engineer is investigating the effect of four
assembly methods (A, B, C, D) on the assembly time for a
color television component. Four operators are selected for
the study. Furthermore, the engineer knows that each assem-
bly method produces such fatigue that the time required for
the last assembly may be greater than the time required for
the first, regardless of the method. That is, a trend develops in
the required assembly time. To account for this source of vari-
ability, the engineer uses the Latin square design that follows.
Analyze the data from this experiment (𝛼 = 0.05) and draw
appropriate conclusions.

OperatorOrder of
Assembly 1 2 3 4

1 C = 10 D = 14 A = 7 B = 8

2 B = 7 C = 18 D = 11 A = 8

3 A = 5 B = 10 C = 11 D = 9

4 D = 10 A = 10 B = 12 C = 14

4.29 Consider the randomized complete block design in
Problem 4.9. Assume that the days are random. Estimate the
block variance component.

4.30 Consider the randomized complete block design in
Problem 4.12. Assume that the coupons are random. Estimate
the block variance component.

4.31 Consider the randomized complete block design in
Problem 4.14. Assume that the trucks are random. Estimate
the block variance component.

4.32 Consider the randomized complete block design in
Problem 4.16. Assume that the software projects that were
used as blocks are random. Estimate the block variance
component.

4.33 Consider the gene expression experiment in Problem
4.17. Assume that the subjects used in this experiment are ran-
dom. Estimate the block variance component.

4.34 Suppose that in Problem 4.27 the observation from
batch 3 on day 4 is missing. Estimate the missing value and
perform the analysis using the value.
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4.35 Consider a p × p Latin square with rows (𝛼i), columns
(𝛽k), and treatments (𝜏j) fixed. Obtain least squares estimates
of the model parameters 𝛼i, 𝛽k, and 𝜏j.

4.36 Derive the missing value formula (Equation 4.28) for
the Latin square design.

4.37 Designs involving several Latin squares. [See
Cochran and Cox (1957), John (1971).] The p × p Latin square
contains only p observations for each treatment. To obtain
more replications, the experimenter may use several squares,
say n. It is immaterial whether the squares used are the same
or different. The appropriate model is

yijkh =
𝜇 + 𝜌h + 𝛼i(h)
+ 𝜏j + 𝛽k(h)

+ (𝜏𝜌)jh + 𝜖ijkh

⎧⎪⎨⎪⎩

i = 1, 2, . . . , p
j = 1, 2, . . . , p
k = 1, 2, . . . , p
h = 1, 2, . . . , n

where yijkh is the observation on treatment j in row i and column
k of the hth square. Note that 𝛼i(h) and 𝛽k(h) are the row and col-
umn effects in the hth square, 𝜌h is the effect of the hth square,
and (𝜏𝜌)jh is the interaction between treatments and squares.

(a) Set up the normal equations for this model, and solve
for estimates of the model parameters. Assume that
appropriate side conditions on the parameters are∑

h�̂�h = 0,
∑

i�̂�i(h) = 0, and
∑

k𝛽k(h) = 0 for each h,∑
j𝜏j = 0,

∑
j(𝜏𝜌)jh = 0 for each h, and

∑
h(𝜏𝜌)jh = 0

for each j.

(b) Write down the analysis of variance table for this
design.

4.38 Discuss how you would determine the sample size
for use with the Latin square design.

4.39 Suppose that in Problem 4.27 the data taken on day 5
were incorrectly analyzed and had to be discarded. Develop an
appropriate analysis for the remaining data.

4.40 The yield of a chemical process was measured using
five batches of raw material, five acid concentrations, five
standing times (A, B, C, D, E), and five catalyst concentrations
(𝛼, 𝛽, 𝛾, 𝛿, 𝜖). The Graeco-Latin square that follows was used.
Analyze the data from this experiment (use 𝛼 = 0.05) and draw
conclusions.

Acid Concentration

Batch 1 2 3

1 A𝛼 = 26 B𝛽 = 16 C𝛾 = 19

2 B𝛾 = 18 C𝛿 = 21 D𝜖 = 18

3 C𝜖 = 20 D𝛼 = 12 E𝛽 = 16

4 D𝛽 = 15 E𝛾 = 15 A𝛿 = 22

5 E𝛿 = 10 A𝜖 = 24 B𝛼 = 17

Acid Concentration

Batch 4 5

1 D𝛿 = 16 E𝜖 = 13

2 E𝛼 = 11 A𝛽 = 21

3 A𝛾 = 25 B𝛿 = 13

4 B𝜖 = 14 C𝛼 = 17

5 C𝛽 = 17 D𝛾 = 14

4.41 Suppose that in Problem 4.28 the engineer suspects
that the workplaces used by the four operators may represent
an additional source of variation. A fourth factor, work-
place (𝛼, 𝛽, 𝛾, 𝛿) may be introduced and another experiment
conducted, yielding the Graeco-Latin square that follows.
Analyze the data from this experiment (use 𝛼 = 0.05) and
draw conclusions.

OperatorOrder of
Assembly 1 2 3 4

1 C𝛽 = 11 B𝛾 = 10 D𝛿 = 14 A𝛼 = 8

2 B𝛼 = 8 C𝛿 = 12 A𝛾 = 10 D𝛽 = 12

3 A𝛿 = 9 D𝛼 = 11 B𝛽 = 7 C𝛾 = 15

4 D𝛾 = 9 A𝛽 = 8 C𝛼 = 18 B𝛿 = 6

4.42 Construct a 5 × 5 hypersquare for studying the effects
of five factors. Exhibit the analysis of variance table for this
design.

4.43 Consider the data in Problems 4.28 and 4.41. Suppress-
ing the Greek letters in problem 4.41, analyze the data using
the method developed in Problem 4.37.

4.44 Consider the randomized block design with one miss-
ing value in Problem 4.24. Analyze this data by using the exact
analysis of the missing value problem discussed in Section
4.1.4. Compare your results to the approximate analysis of
these data given from Problem 4.24.

4.45 An engineer is studying the mileage performance char-
acteristics of five types of gasoline additives. In the road test
he wishes to use cars as blocks; however, because of a time
constraint, he must use an incomplete block design. He runs
the balanced design with the five blocks that follow. Ana-
lyze the data from this experiment (use 𝛼 = 0.05) and draw
conclusions.
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Car

Additive 1 2 3 4 5

1 17 14 13 12

2 14 14 13 10

3 12 13 12 9

4 13 11 11 12

5 11 12 10 8

4.46 Construct a set of orthogonal contrasts for the data in
Problem 4.45. Compute the sum of squares for each contrast.

4.47 Seven different hardwood concentrations are being
studied to determine their effect on the strength of the paper
produced. However, the pilot plant can only produce three runs
each day. As days may differ, the analyst uses the BIBD that
follows. Analyze the data from this experiment (use 𝛼 = 0.05)
and draw conclusions.

DaysHardwood
Concentration (%) 1 2 3 4

2 114

4 126 120

6 137 117

8 141 129 149

10 145 150

12 120

14 136

DaysHardwood
Concentration (%) 5 6 7

2 120 117

4 119

6 134

8

10 143

12 118 123

14 130 127

4.48 Analyze the data in Example 4.4 using the general
regression significance test.

4.49 Prove that k
∑a

i=1 Q
2
i ∕(𝜆a) is the adjusted sum of

squares for treatments in a BIBD.

4.50 An experimenter wishes to compare four treatments in
blocks of two runs. Find a BIBD for this experiment with six
blocks.

4.51 An experimenter wishes to compare eight treatments
in blocks of four runs. Find a BIBD with 14 blocks and 𝜆 = 3.

4.52 Perform the interblock analysis for the design in
Problem 4.45.

4.53 Perform the interblock analysis for the design in
Problem 4.47.

4.54 Verify that a BIBD with the parameters a = 8,
r = 8, k = 4, and b = 16 does not exist.

4.55 Show that the variance of the intrablock estimators {𝜏i}
is k(a − 1)𝜎2∕(𝜆a2).

4.56 Extended incomplete block designs. Occasionally,
the block size obeys the relationship a < k < 2a. An
extended incomplete block design consists of a single
replicate of each treatment in each block along with an
incomplete block design with k∗ = k − a. In the balanced
case, the incomplete block design will have parameters
k∗ = k − a, r∗ = r − b, and 𝜆

∗. Write out the statistical
analysis. (Hint: In the extended incomplete block design, we
have 𝜆 = 2r − b + 𝜆

∗.)

4.57 Suppose that a single-factor experiment with five levels
of the factor has been conducted. There are three replicates and
the experiment has been conducted as a complete randomized
design. If the experiment had been conducted in blocks, the
pure error degrees of freedom would be reduced by (choose
the correct answer):

(a) 3 (b) 5 (c) 2

(d) 4 (e) none of the above

4.58 Physics graduate student Laura Van Ertia has con-
ducted a complete randomized design with a single factor,
hoping to solve the mystery of the unified theory and complete
her dissertation. The results of this experiment are summarized
in the following ANOVA display:

Source DF SS MS F

Factor ? ? 14.18 ?

Error ? 37.75 ?

Total 23 108.63
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Answer the following questions about this experiment.

(a) The sum of squares for the factor is .

(b) The number of degrees of freedom for the single factor
in the experiment is .

(c) The number of degrees of freedom for error is
.

(d) The mean square for error is .

(e) The value of the test statistic is .

(f) If the significance level is 0.05, your conclusions are
not to reject the null hypothesis.

Yes
No

(g) An upper bound on the P-value for the test statistic is
.

(h) A lower bound on the P-value for the test statistic is
.

(i) Laura used levels of the factor in this
experiment.

(j) Laura replicated this experiment times.

(k) Suppose that Laura had actually conducted this experi-
ment as a randomized complete block design and the
sum of squares for blocks was 12. Reconstruct the
ANOVA display above to reflect this new situation.
Howmuch has blocking reduced the estimate of exper-
imental error?

4.59 Consider the direct mail marketing experiment in
Problem 4.13. Suppose that this experiment had been run as a
completely randomized design, ignoring potential regional
differences, but that exactly the same data was obtained.
Reanalyze the experiment under this new assumption. What
difference would ignoring blocking have on the results and
conclusions?
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