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The supplemental material is on the textbook website www.wiley.com/college/montgomery.

CHAPTER LEARNING OBJECTIVES
1. Learn the definitions of main effects and interactions.

2. Learn about two-factor factorial experiments.

3. Learn how the analysis of variance can be extended to factorial experiments.

4. Know how to check model assumptions in a factorial experiment.

5. Understand how sample size decisions can be evaluated for factorial experiments.

6. Know how factorial experiments can be used for more than two factors.

7. Know how the blocking principle can be extended to factorial experiments.

8. Know how to analyze factorial experiments by fitting response curves and surfaces.

5.1 Basic Definitions and Principles

Many experiments involve the study of the effects of two or more factors. In general, factorial designs are most
efficient for this type of experiment. By a factorial design, we mean that in each complete trial or replicate of the
experiment, all possible combinations of the levels of the factors are investigated. For example, if there are a levels of
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◾ F I GURE 5 . 1 A two-factor
factorial experiment, with the
response (y) shown at the corners
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◾ F I GURE 5 . 2 A two-factor
factorial experiment with interaction

factor A and b levels of factor B, each replicate contains all ab treatment combinations. When factors are arranged in
a factorial design, they are often said to be crossed.

The effect of a factor is defined to be the change in response produced by a change in the level of the factor.
This is frequently called a main effect because it refers to the primary factors of interest in the experiment. For example,
consider the simple experiment in Figure 5.1. This is a two-factor factorial experiment with both design factors at two
levels. We have called these levels “low” and “high” and denoted them “−” and “+,” respectively. The main effect of
factor A in this two-level design can be thought of as the difference between the average response at the low level of A
and the average response at the high level of A. Numerically, this is

A = 40 + 52
2

− 20 + 30
2

= 21

That is, increasing factor A from the low level to the high level causes an average response increase of 21 units.
Similarly, the main effect of B is

B = 30 + 52
2

− 20 + 40
2

= 11

If the factors appear at more than two levels, the above procedure must be modified because there are other ways to
define the effect of a factor. This point is discussed more completely later.

In some experiments, we may find that the difference in response between the levels of one factor is not the same
at all levels of the other factors. When this occurs, there is an interaction between the factors. For example, consider
the two-factor factorial experiment shown in Figure 5.2. At the low level of factor B (or B−), the A effect is

A = 50 − 20 = 30

and at the high level of factor B (or B+), the A effect is

A = 12 − 40 = −28

Because the effect of A depends on the level chosen for factor B, we see that there is interaction between A and B.
The magnitude of the interaction effect is the average difference in these two A effects, or AB = (−28 − 30)∕2 = −29.
Clearly, the interaction is large in this experiment.

These ideas may be illustrated graphically. Figure 5.3 plots the response data in Figure 5.1 against factor A
for both levels of factor B. Note that the B− and B+ lines are approximately parallel, indicating a lack of interaction
between factors A and B. Similarly, Figure 5.4 plots the response data in Figure 5.2. Here we see that the B− and
B+ lines are not parallel. This indicates an interaction between factors A and B. Two-factor interaction graphs such
as these are frequently very useful in interpreting significant interactions and in reporting results to nonstatistically
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◾ F I GURE 5 . 3 A factorial
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experiment with interaction

trained personnel. However, they should not be utilized as the sole technique of data analysis because their
interpretation is subjective and their appearance is often misleading.

There is another way to illustrate the concept of interaction. Suppose that both of our design factors are
quantitative (such as temperature, pressure, time). Then a regression model representation of the two-factor
factorial experiment could be written as

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝜖

where y is the response, the 𝛽’s are parameters whose values are to be determined, x1 is a variable that represents factor
A, x2 is a variable that represents factor B, and 𝜖 is a random error term. The variables x1 and x2 are defined on a coded
scale from −1 to +1 (the low and high levels of A and B), and x1x2 represents the interaction between x1 and x2.

The parameter estimates in this regression model turn out to be related to the effect estimates. For the experiment
shown in Figure 5.1 we found the main effects of A and B to be A = 21 and B = 11. The estimates of 𝛽1 and 𝛽2 are
one-half the value of the corresponding main effect; therefore, 𝛽1 = 21∕2 = 10.5 and 𝛽2 = 11∕2 = 5.5. The interac-
tion effect in Figure 5.1 is AB = 1, so the value of interaction coefficient in the regression model is 𝛽12 = 1∕2 = 0.5.
The parameter 𝛽0 is estimated by the average of all four responses, or 𝛽0 = (20 + 40 + 30 + 52)∕4 = 35.5. Therefore,
the fitted regression model is

ŷ = 35.5 + 10.5x1 + 5.5x2 + 0.5x1x2

The parameter estimates obtained in the manner for the factorial design with all factors at two levels (− and +) turn
out to be least squares estimates (more on this later).

The interaction coefficient (𝛽12 = 0.5) is small relative to the main effect coefficients 𝛽1 and 𝛽2. We will take this
to mean that interaction is small and can be ignored. Therefore, dropping the term 0.5x1x2 gives us the model

ŷ = 35.5 + 10.5x1 + 5.5x2

Figure 5.5 presents graphical representations of this model. In Figure 5.5a we have a plot of the plane of y-values
generated by the various combinations of x1 and x2. This three-dimensional graph is called a response surface plot.
Figure 5.5b shows the contour lines of constant response y in the x1, x2 plane. Notice that because the response surface
is a plane, the contour plot contains parallel straight lines.

Now suppose that the interaction contribution to this experiment was not negligible; that is, the coefficient 𝛽12
was not small. Figure 5.6 presents the response surface and contour plot for the model

ŷ = 35.5 + 10.5x1 + 5.5x2 + 8x1x2

(We have let the interaction effect be the average of the two main effects.) Notice that the significant interaction effect
“twists” the plane in Figure 5.6a. This twisting of the response surface results in curved contour lines of constant
response in the x1, x2 plane, as shown in Figure 5.6b. Thus, interaction is a form of curvature in the underlying
response surface model for the experiment.
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◾ F I GURE 5 . 5 Response surface and contour plot for the model ŷ = 35.5 + 10.5x1 + 5.5x2
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◾ F I GURE 5 . 6 Response surface and contour plot for the model ŷ = 35.5 + 10.5x1 + 5.5x2 + 8x1x2

The response surface model for an experiment is extremely important and useful. We will say more about it in
Section 5.5 and in subsequent chapters.

Generally, when an interaction is large, the corresponding main effects have little practical meaning. For the
experiment in Figure 5.2, we would estimate the main effect of A to be

A = 50 + 12
2

− 20 + 40
2

= 1

which is very small, and we are tempted to conclude that there is no effect due to A. However, when we examine
the effects of A at different levels of factor B, we see that this is not the case. Factor A has an effect, but it depends
on the level of factor B. That is, knowledge of the AB interaction is more useful than knowledge of the main effect.
A significant interaction will often mask the significance of main effects. These points are clearly indicated by the
interaction plot in Figure 5.4. In the presence of significant interaction, the experimenter must usually examine the
levels of one factor, say A, with levels of the other factors fixed to draw conclusions about the main effect of A.

5.2 The Advantage of Factorials

The advantage of factorial designs can be easily illustrated. Suppose we have two factors A and B, each at two levels.
We denote the levels of the factors by A−, A+, B−, and B+. Information on both factors could be obtained by varying
the factors one at a time, as shown in Figure 5.7. The effect of changing factor A is given by A+B− − A−B−, and the



�

� �

�

5.3 The Two-Factor Factorial Design 183

Factor A

F
a
ct

o
r 

B

– +

–

+
A–B+

A–B– A+B–
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◾ F I GURE 5 . 8 Relative efficiency of a
factorial design to a one-factor-at-a-time
experiment (two-level factors)

effect of changing factor B is given by A−B+ − A−B−. Because experimental error is present, it is desirable to take
two observations, say, at each treatment combination and estimate the effects of the factors using average responses.
Thus, a total of six observations are required.

If a factorial experiment had been performed, an additional treatment combination, A+B+, would have been
taken. Now, using just four observations, two estimates of the A effect can be made: A+B− − A−B− and A+B+ − A−B+.
Similarly, two estimates of the B effect can be made. These two estimates of each main effect could be averaged to
produce average main effects that are just as precise as those from the single-factor experiment, but only four total
observations are required and we would say that the relative efficiency of the factorial design to the one-factor-at-a-time
experiment is (6∕4) = 1.5. Generally, this relative efficiency will increase as the number of factors increases, as shown
in Figure 5.8.

Now suppose interaction is present. If the one-factor-at-a-time design indicated that A−B+ and A+B− gave better
responses than A−B−, a logical conclusion would be that A+B+ would be even better. However, if interaction is present,
this conclusion may be seriously in error. For an example, refer to the experiment in Figure 5.2.

In summary, note that factorial designs have several advantages. They are more efficient than one-factor-at-a-time
experiments. Furthermore, a factorial design is necessary when interactions may be present to avoid misleading con-
clusions. Finally, factorial designs allow the effects of a factor to be estimated at several levels of the other factors,
yielding conclusions that are valid over a range of experimental conditions.

5.3 The Two-Factor Factorial Design

5.3.1 An Example

The simplest types of factorial designs involve only two factors or sets of treatments. There are a levels of factor A and
b levels of factor B, and these are arranged in a factorial design; that is, each replicate of the experiment contains all
ab treatment combinations. In general, there are n replicates.

As an example of a factorial design involving two factors, an engineer is designing a battery for use in a device
that will be subjected to some extreme variations in temperature. The only design parameter that he can select at this
point is the plate material for the battery, and he has three possible choices. When the device is manufactured and is
shipped to the field, the engineer has no control over the temperature extremes that the device will encounter, and he
knows from experience that temperature will probably affect the effective battery life. However, temperature can be
controlled in the product development laboratory for the purposes of a test.
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◾ TABLE 5 . 1
Life (in hours) Data for the Battery Design Example

Temperature (∘F)Material
Type 15 70 125

1 130 155 34 40 20 70

74 180 80 75 82 58

2 150 188 136 122 25 70

159 126 106 115 58 45

3 138 110 174 120 96 104

168 160 150 139 82 60

The engineer decides to test all three plate materials at three temperature levels—15, 70, and 125∘F—because
these temperature levels are consistent with the product end-use environment. Because there are two factors at three
levels, this design is sometimes called a 32 factorial design. Four batteries are tested at each combination of plate
material and temperature, and all 36 tests are run in random order. The experiment and the resulting observed battery
life data are given in Table 5.1.

In this problem, the engineer wants to answer the following questions:

1. What effects do material type and temperature have on the life of the battery?

2. Is there a choice of material that would give uniformly long life regardless of temperature?

This last question is particularly important. It may be possible to find a material alternative that is not greatly affected
by temperature. If this is so, the engineer can make the battery robust to temperature variation in the field. This
is an example of using statistical experimental design for robust product design, a very important engineering
problem.

This design is a specific example of the general case of a two-factor factorial. To pass to the general case,
let yijk be the observed response when factor A is at the ith level (i = 1, 2, . . . , a) and factor B is at the jth level
( j = 1, 2, . . . , b) for the kth replicate (k = 1, 2, . . . , n). In general, a two-factor factorial experiment will appear as in
Table 5.2. The order in which the abn observations are taken is selected at random so that this design is a completely
randomized design.

The observations in a factorial experiment can be described by a model. There are several ways to write the
model for a factorial experiment. The effects model is

yijk = 𝜇 + 𝜏i + 𝛽j + (𝜏𝛽)ij + 𝜖ijk

⎧⎪⎨⎪⎩
i = 1, 2, . . . , a
j = 1, 2, . . . , b
k = 1, 2, . . . , n

(5.1)

where 𝜇 is the overall mean effect, 𝜏i is the effect of the ith level of the row factor A, 𝛽j is the effect of the jth level of
column factor B, (𝜏𝛽)ij is the effect of the interaction between 𝜏i and 𝛽j, and 𝜖ijk is a random error component. Both
factors are assumed to be fixed, and the treatment effects are defined as deviations from the overall mean, so

∑a
i=1 𝜏i = 0

and
∑b

j=1 𝛽j = 0. Similarly, the interaction effects are fixed and are defined such that
∑a

i=1 (𝜏𝛽)ij =
∑b

j=1 (𝜏𝛽)ij = 0.
Because there are n replicates of the experiment, there are abn total observations.
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◾ TABLE 5 . 2
General Arrangement for a Two-Factor Factorial Design

Factor B

1 2 . . . b

Factor A

1
y111, y112,

. . . , y11n

y121, y122,

. . . , y12n

y1b1, y1b2,

. . . , y1bn

2
y211, y212,

. . . , y21n

y221, y222,

. . . , y22n

y2b1, y2b2,

. . . , y2bn

⋮

a
ya11, ya12,

. . . , ya1n

ya21, ya22,

. . . , ya2n

yab1, yab2,

. . . , yabn

Another possible model for a factorial experiment is the means model

yijk = 𝜇ij + 𝜖ijk

⎧⎪⎨⎪⎩
i = 1, 2, . . . , a
j = 1, 2, . . . , b
k = 1, 2, . . . , n

where the mean of the ijth cell is
𝜇ij = 𝜇 + 𝜏i + 𝛽j + (𝜏𝛽)ij

We could also use a regression model as in Section 5.1. Regression models are particularly useful when one or
more of the factors in the experiment are quantitative. Throughout most of this chapter we will use the effects model
(Equation 5.1) with an illustration of the regression model in Section 5.5.

In the two-factor factorial, both row and column factors (or treatments),A andB, are of equal interest. Specifically,
we are interested in testing hypotheses about the equality of row treatment effects, say

H0∶𝜏1 = 𝜏2 = · · · = 𝜏a = 0

H1∶at least one 𝜏i ≠ 0 (5.2a)

and the equality of column treatment effects, say

H0∶𝛽1 = 𝛽2 = · · · = 𝛽b = 0

H1∶at least one 𝛽i ≠ 0 (5.2b)

We are also interested in determining whether row and column treatments interact. Thus, we also wish to test

H0∶(𝜏𝛽)ij = 0 for all i, j

H1∶at least one (𝜏𝛽)ij ≠ 0 (5.2c)

We now discuss how these hypotheses are tested using a two-factor analysis of variance.
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5.3.2 Statistical Analysis of the Fixed Effects Model

Let yi.. denote the total of all observations under the ith level of factor A, y
.j.. denote the total of all observations under

the jth level of factor B, yij.. denote the total of all observations in the ijth cell, and y
...

denote the grand total of all
the observations. Define yi.., y.j., yij., and y

...
as the corresponding row, column, cell, and grand averages. Expressed

mathematically,

yi.. =
b∑
j=1

n∑
k=1

yijk yi.. =
yi..
bn

i = 1, 2, . . . , a

y
.j. =

a∑
i=1

n∑
k=1

yijk y
.j. =

y
.j.

an
j = 1, 2, . . . , b

yij. =
n∑

k=1

yijk yij. =
yij.
n

i = 1, 2, . . . , a
j = 1, 2, . . . , b

y
...

=
a∑
i=1

b∑
j=1

n∑
k=1

yijk y
...

=
y
...

abn (5.3)

The total corrected sum of squares may be written as

a∑
i=1

b∑
j=1

n∑
k=1

(yijk − y
...
)2 =

a∑
i=1

b∑
j=1

n∑
k=1

[(yi.. − y
...
) + (y

.j. − y
...
)

+(yij. − yi.. − y
.j. + y

...
) + (yijk − yij.)]2]

= bn
a∑
i=1

(yi.. − y
...
)2 + an

b∑
j=1

(y
.j. − y

...
)2

+n
a∑
i=1

b∑
j=1

(yij. − y
..
− y

.j. − y
...
)2

+
a∑
i=1

b∑
j=1

n∑
k=1

(yijk − yij.)2 (5.4)

because the six cross products on the right-hand side are zero. Notice that the total sum of squares has been partitioned
into a sum of squares due to “rows,” or factor A, (SSA); a sum of squares due to “columns,” or factor B, (SSB); a sum of
squares due to the interaction between A and B, (SSAB); and a sum of squares due to error, (SSE). This is the fundamental
ANOVA equation for the two-factor factorial. From the last component on the right-hand side of Equation 5.4, we see
that there must be at least two replicates (n ≥ 2) to obtain an error sum of squares.

We may write Equation 5.4 symbolically as

SST = SSA + SSB + SSAB + SSE (5.5)

The number of degrees of freedom associated with each sum of squares is

Effect Degrees of Freedom

A a − 1

B b − 1

AB interaction (a − 1)(b − 1)
Error ab(n − 1)
Total abn − 1
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We may justify this allocation of the abn − 1 total degrees of freedom to the sums of squares as follows: The main
effects A and B have a and b levels, respectively; therefore, they have a − 1 and b − 1 degrees of freedom as shown.
The interaction degrees of freedom are simply the number of degrees of freedom for cells (which is ab − 1) minus the
number of degrees of freedom for the two main effects A and B; that is, ab − 1 − (a − 1) − (b − 1) = (a − 1)(b − 1).
Within each of the ab cells, there are n − 1 degrees of freedom between the n replicates; thus, there are ab(n − 1)
degrees of freedom for error. Note that the number of degrees of freedom on the right-hand side of Equation 5.5 adds
to the total number of degrees of freedom.

Each sum of squares divided by its degrees of freedom is a mean square. The expected values of the mean
squares are

E(MSA) = E

(
SSA
a − 1

)
= 𝜎

2 +

bn
a∑
i=1

𝜏
2
i

a − 1

E(MSB) = E

(
SSB
b − 1

)
= 𝜎

2 +

an
b∑
j=1

𝛽
2
j

b − 1

E(MSAB) = E

(
SSAB

(a − 1)(b − 1)

)
= 𝜎

2 +

n
a∑
i=1

b∑
j=1

(𝜏𝛽)2ij

(a − 1)(b − 1)

and

E(MSE) = E

(
SSE

ab(n − 1)

)
= 𝜎

2

Notice that if the null hypotheses of no row treatment effects, no column treatment effects, and no interaction are
true, then MSA, MSB, MSAB, and MSE all estimate 𝜎2. However, if there are differences between row treatment effects,
say, then MSA will be larger than MSE. Similarly, if there are column treatment effects or interaction present, then the
corresponding mean squares will be larger than MSE. Therefore, to test the significance of both main effects and their
interaction, simply divide the corresponding mean square by the error mean square. Large values of this ratio imply
that the data do not support the null hypothesis.

If we assume that the model (Equation 5.1) is adequate and that the error terms 𝜖ijk are normally and independently
distributed with constant variance 𝜎

2, then each of the ratios of mean squares MSA∕MSE, MSB∕MSE, and MSAB∕MSE
is distributed as F with a − 1, b − 1, and (a − 1)(b − 1) numerator degrees of freedom, respectively, and ab(n − 1)
denominator degrees of freedom,1 and the critical region would be the upper tail of theF distribution. The test procedure
is usually summarized in an analysis of variance table, as shown in Table 5.3.

Computationally, we almost always employ a statistical software package to conduct an ANOVA. However, man-
ual computing of the sums of squares in Equation 5.5 is straightforward. One could write out the individual elements
of the ANOVA identity

yijk − y
...
= (yi.. − y

...
) + (y

.j. − y
...
) + (yij. − yi.. − y

.j. + y
...
) + (yijk − yij.)

and calculate them in the columns of a spreadsheet. Then each column could be squared and summed to produce the
ANOVA sums of squares. Computing formulas in terms of row, column, and cell totals can also be used. The total sum
of squares is computed as usual by

SST =
a∑
i=1

b∑
j=1

n∑
k=1

y2
ijk −

y2
...

abn
(5.6)

1 The F-test may be viewed as an approximation to a randomization test, as noted previously.
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◾ TABLE 5 . 3
The Analysis of Variance Table for the Two-Factor Factorial, Fixed Effects Model

Source of
Variation

Sum of
Squares

Degrees of
Freedom Mean Square F0

A treatments SSA a − 1 MSA =
SSA
a − 1

F0 =
MSA
MSE

B treatments SSB b − 1 MSB =
SSB
b − 1

F0 =
MSB
MSE

Interaction SSAB (a − 1)(b − 1) MSAB =
SSAB

(a − 1)(b − 1)
F0 =

MSAB
MSE

Error SSE ab(n − 1) MSE =
SSE

ab(n − 1)

Total SST abn − 1

The sums of squares for the main effects are

SSA = 1
bn

a∑
i=1

y2
i.. −

y2
...

abn
(5.7)

and

SSB = 1
an

b∑
j=1

y2
.j. −

y2
...

abn
(5.8)

It is convenient to obtain the SSAB in two stages. First we compute the sum of squares between the ab cell totals, which
is called the sum of squares due to “subtotals”:

SSSubtotals =
1
n

a∑
i=1

b∑
j=1

y2
ij. −

y2
...

abn

This sum of squares also contains SSA and SSB. Therefore, the second step is to computeSSAB as

SSAB = SSSubtotals − SSA − SSB (5.9)

We may compute SSE by subtraction as

SSE = SST − SSAB − SSA − SSB (5.10)

or
SSE = SST − SSSubtotals

EXAMPLE 5 . 1 The Battery Design Experiment

Table 5.4 presents the effective life (in hours) observed in
the battery design example described in Section 5.3.1. The
row and column totals are shown in the margins of the table,
and the circled numbers are the cell totals.

Using Equations 5.6 through 5.10, the sums of squares
are computed as follows:

SST =
a∑
i=1

b∑
j=1

n∑
k=1

y2
ijk −

y2
···

abn

= (130)2 + (155)2 + (74)2 + · · ·

+ (60)2 − (3799)2

36
= 77,646.97
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SSMaterial =
1
bn

a∑
i=1

y2
i.. −

y2
···

abn

= 1
(3)(4)

[(998)2 + (1300)2 + (1501)2]

− (3799)2

36
= 10,683.72

SSTemperature =
1
an

b∑
j=1

y2
.j. −

y2
···

abn

= 1
(3)(4)

[(1738)2 + (1291)2 + (770)2]

− (3799)2

36
= 39,118.72

SSInteraction =
1
n

a∑
i=1

b∑
j=1

y2
ij. −

y2
···

abn
− SSMaterial

− SSTemperature

= 1
4
[(539)2 + (229)2 + · · · + (342)2]

− (3799)2

36
− 10,683.72

− 39,118.72 = 9613.78

and

SSE = SST − SSMaterial − SSTemperature − SSInteraction

= 77,646.97 − 10,683.72 − 39,118.72

− 9613.78 = 18,230.75

The ANOVA is shown in Table 5.5. Because F0.05,4,27 =
2.73, we conclude that there is a significant interac-
tion between material types and temperature. Furthermore,
F0.05,2,27 = 3.35, so the main effects of material type and
temperature are also significant. Table 5.5 also shows the
P-values for the test statistics.

To assist in interpreting the results of this experiment, it
is helpful to construct a graph of the average responses
at each treatment combination. This graph is shown in
Figure 5.9. The significant interaction is indicated by the
lack of parallelism of the lines. In general, longer life is
attained at low temperature, regardless of material type.
Changing from low to intermediate temperature, battery
life with material type 3 may actually increase, whereas
it decreases for types 1 and 2. From intermediate to high

◾ TABLE 5 . 4
Life Data (in hours) for the Battery Design Experiment

Temperature (∘F)

Material Type 15 70 125 yi..

130 155
539

34 40
229

20 70
230

1 74 180 80 75 82 58 998

150 188
623

136 122
479

25 70
198

2 159 126 106 115 58 45 1300

138 110
576

174 120
583

96 104
342

3 168 160 150 139 82 60 1501

y
.j. 1738 1291 770 3799 = y . . .

◾ TABLE 5 . 5
Analysis of Variance for Battery Life Data

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F0 P-Value

Material types 10,683.72 2 5,341.86 7.91 0.0020

Temperature 39,118.72 2 19,559.36 28.97 < 0.0001

Interaction 9,613.78 4 2,403.44 3.56 0.0186

Error 18,230.75 27 675.21

Total 77,646.97 35
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temperature, battery life decreases for material types 2 and
3 and is essentially unchanged for type 1. Material type 3

seems to give the best results if we want less loss of effective
life as the temperature changes.

◾ F I GURE 5 . 9 Material type–temperature plot
for Example 5.1
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Multiple Comparisons. When the ANOVA indicates that row or column means differ, it is usually of interest
to make comparisons between the individual row or column means to discover the specific differences. The multiple
comparison methods discussed in Chapter 3 are useful in this regard.

We now illustrate the use of Tukey’s test on the battery life data in Example 5.1. Note that in this experiment,
interaction is significant. When interaction is significant, comparisons between the means of one factor (e.g., A) may be
obscured by the AB interaction. One approach to this situation is to fix factor B at a specific level and apply Tukey’s test
to the means of factor A at that level. To illustrate, suppose that in Example 5.1 we are interested in detecting differences
among the means of the three material types. Because interaction is significant, we make this comparison at just one
level of temperature, say level 2 (70∘F). We assume that the best estimate of the error variance is the MSE from the
ANOVA table, utilizing the assumption that the experimental error variance is the same over all treatment combinations.

The three material type averages at 70∘F arranged in ascending order are

y12. = 57.25 (material type 1)

y22. = 119.75 (material type 2)

y32. = 145.75 (material type 3)

and

T0.05 = q0.05(3, 27)
√

MSE
n

= 3.50

√
675.21

4

= 45.47

where we obtained q0.05(3, 27) ≃ 3.50 by interpolation in Appendix Table V. The pairwise comparisons yield

3 vs. 1∶ 145.75 − 57.25 = 88.50 > T0.05 = 45.47

3 vs. 2∶ 145.75 − 119.75 = 26.00 < T0.05 = 45.47

2 vs. 1∶ 119.75 − 57.25 = 62.50 > T0.05 = 45.47
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This analysis indicates that at the temperature level 70∘F, the mean battery life is the same for material types 2 and 3
and that the mean battery life for material type 1 is significantly lower in comparison to both types 2 and 3.

If interaction is significant, the experimenter could compare all ab cell means to determine which ones differ
significantly. In this analysis, differences between cell means include interaction effects as well as both main effects.
In Example 5.1, this would give 36 comparisons between all possible pairs of the nine cell means.

Computer Output. Figure 5.10 presents condensed computer output for the battery life data in Example 5.1.
Figure 5.10a contains Design-Expert output and Figure 5.10b contains JMP output. Note that

SSModel = SSMaterial + SSTemperature + SSInteraction

= 10,683.72 + 39,118.72 + 9613.78

= 59,416.22

with eight degrees of freedom. An F-test is displayed for the model source of variation. The P-value is small (<
0.0001), so the interpretation of this test is that at least one of the three terms in the model is significant. The tests on
the individual model terms (A, B, AB) follow. Also,

R2 =
SSModel

SSTotal
= 59,416.22

77,646.97
= 0.7652

That is, about 77 percent of the variability in the battery life is explained by the plate material in the battery, the
temperature, and the material type–temperature interaction. The residuals from the fitted model are displayed on the
Design-Expert computer output and the JMP output contains a plot of the residuals versus the predicted response. We
now discuss the use of these residuals and residual plots in model adequacy checking.

5.3.3 Model Adequacy Checking

Before the conclusions from the ANOVA are adopted, the adequacy of the underlying model should be checked. As
before, the primary diagnostic tool is residual analysis. The residuals for the two-factor factorial model with interaction
are

eijk = yijk − ŷijk (5.11)

and because the fitted value ŷijk = yij. (the average of the observations in the ijth cell), Equation 5.11 becomes

eijk = yijk − ŷij. (5.12)

The residuals from the battery life data in Example 5.1 are shown in the Design-Expert computer output
(Figure 5.10a) and in Table 5.6. The normal probability plot of these residuals (Figure 5.11) does not reveal anything
particularly troublesome, although the largest negative residual (−60.75 at 15∘F for material type 1) does stand out
somewhat from the others. The standardized value of this residual is −60.75∕

√
675.21 = −2.34, and this is the only

residual whose absolute value is larger than 2.
Figure 5.12 plots the residuals versus the fitted values ŷijk. This plot was also shown in the JMP computer output

in Figure 5.10b. There is some mild tendency for the variance of the residuals to increase as the battery life increases.
Figures 5.13 and 5.14 plot the residuals versus material types and temperature, respectively. Both plots indicate mild
inequality of variance, with the treatment combination of 15∘F and material type 1 possibly having larger variance
than the others.

From Table 5.6 we see that the 15∘F-material type 1 cell contains both extreme residuals (−60.75 and 45.25).
These two residuals are primarily responsible for the inequality of variance detected in Figures 5.12, 5.13 and 5.14.
Reexamination of the data does not reveal any obvious problem, such as an error in recording, so we accept these
responses as legitimate. It is possible that this particular treatment combination produces slightly more erratic bat-
tery life than the others. The problem, however, is not severe enough to have a dramatic impact on the analysis and
conclusions.
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(a)

◾ F I GURE 5 . 10 Computer output for Example 5.1. (a) Design-Expert output; (b) JMP output
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◾ F I GURE 5 . 10 (Continued)



�

� �

�

194 Chapter 5 Introduction to Factorial Designs

◾ TABLE 5 . 6
Residuals for Example 5.1

Temperature (∘F)

Material Type 15 70 125

1 −4.75 20.25 −23.25 −17.25 −37.50 12.50

−60.75 45.25 22.75 17.75 24.50 0.50

2 −5.75 32.25 16.25 2.25 −24.50 20.50

3.25 −29.75 −13.75 −4.75 8.50 −4.50

3 −6.00 −34.00 28.25 −25.75 10.50 18.50

24.00 16.00 4.25 −6.75 −3.50 −25.50

–60.75 –34.25 –7.75

Residual

18.75 45.25

N
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rm
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l 
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◾ F I GURE 5 . 11 Normal probability plot
of residuals for Example 5.1

50 100 150 200

 e
ij

k
80

60

40

20

0

–20

–40

–60

–80

yijk

›

◾ F I GURE 5 . 12 Plot of residuals versus ŷijk
for Example 5.1

5.3.4 Estimating the Model Parameters

The parameters in the effects model for two-factor factorial

yijk = 𝜇 + 𝜏i + 𝛽j + (𝜏𝛽)ij + 𝜖ijk (5.13)

may be estimated by least squares. Because the model has 1 + a + b + ab parameters to be estimated, there are 1 +
a + b + ab normal equations. Using the method of Section 3.9, we find that it is not difficult to show that the normal
equations are

𝜇∶abn�̂� + bn
a∑
i=1

𝜏i + an
b∑
j=1

𝛽j + n
a∑
i=1

b∑
j=1

(𝜏𝛽)ij = y... (5.14a)

𝜏i∶bn�̂� + bn𝜏i + n
b∑
j=1

𝛽j + n
b∑
j=1

(𝜏𝛽)ij = yi... i = 1, 2, . . . , a (5.14b)
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◾ F I GURE 5 . 13 Plot of residuals versus
material type for Example 5.1
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◾ F I GURE 5 . 14 Plot of residuals versus
temperature for Example 5.1

𝛽j∶an�̂� + n
a∑
i=1

𝜏i + an𝛽j + n
a∑
i=1

(𝜏𝛽)ij = y
.j. j = 1, 2, . . . , b (5.14c)

(𝜏𝛽)ij∶n�̂� + n𝜏i + n𝛽j + n(𝜏𝛽)ij = yij.

{
i = 1, 2, . . . , a
j = 1, 2, . . . , b

(5.14d)

For convenience, we have shown the parameter corresponding to each normal equation on the left-hand side in
Equations 5.14.

The effects model (Equation 5.13) is an overparameterized model. Notice that the a equations in Equation 5.14b
sum to Equation 5.14a and that the b equations of Equation 5.14c sum to Equation 5.14a. Also summing Equation 5.14d
over j for a particular i will give Equation 5.14b, and summing Equation 5.14d over i for a particular j will give
Equation 5.14c. Therefore, there are a + b + 1 linear dependencies in this system of equations, and no unique solution
will exist. In order to obtain a solution, we impose the constraints

a∑
i=1

𝜏i = 0 (5.15a)

b∑
j=1

𝛽j = 0 (5.15b)

a∑
i=1

(𝜏𝛽)ij = 0 j = 1, 2, . . . , b (5.15c)

and
b∑
j=1

(𝜏𝛽)ij = 0 i = 1, 2, . . . , a (5.15d)

Equations 5.15a and 5.15b constitute two constraints, whereas Equations 5.15c and 5.15d form a + b − 1 independent
constraints. Therefore, we have a + b + 1 total constraints, the number needed.
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Applying these constraints, the normal equations (Equations 5.14) simplify considerably, and we obtain the
solution

�̂� = y
...

𝜏i = yi.. − y
...

i = 1, 2, . . . , a

𝛽j = y
.j. − y

...
j = 1, 2, . . . , b

(𝜏𝛽)ij = yij. − yi.. − y
.j. + y

...

{
i = 1, 2, . . . , a
j = 1, 2, . . . , b

(5.16)

Notice the considerable intuitive appeal of this solution to the normal equations. Row treatment effects are estimated
by the row average minus the grand average; column treatments are estimated by the column average minus the grand
average; and the ijth interaction is estimated by the ijth cell average minus the grand average, the ith row effect, and
the jth column effect.

Using Equation 5.16, we may find the fitted value yijk as

ŷijk = �̂� + 𝜏i + 𝛽j + (𝜏𝛽)ij
= y

...
+ (yi.. − y

...
) + (y

.j. − y
...
)

+ (yij. − yi.. − y
.j. + y

...
)

= yij.

That is, the kth observation in the ijth cell is estimated by the average of the n observations in that cell. This result was
used in Equation 5.12 to obtain the residuals for the two-factor factorial model.

Because constraints (Equations 5.15) have been used to solve the normal equations, the model parameters are
not uniquely estimated. However, certain important functions of the model parameters are estimable, that is, uniquely
estimated regardless of the constraint chosen. An example is 𝜏i − 𝜏u + (𝜏𝛽)i. − (𝜏𝛽)u., which might be thought of as
the “true” difference between the ith and the uth levels of factor A. Notice that the true difference between the levels
of any main effect includes an “average” interaction effect. It is this result that disturbs the tests on main effects in the
presence of interaction, as noted earlier. In general, any function of the model parameters that is a linear combination
of the left-hand side of the normal equations is estimable. This property was also noted in Chapter 3 when we were
discussing the single-factor model. For more information, see the supplemental text material for this chapter.

5.3.5 Choice of Sample Size

Computer software can be used to assist in determining an appropriate same size in a factorial experiment. For
example, consider the battery life experiment in Example 5.1. There are two factors, one quantitative and one qual-
itative, each at three levels. Suppose that the experimenter is unsure about the required number of replicates, but
wants to be sure that if the effect sizes are one standard deviation in magnitude, they have a high probability of being
detected (power).

JMP can be used to assist in answering this sample size question. Table 5.7 contains output from the JMP Design
Evaluation tool for this experiment, assuming three replicates (upper portion of the table) and four replicates (lower
portion). In this analysis, we have assumed that the model regression coefficients are one standard deviation in magni-
tude. Because temperature is quantitative, we have included both linear and quadratic components of that factor. The
qualitative factor material type has two degrees of freedom, which are represented by the two material type model
terms. Both designs have reasonable power. With three replicates, the interaction effects and the quadratic temperature
effects have power below 0.9, while with four replicates the power for the interaction term is also above 0.9 and the
power for the quadratic effect of temperature has increased from 0.645 to 0.78. This is probably adequate, so a design
with four replicates is a reasonable choice.
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◾ TABLE 5 . 7
Power Analysis from JMP for Example 5.1

5.3.6 The Assumption of No Interaction in a Two-Factor Model

Occasionally, an experimenter feels that a two-factor model without interaction is appropriate, say

yijk = 𝜇 + 𝜏i + 𝛽j + 𝜖ijk

⎧⎪⎨⎪⎩
i = 1, 2, . . . , a
j = 1, 2, . . . , b
k = 1, 2, . . . , n

(5.17)

We should be very careful in dispensing with the interaction terms, however, because the presence of significant inter-
action can have a dramatic impact on the interpretation of the data.

The statistical analysis of a two-factor factorial model without interaction is straightforward. Table 5.8 presents
the analysis of the battery life data from Example 5.1, assuming that the no-interaction model (Equation 5.17) applies.
As noted previously, both main effects are significant. However, as soon as a residual analysis is performed for these
data, it becomes clear that the no-interaction model is inadequate. For the two-factor model without interaction,
the fitted values are ŷijk = yi.. + y

.j. − y
...

. A plot of ŷij. − ŷijk (the cell averages minus the fitted value for that cell)
versus the fitted value ŷijk is shown in Figure 5.15. Now the quantities yij. − ŷijk may be viewed as the differences
between the observed cell means and the estimated cell means assuming no interaction. Any pattern in these quantities
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◾ TABLE 5 . 8
Analysis of Variance for Battery Life Data Assuming No Interaction

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F0

Material types 10,683.72 2 5,341.86 5.95

Temperature 39,118.72 2 19,559.36 21.78

Error 27,844.52 31 898.21

Total 77,646.96 35

◾ F I GURE 5 . 15 Plot of yij. − ŷijk versus ŷijk,
battery life data
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is suggestive of the presence of interaction. Figure 5.15 shows a distinct pattern as the quantities yij. − yijk move from
positive to negative to positive to negative again. This structure is the result of interaction between material types and
temperature.

5.3.7 One Observation per Cell

Occasionally, one encounters a two-factor experiment with only a single replicate, that is, only one observation per
cell. If there are two factors and only one observation per cell, the effects model is

yij = 𝜇 + 𝜏i + 𝛽j + (𝜏𝛽)ij + 𝜖ij

{
i = 1, 2, . . . , a
j = 1, 2, . . . , b

(5.18)

The analysis of variance for this situation is shown in Table 5.9, assuming that both factors are fixed.
From examining the expected mean squares, we see that the error variance 𝜎

2 is not estimable; that is, the two-
factor interaction effect (𝜏𝛽)ij and the experimental error cannot be separated in any obvious manner. Consequently,
there are no tests on main effects unless the interaction effect is zero. If there is no interaction present, then (𝜏𝛽)ij = 0
for all i and j, and a plausible model is

yij = 𝜇 + 𝜏i + 𝛽j + 𝜖ij

{
i = 1, 2, . . . , a
j = 1, 2, . . . , b

(5.19)

If the model (Equation 5.19) is appropriate, then the residual mean square in Table 5.9 is an unbiased estimator of 𝜎2,
and the main effects may be tested by comparing MSA and MSB to MSResidual.

A test developed by Tukey (1949a) is helpful in determining whether interaction is present. The procedure
assumes that the interaction term is of a particularly simple form, namely,

(𝜏𝛽)ij = 𝛾𝜏i𝛽j
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◾ TABLE 5 . 9
Analysis of Variance for a Two-Factor Model, One Observation per Cell

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square

Expected
Mean Square

Rows (A)
a∑
i=1

y2
i.

b
−

y2
..

ab
a − 1 MSA 𝜎

2 +
b
∑

𝜏
2
i

a − 1

Columns (B)
b∑
j=1

y2
.j

a
−

y2
..

ab
b − 1 MSB 𝜎

2 +
a
∑

𝛽
2
j

b − 1

Residual or AB Subtraction (a − 1)(b − 1) MSResidual 𝜎
2 +

∑∑
(𝜏𝛽)2ij

(a − 1)(b − 1)

Total
a∑
i=1

b∑
j=1

y2
ij −

y2
..

ab
ab − 1

where 𝛾 is an unknown constant. By defining the interaction term this way, we may use a regression approach to test
the significance of the interaction term. The test partitions the residual sum of squares into a single-degree-of-freedom
component due to nonadditivity (interaction) and a component for error with (a − 1)(b − 1) − 1 degrees of freedom.
Computationally, we have

SSN =

[
a∑
i=1

b∑
j=1

yijyi.y.j − y
..

(
SSA + SSB +

y2
..

ab

)2
]2

abSSASSB
(5.20)

with one degree of freedom, and
SSError = SSResidual − SSN (5.21)

with (a − 1)(b − 1) − 1 degrees of freedom. To test for the presence of interaction, we compute

F0 =
SSN

SSError∕[(a − 1)(b − 1) − 1]
(5.22)

If F0 > F
𝛼,1,(a−1)(b−1)−1, the hypothesis of no interaction must be rejected.

EXAMPLE 5 . 2

The impurity present in a chemical product is affected
by two factors—pressure and temperature. The data from
a single replicate of a factorial experiment are shown in
Table 5.10. The sums of squares are

SSA =
1
b

a∑
i=1

y2
i. −

y2
..

ab

= 1
5
[232 + 132 + 82] − 442

(3)(5)
= 23.33

SSB =
1
a

b∑
j=1

y2
.j −

y2
..

ab

= 1
3
[92 + 62 + 132 + 62 + 102] − 442

(3)(5)
= 11.60

SST =
a∑
i=1

b∑
j=1

y2
ij −

y2
..

ab

= 166 − 129.07 = 36.93

and

SSResidual = SST − SSA − SSB
= 36.93 − 23.33 − 11.60 = 2.00



�

� �

�

200 Chapter 5 Introduction to Factorial Designs

The sum of squares for nonadditivity is computed from
Equation 5.20 as follows:

a∑
i=1

b∑
j=1

yijyi.y.j = (5)(23)(9) + (4)(23)(6) + · · ·

+ (2)(8)(10) = 7236

SSN =

[
a∑
i=1

b∑
j=1

yijyi.y.j − y
..

(
SSA + SSB +

y2
..

ab

)]2

abSSASSB

= [7236 − (44)(23.33 + 11.60 + 129.07)]2

(3)(5)(23.33)(11.60)

= [20.00]2

4059.42
= 0.0985

and the error sum of squares is, from Equation 5.21,

SSError = SSResidual − SSN = 2.00 − 0.0985 = 1.9015

The complete ANOVA is summarized in Table 5.11.
The test statistic for nonadditivity is F0 = 0.0985∕0.2716 =
0.36, so we conclude that there is no evidence of interaction
in these data. The main effects of temperature and pressure
are significant.

◾ TABLE 5 . 10
Impurity Data for Example 5.2

Pressure

Temperature (∘F) 25 30 35 40 45 yi .

100 5 4 6 3 5 23

125 3 1 4 2 3 13

150 1 1 3 1 2 8

y
.j 9 6 13 6 10 44 = y

..

◾ TABLE 5 . 11
Analysis of Variance for Example 5.2

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F0 P-Value

Temperature 23.33 2 11.67 42.97 0.0001

Pressure 11.60 4 2.90 10.68 0.0042

Nonadditivity 0.0985 1 0.0985 0.36 0.5674

Error 1.9015 7 0.2716

Total 36.93 14

In concluding this section, we note that the two-factor factorial model with one observation per cell
(Equation 5.19) looks exactly like the randomized complete block model (Equation 4.1). In fact, the Tukey single-
degree-of-freedom test for nonadditivity can be directly applied to test for interaction in the randomized block model.
However, remember that the experimental situations that lead to the randomized block and factorial models are
very different. In the factorial model, all ab runs have been made in random order, whereas in the randomized block
model, randomization occurs only within the block. The blocks are a randomization restriction. Hence, the manner in
which the experiments are run and the interpretation of the two models are quite different.
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5.4 The General Factorial Design

The results for the two-factor factorial design may be extended to the general case where there are a levels of factor A,
b levels of factor B, c levels of factor C, and so on, arranged in a factorial experiment. In general, there will be abc . . . n
total observations if there are n replicates of the complete experiment. Once again, note that we must have at least two
replicates (n ≥ 2) to determine a sum of squares due to error if all possible interactions are included in the model.

If all factors in the experiment are fixed, we may easily formulate and test hypotheses about the main effects and
interactions using the ANOVA. For a fixed effects model, test statistics for each main effect and interaction may be
constructed by dividing the corresponding mean square for the effect or interaction by the mean square error. All of
these F-tests will be upper-tail, one-tail tests. The number of degrees of freedom for any main effect is the number of
levels of the factor minus one, and the number of degrees of freedom for an interaction is the product of the number
of degrees of freedom associated with the individual components of the interaction.

For example, consider the three-factor analysis of variance model:

yijkl = 𝜇 + 𝜏i + 𝛽j + 𝛾k + (𝜏𝛽)ij + (𝜏𝛾)ik + (𝛽𝛾)jk

+(𝜏𝛽𝛾)ijk + 𝜖ijkl

⎧⎪⎨⎪⎩

i = 1, 2, . . . , a
j = 1, 2, . . . , b
k = 1, 2, . . . , c
l = 1, 2, . . . , n

(5.23)

Assuming that A, B, and C are fixed, the analysis of variance table is shown in Table 5.12. The F-tests on main effects
and interactions follow directly from the expected mean squares.

◾ TABLE 5 . 12
The Analysis of Variance Table for the Three-Factor Fixed Effects Model

Source of
Variation

Sum of
Square

Degrees of
Freedom

Mean
Squares Expected Mean Square F0

A SSA a − 1 MSA 𝜎
2 +

bcn
∑

𝜏
2
i

a − 1
F0 =

MSA
MSE

B SSB b − 1 MSB 𝜎
2 +

acn
∑

𝛽
2
j

b − 1
F0 =

MSB
MSE

C SSC c − 1 MSC 𝜎
2 +

abn
∑

𝛾
2
k

c − 1
F0 =

MSC
MSE

AB SSAB (a − 1)(b − 1) MSAB 𝜎
2 +

cn
∑∑

(𝜏𝛽)2
ij

(a − 1)(b − 1)
F0 =

MSAB
MSE

AC SSAC (a − 1)(c − 1) MSAC 𝜎
2 +

bn
∑∑

(𝜏𝛾)2
ik

(a − 1)(c − 1)
F0 =

MSAC
MSE

BC SSBC (b − 1)(c − 1) MSBC 𝜎
2 +

an
∑∑

(𝛽𝛾)2
jk

(b − 1)(c − 1)
F0 =

MSBC
MSE

ABC SSABC (a − 1)(b − 1)(c − 1) MSABC 𝜎
2 +

n
∑∑∑

(𝜏𝛽𝛾)2ijk
(a − 1)(b − 1)(c − 1)

F0 =
MSABC
MSE

Error SSE abc(n − 1) MSE 𝜎
2

Total SST abcn − 1
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Usually, the analysis of variance computations would be done using a statistics software package. However,
manual computing formulas for the sums of squares in Table 5.12 are occasionally useful. The total sum of squares is
found in the usual way as

SST =
a∑
i=1

b∑
j=1

c∑
k=1

n∑
l=1

y2
ijkl −

y2
....

abcn
(5.24)

The sums of squares for the main effects are found from the totals for factors A(yi...), B(y.j..), and C(y
..k.) as follows:

SSA = 1
bcn

a∑
i=1

y2
i... −

y2
....

abcn
(5.25)

SSB = 1
acn

b∑
j=1

y2
.j.. −

y2
....

abcn
(5.26)

SSC = 1
abn

c∑
k=1

y2
..k. −

y2
....

abcn
(5.27)

To compute the two-factor interaction sums of squares, the totals for the A × B,A × C, and B × C cells are needed. It is
frequently helpful to collapse the original data table into three two-way tables to compute these quantities. The sums
of squares are found from

SSAB =
1
cn

a∑
i=1

b∑
j=1

y2
ij.. −

y2
....

abcn
− SSA − SSB

= SSSubtotals(AB) − SSA − SSB (5.28)

SSAC = 1
bn

a∑
i=1

c∑
k=1

y2
i.k. −

y2
....

abcn
− SSA − SSC

= SSSubtotals(AC) − SSA − SSC (5.29)

and

SSBC = 1
an

b∑
j=1

c∑
k=1

y2
.jk. −

y2
....

abcn
− SSB − SSC

= SSSubtotals(BC) − SSB − SSC (5.30)

Note that the sums of squares for the two-factor subtotals are found from the totals in each two-way table. The
three-factor interaction sum of squares is computed from the three-way cell totals {yijk.} as

SSABC = 1
n

a∑
i=1

b∑
j=1

c∑
k=1

y2
ijk. −

y2
....

abcn
− SSA − SSB − SSC − SSAB − SSAC − SSBC (5.31a)

= SSSubtotals(ABC) − SSA − SSB − SSC − SSAB − SSAC − SSBC (5.31b)

The error sum of squares may be found by subtracting the sum of squares for each main effect and interaction from
the total sum of squares or by

SSE = SST − SSSubtotals(ABC) (5.32)
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EXAMPLE 5 . 3 The Soft Drink Bottling Problem

A soft drink bottler is interested in obtaining more uniform
fill heights in the bottles produced by his manufacturing pro-
cess. The filling machine theoretically fills each bottle to
the correct target height, but in practice, there is variation
around this target, and the bottler would like to understand
the sources of this variability better and eventually reduce it.

The process engineer can control three variables during
the filling process: the percent carbonation (A), the operating
pressure in the filler (B), and the bottles produced per minute
or the line speed (C). The pressure and speed are easy to con-
trol, but the percent carbonation is more difficult to control
during actual manufacturing because it varies with prod-
uct temperature. However, for purposes of an experiment,
the engineer can control carbonation at three levels: 10, 12,
and 14 percent. She chooses two levels for pressure (25 and
30 psi) and two levels for line speed (200 and 250 bpm). She

decides to run two replicates of a factorial design in these
three factors, with all 24 runs taken in random order. The
response variable observed is the average deviation from
the target fill height observed in a production run of bot-
tles at each set of conditions. The data that resulted from
this experiment are shown in Table 5.13. Positive deviations
are fill heights above the target, whereas negative devia-
tions are fill heights below the target. The circled numbers
in Table 5.13 are the three-way cell totals yijk.

The total corrected sum of squares is found from
Equation 5.24 as

SST =
a∑
i=1

b∑
j=1

c∑
k=1

n∑
l=1

y2
ijkl −

y2
....

abcn

= 571 − (75)2

24
= 336.625

◾ TABLE 5 . 13
Fill Height Deviation Data for Example 5.3

Operating Pressure (B)

25 psi 30 psi

Line Speed (C) Line Speed (C)Percent
Carbonation (A) 200 250 200 250 yi...

−3
–4

−1
–1

−1
–1

1
2

10 −1 0 0 1 −4
0

1
2

3
2

5
6

11
12 1 1 3 5 20

5
9

7
13

7
16

10
21

14 4 6 9 11 59

B × C Totals y
.jk. 6 15 20 34 75 = y

y
.j.. 21 54

A × B Totals A × C Totals
yij.. yi.k.

B C
A 25 30 A 200 250

10 −5 1 10 −5 1
12 4 16 12 6 14
14 22 37 14 25 34
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and the sums of squares for the main effects are calculated
from Equations 5.25, 5.26, and 5.27 as

SSCarbonation =
1
bcn

a∑
i=1

y2
i... −

y2
....

abcn

= 1
8
[(−4)2 + (20)2 + (59)2] − (75)2

24
= 252.750

SSPressure =
1
acn

b∑
j=1

y2
.j.. −

y2
....

abcn

= 1
12

[(21)2 + (54)2] − (75)2

24
= 45.375

and

SSSpeed =
1

abn

c∑
k=1

y2
..k. −

y2
....

abcn

= 1
12

[(26)2 + (49)2] − (75)2

24
= 22.042

To calculate the sums of squares for the two-factor inter-
actions, we must find the two-way cell totals. For example,
to find the carbonation–pressure or AB interaction, we need
the totals for the A × B cells {yij..} shown in Table 5.13.
Using Equation 5.28, we find the sums of squares as

SSAB =
1
cn

a∑
i=1

b∑
j=1

y2
ij.. −

y2
....

abcn
− SSA − SSB

= 1
4
[(−5)2 + (1)2 + (4)2 + (16)2 + (22)2 + (37)2]

− (75)2

24
− 252.750 − 45.375

= 5.250

The carbonation–speed or AC interaction uses the A × C cell
totals {yi.k.} shown in Table 5.13 and Equation 5.29:

SSAC = 1
bn

a∑
i=1

c∑
k=1

y2
i.k. −

y2
....

abcn
− SSA − SSC

= 1
4
[(−5)2 + (1)2 + (6)2 + (14)2 + (25)2 + (34)2]

− (75)2

24
− 252.750 − 22.042

= 0.583

The pressure–speed or BC interaction is found from the B ×
C cell totals {y

.jk.} shown in Table 5.13 and Equation 5.30:

SSBC = 1
an

b∑
j=1

c∑
k=1

y2
.jk. −

y2
....

abcn
− SSB − SSC

= 1
6
[(6)2 + (15)2 + (20)2 + (34)2] − (75)2

24
−45.375 − 22.042

= 1.042

The three-factor interaction sum of squares is found
from the A × B × C cell totals {yijk.}, which are circled in
Table 5.13. From Equation 5.31a, we find

SSABC = 1
n

a∑
i=1

b∑
j=1

c∑
k=1

y2
ijk. −

y2
....

abcn
− SSA − SSB − SSC

−SSAB − SSAC − SSBC

= 1
2
[(−4)2 + (−1)2 + (−1)2 + · · · + (16)2 + (21)2]

− (75)2

24
− 252.750 − 45.375 − 22.042

−5.250 − 0.583 − 1.042

= 1.083

Finally, noting that

SSSubtotals(ABC) =
1
n

a∑
i=1

b∑
j=1

c∑
k=1

y2
ijk. −

y2
....

abcn
= 328.125

we have

SSE = SST − SSSubtotals(ABC)

= 336.625 − 328.125

= 8.500

The ANOVA is summarized in Table 5.14. We see
that the percentage of carbonation, operating pressure,
and line speed significantly affect the fill volume. The
carbonation–pressure interaction F ratio has a P-value of
0.0558, indicating some interaction between these factors.

The next step should be an analysis of the residuals from
this experiment. We leave this as an exercise for the reader
but point out that a normal probability plot of the residuals
and the other usual diagnostics do not indicate any major
concerns.

To assist in the practical interpretation of this experi-
ment, Figure 5.16 presents plots of the three main effects
and the AB (carbonation–pressure) interaction. The main
effect plots are just graphs of the marginal response aver-
ages at the levels of the three factors. Notice that all three
variables have positive main effects; that is, increasing the
variable moves the average deviation from the fill target
upward. The interaction between carbonation and pressure
is fairly small, as shown by the similar shape of the two
curves in Figure 5.16d.

Because the company wants the average deviation from
the fill target to be close to zero, the engineer decides to rec-
ommend the low level of operating pressure (25 psi) and
the high level of line speed (250 bpm, which will max-
imize the production rate). Figure 5.17 plots the average
observed deviation from the target fill height at the three dif-
ferent carbonation levels for this set of operating conditions.
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◾ TABLE 5 . 14
Analysis of Variance for Example 5.3

Source of Variation
Sum of
Squares

Degrees of
Freedom

Mean
Square F0 P-Value

Percent carbonation (A) 252.750 2 126.375 178.412 <0.0001
Operating pressure (B) 45.375 1 45.375 64.059 <0.0001
Line speed (C) 22.042 1 22.042 31.118 0.0001
AB 5.250 2 2.625 3.706 0.0558
AC 0.583 2 0.292 0.412 0.6713
BC 1.042 1 1.042 1.471 0.2485
ABC 1.083 2 0.542 0.765 0.4867
Error 8.500 12 0.708
Total 336.625 23

Now the carbonation level cannot presently be perfectly
controlled in the manufacturing process, and the normal
distribution shown with the solid curve in Figure 5.17
approximates the variability in the carbonation levels
presently experienced. As the process is impacted by the
values of the carbonation level drawn from this distribution,
the fill heights will fluctuate considerably. This variability

in the fill heights could be reduced if the distribution of
the carbonation level values followed the normal distribu-
tion shown with the dashed line in Figure 5.17. Reducing
the standard deviation of the carbonation level distribution
was ultimately achieved by improving temperature control
during manufacturing.
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◾ F I GURE 5 . 16 Main effects and
interaction plots for Example 5.3. (a) Percentage
of carbonation (A). (b) Pressure (B). (c) Line
speed (C). (d) Carbonation–pressure interaction
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◾ F I GURE 5 . 17 Average fill height deviation at
high speed and low pressure for different carbonation
levels
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We have indicated that if all the factors in a factorial experiment are fixed, test statistic construction is straight-
forward. The statistic for testing any main effect or interaction is always formed by dividing the mean square for
the main effect or interaction by the mean square error. However, if the factorial experiment involves one or more
random factors, the test statistic construction is not always done this way. We must examine the expected mean
squares to determine the correct tests. We defer a complete discussion of experiments with random factors until
Chapter 13.

5.5 Fitting Response Curves and Surfaces

The ANOVA always treats all of the factors in the experiment as if they were qualitative or categorical. However, many
experiments involve at least one quantitative factor. It can be useful to fit a response curve to the levels of a quantitative
factor so that the experimenter has an equation that relates the response to the factor. This equation might be used
for interpolation, that is, for predicting the response at factor levels between those actually used in the experiment.
When at least two factors are quantitative, we can fit a response surface for predicting y at various combinations
of the design factors. In general, linear regression methods are used to fit these models to the experimental data.
We illustrated this procedure in Section 3.5.1 for an experiment with a single factor. We now present two examples
involving factorial experiments. In both examples, we will use a computer software package to generate the regression
models. For more information about regression analysis, refer to Chapter 10 and the supplemental text material for
this chapter.

EXAMPLE 5 . 4

Consider the battery life experiment described in Example
5.1. The factor temperature is quantitative, and the mate-
rial type is qualitative. Furthermore, there are three levels
of temperature. Consequently, we can compute a linear and
a quadratic temperature effect to study how temperature
affects the battery life. Table 5.15 presents condensed output
from Design-Expert for this experiment and assumes that
temperature is quantitative and material type is qualitative.

The ANOVA in Table 5.15 shows that the “model”
source of variability has been subdivided into several
components. The components “A” and “A2” represent the
linear and quadratic effects of temperature, and “B” repre-
sents the main effect of the material type factor. Recall that
material type is a qualitative factor with three levels. The
terms “AB” and “A2B” are the interactions of the linear and
quadratic temperature factor with material type.
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◾ TABLE 5 . 15
Design-Expert Output for Example 5.4

Response: Life In Hours

ANOVA for Response Surface Reduced Cubic Model

Analysis of Variance Table [Partial Sum of Squares]

Source
Sum of
Squares DF

Mean
Square

F
Value Prob > F

Model 59416.22 8 7427.03 11.00 <0.0001 significant

A 39042.67 1 39042.67 57.82 <0.0001

B 10683.72 2 5341.86 7.91 0.0020

A2 76.06 1 76.06 0.11 0.7398

AB 2315.08 2 1157.54 1.71 0.1991

A2B 7298.69 2 3649.35 5.40 0.0106

Residual 18230.75 27 675.21

Lack of Fit 0.000 0

Pure Error 18230.75 27 675.21

Cor Total 77646.97 35

Std. Dev. 25.98 R-Squared 0.7652

Mean 105.53 Adj R-Squared 0.6956

C.V. 24.62 Pred R-Squared 0.5826

PRESS 32410.22 Adeq Precision 8.178

Term
Coefficient
Estimate DF

Standard
Error

95% Cl
Low

95% Cl
High VIF

Intercept 107.58 1 7.50 92.19 122.97

A-Temp −40.33 1 5.30 −51.22 −29.45 1.00

B[1] −50.33 1 10.61 −72.10 −28.57

B[2] 12.17 1 10.61 −9.60 33.93

A2 −3.08 1 9.19 −21.93 15.77 1.00

AB[1] 1.71 1 7.50 −13.68 17.10

AB[2] −12.79 1 7.50 −28.18 2.60

A2B[1] 41.96 1 12.99 15.30 68.62

A2B[2] −14.04 1 12.99 −40.70 12.62

Final Equation in Terms of Coded Factors:

Life =
+107.58

−40.33 ∗A
−50.33 ∗B[1]
+12.17 ∗B[2]
−3.08 ∗A2

+1.71 ∗AB[1]
−12.79 ∗AB[2]
+41.96 ∗A2B[1]
−14.04 ∗A2[2]
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◾ TABLE 5 . 15 (Continued)

Final Equation in Terms of Actual Factors:

Material Type 1

Life =
+169.38017

−2.50145 ∗Temp

+0.012851 ∗Temp2

Material Type 2

Life =
+159.62397

−0.17335 ∗Temp

+0.41627 ∗Temp2

Material Type 3

Life =
+132.76240

+0.90289 ∗Temp

−0.01248 ∗Temp2

15.00 42.50 70.00

Temperature

Material type 1

Material type 2

Material type 3

97.50

2

2

2

125.00

L
if

e

188

146

104

62

20

◾ F I GURE 5 . 18 Predicted life as a function of temperature for the
three material types, Example 5.4
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The P-values indicate that A2 and AB are not significant,
whereas the A2B term is significant. Often we think about
removing nonsignificant terms or factors from a model, but
in this case, removing A2 and AB and retaining A2B will
result in a model that is not hierarchical. The hierarchy
principle indicates that if a model contains a high-order
term (such as A2B), it should also contain all of the lower
order terms that compose it (in this case A2 and AB). Hierar-
chy promotes a type of internal consistency in a model, and
many statistical model builders rigorously follow the princi-
ple. However, hierarchy is not always a good idea, and many
models actually work better as prediction equations without
including the nonsignificant terms that promote hierarchy.
For more information, see the supplemental text material
for this chapter.

The computer output also gives model coefficient esti-
mates and a final prediction equation for battery life in
coded factors. In this equation, the levels of temperature are
A = −1, 0,+1, respectively, when temperature is at the low,

middle, and high levels (15, 70, and 125∘C). The variables
B[1] and B[2] are coded indicator variables that are defined
as follows:

Material Type

1 2 3

B[1] 1 0 −1

B[2] 0 1 −1

There are also prediction equations for battery life in terms
of the actual factor levels. Notice that because material type
is a qualitative factor there is an equation for predicted
life as a function of temperature for each material type.
Figure 5.18 shows the response curves generated by these
three prediction equations. Compare them to the two-factor
interaction graph for this experiment in Figure 5.9.

If several factors in a factorial experiment are quantitative a response surface may be used to model the
relationship between y and the design factors. Furthermore, the quantitative factor effects may be represented by
single-degree-of-freedom polynomial effects. Similarly, the interactions of quantitative factors can be partitioned into
single-degree-of-freedom components of interaction. This is illustrated in the following Example 5.5.

EXAMPLE 5 . 5

The effective life of a cutting tool installed in a numeri-
cally controlled machine is thought to be affected by the
cutting speed and the tool angle. Three speeds and three
angles are selected, and a 32 factorial experiment with
two replicates is performed. The coded data are shown in

Table 5.16. The circled numbers in the cells are the cell
totals {yij.}.

Table 5.17 shows the JMP output for this experiment.
This is a classical ANOVA, treating both factors as categor-
ical. Notice that design factors tool angle and speed as well

◾ TABLE 5 . 16
Data for Tool Life Experiment

Cutting Speed (in/min)Total Angle
(degrees) 125 150 175 yi..

−2
–3

−3
–3

2
515 −1 0 3 −1

0
2

1
4

4
1020 2 3 6 16

−1
–1

5
11

0
–125 0 6 −1 9

y
.j. −2 12 14 24 = y

...
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◾ TABLE 5 . 17
JMP ANOVA for the Tool Life Experiment in Example 5.5

6

4

2

0

–2

–4
–3 –2 –1 0 1

Tool life predicted

T
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o
l 
li
fe

 a
ct

u
a

l

P=0.0013 RSq=0.90
RMSE=1.2019

2 3 4 5 6

Summary of Fit

RSquare 0.895161

RSquare Adj 0.801971

Root Mean Square Error 1.20185

Mean of Response 1.333333

Observations (or Sum Wgts) 18

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio

Model 8 111.00000 13.8750 9.6058

Error 9 13.00000 1.4444 Prob > F

C. Total 17 124.00000 0.0013

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F

Angle 2 2 24.333333 8.4231 0.0087

Speed 2 2 25.333333 8.7692 0.0077

Angle*Speed 4 4 61.333333 10.6154 0.0018

2.0

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

–2.5

Tool life predicted

T
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l 
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u
a
l

–3 –2 –1 0 1 2 3 4 5 6
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as the angle–speed interaction are significant. Since the fac-
tors are quantitative, and both factors have three levels, a
second-order model such as

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝛽11x
2
1 + 𝛽22x

2
2 + 𝜖

where x1 = angle and x2 = speed could also be fit to the
data. The JMP output for this model is shown in Table 5.18.
Notice that JMP “centers” the predictors when forming the
interaction and quadratic model terms. The second-order
model doesn’t look like a very good fit to the data; the
value of R2 is only 0.465 (compared to R2 = 0.895 in the

categorical variable ANOVA) and the only significant factor
is the linear term in speed for which the P-value is 0.0731.
Notice that the mean square for error in the second-order
model fit is 5.5278, considerably larger than it was in the
classical categorical variable ANOVA of Table 5.17. The
JMP output in Table 5.18 shows the prediction profiler,
a graphical display showing the response variable life as a
function of each design factor, angle and speed. The predic-
tion profiler is very useful for optimization. Here it has been
set to the levels of angle and speed that result in maximum
predicted life.

◾ TABLE 5 . 18
JMP Output for the Second-Order Model, Example 5.5
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P = 0.1377 RSq = 0.47
RMSE = 2.3511

2 3 4 5 6

Summary of Fit

RSquare 0.465054

RSquare Adj 0.242159

Root Mean Square Error 2.351123

Mean of Response 1.333333

Observations (or Sum Wgts) 18

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio

Model 5 57.66667 11.5333 2.0864

Error 12 66.33333 5.5278 Prob > F

C. Total 17 124.00000 0.1377

Parameter Estimates

Term Estimate Std. Error t Ratio Prob > |t|
Intercept −8 5.048683 −1.58 0.1390

Angle 0.1666667 0.135742 1.23 0.2431

Speed 0.0533333 0.027148 1.96 0.0731
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◾ TABLE 5 . 18 (Continued)

(Angle-20)*(Speed-150) −0.008 0.00665 −1.20 0.2522

(Angle-20)*(Angle-20) −0.08 0.047022 −1.70 0.1146

(Speed-150)*(Speed-150) −0.0016 0.001881 −0.85 0.4116
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Part of the reason for the relatively poor fit of the second-
order model is that only one of the four degrees of freedom
for interaction are accounted for in this model. In addition
to the term 𝛽12x1x2, there are three other terms that could be
fit to completely account for the four degrees of freedom for
interaction, namely 𝛽112x

2
1x2, 𝛽122x1x

2
2, and 𝛽1122x

2
1x

2
2.

JMP output for the second-order model with the addi-
tional higher-order terms is shown in Table 5.19. While
these higher-order terms are components of the two-factor
interaction, the final model is a reduced quartic. Although
there are some large P-values, all model terms have
been retained to ensure hierarchy. The prediction profiler
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◾ F I GURE 5 . 19 Two-dimensional contour plot of
the tool life response surface for Example 5.5
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◾ F I GURE 5 . 20 Three-dimensional tool life
response surface for Example 5.5
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indicates that maximum tool life is achieved around an angle
of 25 degrees and speed of 150 in/min.

Figure 5.19 is the contour plot of tool life for this model
and Figure 5.20 is a three-dimensional response surface
plot. These plots confirm the estimate of the optimum

operating conditions found from the JMP prediction pro-
filer. Exploration of response surfaces is an important use of
designed experiments, which we will discuss in more detail
in Chapter 11.

◾ TABLE 5 . 19
JMP Output for the Expanded Model in Example 5.5

Response Y
Actual by Predicted Plot
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2
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–4 –3 –1–2 0 1

Y Predicted P=0.0013
RSq = 0.90  RMSE = 1.2019
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Summary of Fit

RSquare 0.895161

RSquare Adj 0.801971

Root Mean Square Error 1.20185

Mean of Response 1.333333

Observations (or Sum Wgts) 18

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio

Model 8 111.00000 13.8750 9.6058

Error 9 13.00000 1.4444 Prob > F

C. Total 17 124.00000 0.0013*

Parameter Estimates

Term Estimate Std Error t Ratio Prob > |t|
Intercept −24 4.41588 −5.43 0.0004*

Angle 0.7 0.120185 5.82 0.0003*

Speed 0.08 0.024037 3.33 0.0088*

(Angle-20)*(Speed-150) −0.008 0.003399 −2.35 0.0431*

(Angle-20)*(Angle-20) 2.776e-17 0.041633 0.00 1.0000

(Speed-150)*(Speed-150) 0.0016 0.001665 0.96 0.3618

(Angle-20)*(Speed-150)*(Angle-20) −0.0016 0.001178 −1.36 0.2073

(Speed-150)*(Speed-150)*(Angle-20) −0.00128 0.000236 −5.43 0.0004*

(Angle-20)*(Speed-150)*(Angle-20)*(Speed-150) −0.000192 8.158a-5 −2.35 0.0431*
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◾ TABLE 5 . 19 (Continued)

Effect Tests

Source Nparm DF
Sum of
Squares F Ratio Prob > F

Angle 1 1 49.000000 33.9231 0.0003*

Speed 1 1 16.000000 11.0769 0.0088*

Angle*Speed 1 1 8.000000 5.5385 0.0431*

Angle*Angle 1 1 6.4198e-31 0.0000 1.0000

Speed*Speed 1 1 1.333333 0.9231 0.3618

Angle*Speed*Angle 1 1 2.666667 1.8462 0.2073

Speed*Speed*Angle 1 1 42.666667 29.5385 0.0004*

Angle*Speed*Angle*Speed 1 1 8.000000 5.5385 0.0431*

Sorted Parameter Estimates

Term Estimate Std Error t Ratio Prob > |t|
Angle 0.7 0.120185 5.82 0.0003*

(Speed-150)*(Speed-150)*(Angle-20) −0.00128 0.000236 −5.43 0.0004*

Speed 0.08 0.024037 3.33 0.0088*

(Angle-20)*(Speed-150)*
(Angle-20)*(Speed-150)

−0.000192 8.158a-5 −2.35 0.0431*

(Angle-20)*(Speed-150) −0.008 0.003399 −2.35 0.0431*

(Angle-20)*(Speed-150)*
(Angle-20)

−0.0016 0.001178 −1.36 0.2073

(Speed-150)*(Speed-150) 0.0016 0.001665 0.96 0.3618

(Angle-20)*(Angle-20) 2.776e-17 0.041633 0.00 1.0000
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5.6 Blocking in a Factorial Design

We have discussed factorial designs in the context of a completely randomized experiment. Sometimes, it is not feasible
or practical to completely randomize all of the runs in a factorial. For example, the presence of a nuisance factor may
require that the experiment be run in blocks. We discussed the basic concepts of blocking in the context of a single-factor
experiment in Chapter 4. We now show how blocking can be incorporated in a factorial. Some other aspects of blocking
in factorial designs are presented in Chapters 7, 8, 9, and 13.

Consider a factorial experiment with two factors (A and B) and n replicates. The linear statistical model for this
design is

yijk = 𝜇 + 𝜏i + 𝛽j + (𝜏𝛽)ij + 𝜖ijk

⎧⎪⎨⎪⎩
i = 1, 2, . . . , a
j = 1, 2, . . . , b
k = 1, 2, . . . , n

(5.33)

where 𝜏i, 𝛽j, and (𝜏𝛽)ij represent the effects of factors A, B, and the AB interaction, respectively. Now suppose that to
run this experiment a particular raw material is required. This raw material is available in batches that are not large
enough to allow all abn treatment combinations to be run from the same batch. However, if a batch contains enough
material for ab observations, then an alternative design is to run each of the n replicates using a separate batch of
raw material. Consequently, the batches of raw material represent a randomization restriction or a block, and a single
replicate of a complete factorial experiment is run within each block. The effects model for this new design is

yijk = 𝜇 + 𝜏i + 𝛽j + (𝜏𝛽)ij + 𝛿k + 𝜖ijk

⎧⎪⎨⎪⎩
i = 1, 2, . . . , a
j = 1, 2, . . . , b
k = 1, 2, . . . , n

(5.34)

where 𝛿k is the effect of the kth block. Of course, within a block the order in which the treatment combinations are run
is completely randomized.

The model (Equation 5.34) assumes that interaction between blocks and treatments is negligible. This was
assumed previously in the analysis of randomized block designs. If these interactions do exist, they cannot be sep-
arated from the error component. In fact, the error term in this model really consists of the (𝜏𝛿)ik, (𝛽𝛿)jk, and (𝜏𝛽𝛿)ijk
interactions. The ANOVA is outlined in Table 5.20. The layout closely resembles that of a factorial design, with the

◾ TABLE 5 . 20
Analysis of Variance for a Two-Factor Factorial in a Randomized Complete Block

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Expected
Mean Square F𝟎

Blocks 1

ab

∑
k

y2
..k −

y2
...

abn
n − 1 𝜎

2 + ab𝜎2
𝛿

A 1

bn

∑
i

y2
i.. −

y2
...

abn
a − 1 𝜎

2 +
bn

∑
𝜏

2
i

a − 1

MSA
MSE

B 1

an

∑
j

y2
.j. −

y2
...

abn
b − 1 𝜎

2 +
an

∑
𝛽

2
j

b − 1

MSB
MSE

AB 1

n

∑
i

∑
j

y2
ij. −

y2
...

abn
− SSA − SSB (a − 1)(b − 1) 𝜎

2 +
n
∑∑

(𝜏𝛽)2
ij

(a − 1)(b − 1)
MSAB
MSE

Error Subtraction (ab − 1)(n − 1) 𝜎
2

Total
∑
i

∑
j

∑
k

y2
ijk −

y2
...

abn
abn − 1
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error sum of squares reduced by the sum of squares for blocks. Computationally, we find the sum of squares for blocks
as the sum of squares between the n block totals {y

..k}. The ANOVA in Table 5.20 assumes that both factors are fixed
and that blocks are random. The ANOVA estimator of the variance component for blocks 𝜎2

𝛿
, is

𝜎
2
𝛿
=

MSBlocks −MSE
ab

In the previous example, the randomization was restricted to within a batch of raw material. In practice, a variety
of phenomena may cause randomization restrictions, such as time and operators. For example, if we could not run
the entire factorial experiment on one day, then the experimenter could run a complete replicate on day 1, a second
replicate on day 2, and so on. Consequently, each day would be a block.

EXAMPLE 5 . 6

An engineer is studying methods for improving the ability
to detect targets on a radar scope. Two factors she consid-
ers to be important are the amount of background noise, or
“ground clutter,” on the scope and the type of filter placed
over the screen. An experiment is designed using three lev-
els of ground clutter and two filter types. We will consider
these as fixed-type factors. The experiment is performed by
randomly selecting a treatment combination (ground clutter
level and filter type) and then introducing a signal represent-
ing the target into the scope. The intensity of this target is
increased until the operator observes it. The intensity level at
detection is then measured as the response variable. Because
of operator availability, it is convenient to select an opera-
tor and keep him or her at the scope until all the necessary
runs have been made. Furthermore, operators differ in their
skill and ability to use the scope. Consequently, it seems
logical to use the operators as blocks. Four operators are
randomly selected. Once an operator is chosen, the order in
which the six treatment combinations are run is randomly
determined. Thus, we have a 3 × 2 factorial experiment run
in a randomized complete block. The data are shown in
Table 5.21.

The linear model for this experiment is

yijk = 𝜇 + 𝜏i + 𝛽j + (𝜏𝛽)ij + 𝛿k + 𝜖ijk

⎧⎪⎨⎪⎩

i = 1, 2, 3

j = 1, 2

k = 1, 2, 3, 4

where 𝜏i represents the ground clutter effect, 𝛽j represents
the filter type effect, (𝜏𝛽)ij is the interaction, 𝛿k is the block
effect, and 𝜖ijk is the NID(0, 𝜎2) error component. The sums
of squares for ground clutter, filter type, and their interaction
are computed in the usual manner. The sum of squares due
to blocks is found from the operator totals {y

..k} as follows:

SSBlocks =
1
ab

n∑
k=1

y2
..k −

y2
...

abn

= 1
(3)(2)

[(572)2 + (579)2 + (597)2 + (530)2]

− (2278)2

(3)(2)(4)
= 402.17

◾ TABLE 5 . 21
Intensity Level at Target Detection

1 2 3 4

Operators (blocks)
Filter Type 1 2 1 2 1 2 1 2

Ground clutter

Low 90 86 96 84 100 92 92 81

Medium 102 87 106 90 105 97 96 80

High 114 93 112 91 108 95 98 83
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◾ TABLE 5 . 22
Analysis of Variance for Example 5.6

Source of Variation
Sum of
Square

Degrees of
Freedom

Mean
Squares F𝟎 P-Value

Ground clutter (G) 335.58 2 167.79 15.13 0.0003
Filter type (F) 1066.67 1 1066.67 96.19 <0.0001
GF 77.08 2 38.54 3.48 0.0573
Blocks 402.17 3 134.06
Error 166.33 15 11.09
Total 2047.83 23

The complete ANOVA for this experiment is summarized
in Table 5.22. The presentation in Table 5.22 indicates that
all effects are tested by dividing their mean squares by the
mean square error. Both ground clutter level and filter type
are significant at the 1 percent level, whereas their inter-
action is significant only at the 10 percent level. Thus, we
conclude that both ground clutter level and the type of scope
filter used affect the operator’s ability to detect the target,
and there is some evidence of mild interaction between these
factors. The ANOVA estimate of the variance component for

blocks is

�̂�
2
𝛿
=

MSBlocks −MSE
ab

= 134.06 − 11.09
(3162)

= 20.50

The JMP output for this experiment is shown in
Table 5.23. The residual maximum likelihood (REML) esti-
mate of the variance component for blocks is shown in this
output, and because this is a balanced design, the REML and
ANOVA estimates agree. JMP also provides the confidence
intervals on both variance components 𝜎2 and 𝜎

2
𝛿
.

◾ TABLE 5 . 23
JMP Output for Example 5.6

Whole Model
Actual by Predicted Plot
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Y Predicted P<.0001
RSq = 0.92  RMSE = 3.33
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Summary of Fit

RSquare 0.917432

RSquare Adj 0.894497

Root Mean Square Error 3.329998

Mean of Response 94.91667

Observations (or Sum Wgts) 24
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◾ TABLE 5 . 23 (Continued)

REML Variance Component Estimates

Random Effect Var Ratio
Var

Component Std Error 95% Lower 95% Upper Pct of Total

Operators (Blocks) 1.8481964 20.494444 18.255128 −15.28495 56.273839 64.890

Residual 11.088889 4.0490897 6.0510389 26.561749 35.110

Total 31.583333 100.000

−2 LogLikelihood = 118.73680261

Covariance Matrix of
Variance Component Estimates

Random Effect Operators (Blocks) Residual

Operators (Blocks) 333.24972 −2.732521

Residual −2.732521 16.395128

Fixed Effect Tests

Source Nparm DF DFDen F Ratio Prob > F

Clutter 2 2 15 15.1315 0.0003*

Filter Type 1 1 15 96.1924 <.0001*

Clutter*Filter Type 2 2 15 3.4757 0.0575

Residual by Predicted Plot
10
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–10

Y Predicted

75 80 85 90 95 100 105 110 115

Y
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e
si

d
u

a
l

In the case of two randomization restrictions, each with p levels, if the number of treatment combinations in a
k-factor factorial design exactly equals the number of restriction levels, that is, if p = ab . . . m, then the factorial design
may be run in a p × p Latin square. For example, consider a modification of the radar target detection experiment of
Example 5.6. The factors in this experiment are filter type (two levels) and ground clutter (three levels), and operators
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◾ TABLE 5 . 24
Radar Detection Experiment Run in a 6 × 6 Latin Square

Operator

Day 1 2 3 4 5 6

1 A(f1g1 = 90) B(f1g2 = 106) C(f1g3 = 108) D(f2g1 = 81) F(f2g3 = 90) E(f2g2 = 88)

2 C(f1g3 = 114) A(f1g1 = 96) B(f1g2 = 105) F(f2g3 = 83) E(f2g2 = 86) D(f2g1 = 84)

3 B(f1g2 = 102) E(f2g2 = 90) G(f2g3 = 95) A(f1g1 = 92) D(f2g1 = 85) C(f1g3 = 104)

4 E(f2g2 = 87) D(f2g1 = 84) A(f1g1 = 100) B(f1g2 = 96) C(f1g3 = 110) F(f2g3 = 91)

5 F(f2g3 = 93) C(f1g3 = 112) D(f2g1 = 92) E(f2g2 = 80) A(f1g1 = 90) B(f1g2 = 98)

6 D(f2g1 = 86) F(f2g3 = 91) E(f2g2 = 97) C(f1g3 = 98) B(f1g2 = 100) A(f1g1 = 92)

are considered as blocks. Suppose now that because of the setup time required, only six runs can be made per day. Thus,
days become a second randomization restriction, resulting in the 6 × 6 Latin square design, as shown in Table 5.24. In
this table we have used the lowercase letters fi and gj to represent the ith and jth levels of filter type and ground clutter,
respectively. That is, f1g2 represents filter type 1 and medium ground clutter. Note that now six operators are required,
rather than four as in the original experiment, so the number of treatment combinations in the 3 × 2 factorial design
exactly equals the number of restriction levels. Furthermore, in this design, each operator would be used only once on
each day. The Latin letters A,B,C,D,E, and F represent the 3 × 2 = 6 factorial treatment combinations as follows:
A = f1g1,B = f1g2,C = f1g3,D = f2g1,E = f2g2, and F = f2g3.

The five degrees of freedom between the six Latin letters correspond to the main effects of filter type (one
degree of freedom), ground clutter (two degrees of freedom), and their interaction (two degrees of freedom). The
linear statistical model for this design is

yijkl = 𝜇 + 𝛼i + 𝜏j + 𝛽k + (𝜏𝛽)jk + 𝜃l + 𝜖ijkl

⎧⎪⎨⎪⎩

i = 1, 2, . . . , 6
j = 1, 2, 3
k= 1, 2
l = 1, 2, . . . , 6

(5.35)

where 𝜏j and 𝛽k are effects of ground clutter and filter type, respectively, and 𝛼i and 𝜃l represent the randomization
restrictions of days and operators, respectively. To compute the sums of squares, the following two-way table of treat-
ment totals is helpful:

Ground Clutter Filter Type 1 Filter Type 2 y
.j..

Low 560 512 1072

Medium 607 528 1135

High 646 543 1189

y
..k. 1813 1583 3396 = y

....
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◾ TABLE 5 . 25
Analysis of Variance for the Radar Detection Experiment Run as a 3 × 2 Factorial in a Latin Square

Source of
Variation

Sum of
Squares

Degrees of
Freedom

General Formula
for Degrees of

Freedom Mean Square F𝟎 P-Value

Ground clutter (G) 571.50 2 a − 1 285.75 28.86 <0.0001

Filter type (F) 1469.44 1 b − 1 1469.44 148.43 <0.0001

GF 126.73 2 (a − 1)(b − 1) 63.37 6.40 0.0071

Days (rows) 4.33 5 ab − 1 0.87

Operators (columns) 428.00 5 ab − 1 85.60

Error 198.00 20 (ab − 1)(ab − 2) 9.90

Total 2798.00 35 (ab)2 − 1

Furthermore, the row and column totals are

Rows (y
.jkl)∶ 563 568 568 568 565 564

Columns (yijk.)∶ 572 579 597 530 561 557

The ANOVA is summarized in Table 5.25. We have added a column to this table indicating how the number of
degrees of freedom for each sum of squares is determined.

5.7 Problems

5.1 An interaction effect in the model from a factorial
experiment involving quantitative factors is a way of incorpo-
rating curvature into the response surface model representation
of the results.

(a) True

(b) False

5.2 A factorial experiment may be conducted as a RCBD
by running each replicate of the experiment in a unique block.

(a) True

(b) False

5.3 If an interaction effect in a factorial experiment is
significant, the main effects of the factors involved in that
interaction are difficult to interpret individually.

(a) True

(b) False

5.4 A biomedical researcher has conducted a two-factor
factorial experiment as part of the research to develop a

new product. She performed the statistical analysis using
a computer software package. A portion of the output is shown
below:

ANOVA for Selected Factorial Model
Analysis of variance table [Partial sum of squares]

Source
Sum of
Squares DF

Mean
Square

F
Value Prob > F

Model 874.00 5 174.80 3.28 0.0904

A 776.00 ? 388.00 7.27 0.0249

B 5.33 1 5.33 0.10 0.7625

AB 92.67 2 46.33 0.87 0.4663

Pure Error 320.00 ? 53.33

Cor Total 1194.00 11

(a) Interpret the F-statistic in the “Model” row of the
ANOVA. Specifically, what hypothesies are being
tested?
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(b) What conclusions should be drawn regarding the indi-
vidual model effects?

(c) How many levels of factor A were used in this
experiment?

(d) How many replicates were run?

5.5 Consider the following incomplete ANOVA table:

Source SS DF MS F

A ? 1 50.00 ?

B 80.00 ? 40.00 ?

AB 30.00 2 15.00 ?

Error ? 12 ?

Total 172.00 17

(a) Complete the ANOVA calculations.

(b) Provide an interpretation of this experiment.

(c) The pure error estimate of the standard deviation of the
sample observations is 1.

True

False

5.6 The following output was obtained from a computer
program that performed a two-factor ANOVA on a factorial
experiment.

Two-way ANOVA: y versus, A, B

Source DF SS MS F P

A 1 0.322 ? ? ?

B ? 80.554 40.2771 4.59 ?

Interaction ? ? ? ? ?

Error 12 105.327 8.7773

Total 17 231.551

(a) Fill in the blanks in the ANOVA table. You can use
bounds on the P-values.

(b) How many levels were used for factor B?

(c) How many replicates of the experiment were
performed?

(d) What conclusions would you draw about this
experiment?

5.7 The following output was obtained from a computer
program that performed a two-factor ANOVA on a factorial
experiment.

Two-way ANOVA: y versus A, B

Source DF SS MS F P

A 1 ? 0.0002 ? ?

B ? 180.378 ? ? ?

Interaction 3 8.479 ? ? 0.932

Error 8 158.797 ?

Total 15 347.653

(a) Fill in the blanks in the ANOVA table. You can use
bounds on the P-values.

(b) How many levels were used for factor B?

(c) How many replicates of the experiment were per-
formed?

(d) What conclusions would you draw about this experi-
ment?

5.8 The yield of a chemical process is being studied. The
two most important variables are thought to be pressure and
temperature. Three levels of each factor are selected, and a
factorial experiment with two replicates is performed. The
yield data are as follows:

Pressure (psig)

Temperature (∘C) 200 215 230

150 90.4 90.7 90.2

90.2 90.6 90.4

160 90.1 90.5 89.9

90.3 90.6 90.1

170 90.5 90.8 90.4

90.7 90.9 90.1

(a) Analyze the data and draw conclusions. Use 𝛼 = 0.05.

(b) Prepare appropriate residual plots and comment on the
model’s adequacy.

(c) Under what conditions would you operate this process?

5.9 An engineer suspects that the surface finish of a metal
part is influenced by the feed rate and the depth of cut. He
selects three feed rates and four depths of cut. He then conducts
a factorial experiment and obtains the following data:

Depth of Cut (in)
Feed Rate
(in/min) 0.15 0.18 0.20 0.25

74 79 82 99

0.20 64 68 88 104

60 73 92 96

92 98 99 104
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0.25 86 104 108 110

88 88 95 99

99 104 108 114

0.30 98 99 110 111

102 95 99 107

(a) Analyze the data and draw conclusions. Use 𝛼 = 0.05.

(b) Prepare appropriate residual plots and comment on the
model’s adequacy.

(c) Obtain point estimates of the mean surface finish at
each feed rate.

(d) Find the P-values for the tests in part (a).

5.10 For the data in Problem 5.9, compute a 95 percent con-
fidence interval estimate of the mean difference in response for
feed rates of 0.20 and 0.25 in∕min.

5.11 An article in Industrial Quality Control (1956, pp. 5–8)
describes an experiment to investigate the effect of the type of
glass and the type of phosphor on the brightness of a televi-
sion tube. The response variable is the current necessary (in
microamps) to obtain a specified brightness level. The data are
as follows:

Phosphor Type

Glass Type 1 2 3

280 300 290

1 290 310 285

285 295 290

230 260 220

2 235 240 225

240 235 230

(a) Is there any indication that either factor influences
brightness? Use 𝛼 = 0.05.

(b) Do the two factors interact? Use 𝛼 = 0.05.

(c) Analyze the residuals from this experiment.

5.12 Johnson and Leone (Statistics and Experimental
Design in Engineering and the Physical Sciences, Wiley,
1977) describe an experiment to investigate warping of cop-
per plates. The two factors studied were the temperature
and the copper content of the plates. The response vari-
able was a measure of the amount of warping. The data are
as follows:

Copper Content (%)

Temperature (∘C) 40 60 80 100

50 17, 20 16, 21 24, 22 28, 27

75 12, 9 18, 13 17, 12 27, 31

100 16, 12 18, 21 25, 23 30, 23

125 21, 17 23, 21 23, 22 29, 31

(a) Is there any indication that either factor affects the
amount of warping? Is there any interaction between
the factors? Use 𝛼 = 0.05.

(b) Analyze the residuals from this experiment.

(c) Plot the average warping at each level of copper con-
tent and compare them to an appropriately scaled t
distribution. Describe the differences in the effects of
the different levels of copper content on warping. If
low warping is desirable, what level of copper content
would you specify?

(d) Suppose that temperature cannot be easily controlled
in the environment in which the copper plates are to be
used. Does this change your answer for part (c)?

5.13 The factors that influence the breaking strength of a
synthetic fiber are being studied. Four production machines
and three operators are chosen and a factorial experiment is
run using fiber from the same production batch. The results
are as follows:

Machine

Operator 1 2 3 4

1 109 110 108 110

110 115 109 108

2 110 110 111 114

112 111 109 112

3 116 112 114 120

114 115 119 117

(a) Analyze the data and draw conclusions. Use 𝛼 = 0.05.

(b) Prepare appropriate residual plots and comment on the
model’s adequacy.

5.14 A mechanical engineer is studying the thrust force
developed by a drill press. He suspects that the drilling speed
and the feed rate of the material are the most important fac-
tors. He selects four feed rates and uses a high and low drill
speed chosen to represent the extreme operating conditions.
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He obtains the following results. Analyze the data and draw
conclusions. Use 𝛼 = 0.05.

Feed Rate

Drill Speed 0.015 0.030 0.045 0.060

125 2.70 2.45 2.60 2.75

2.78 2.49 2.72 2.86

200 2.83 2.85 2.86 2.94

2.86 2.80 2.87 2.88

5.15 An experiment is conducted to study the influence of
operating temperature and three types of faceplate glass in the
light output of an oscilloscope tube. The following data are
collected:

Temperature

Glass Type 100 125 150

580 1090 1392

1 568 1087 1380

570 1085 1386

550 1070 1328

2 530 1035 1312

579 1000 1299

546 1045 867

3 575 1053 904

599 1066 889

(a) Use 𝛼 = 0.05 in the analysis. Is there a significant inter-
action effect? Does glass type or temperature affect the
response? What conclusions can you draw?

(b) Fit an appropriate model relating light output to glass
type and temperature.

(c) Analyze the residuals from this experiment. Comment
on the adequacy of the models you have considered.

5.16 Consider the experiment in Problem 5.8. Fit an
appropriate model to the response data. Use this model
to provide guidance concerning operating conditions for
the process.

5.17 Use Tukey’s test to determine which levels of the
pressure factor are significantly different for the data in
Problem 5.8.

5.18 An experiment was conducted to determine whether
either firing temperature or furnace position affects the baked
density of a carbon anode. The data are shown below:

Temperature (∘C)

Position 800 825 850

570 1063 565

1 565 1080 510

583 1043 590

528 988 526

2 547 1026 538

521 1004 532

Suppose we assume that no interaction exists. Write down the
statistical model. Conduct the ANOVA and test hypotheses on
the main effects. What conclusions can be drawn? Comment
on the model’s adequacy.

5.19 Derive the expected mean squares for a two-factor
analysis of variance with one observation per cell, assuming
that both factors are fixed.

5.20 Consider the following data from a two-factor factorial
experiment. Analyze the data and draw conclusions. Perform
a test for nonadditivity. Use 𝛼 = 0.05.

Column Factor

Row Factor 1 2 3 4

1 36 39 36 32

2 18 20 22 20

3 30 37 33 34

5.21 The shear strength of an adhesive is thought to
be affected by the application pressure and temperature.
A factorial experiment is performed in which both factors
are assumed to be fixed. Analyze the data and draw conclu-
sions. Perform a test for nonadditivity.

Temperature (∘F)

Pressure (lb/in2) 250 260 270

120 9.60 11.28 9.00

130 9.69 10.10 9.57

140 8.43 11.01 9.03

150 9.98 10.44 9.80
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5.22 Consider the three-factor model

yijk =𝜇 + 𝜏i + 𝛽j

+ 𝛾k + (𝜏𝛽)ij
+ (𝛽𝛾)jk + 𝜖ijk

⎧⎪⎨⎪⎩
i = 1, 2, . . . , a
j = 1, 2, . . . , b
k= 1, 2, . . . , c

Notice that there is only one replicate. Assuming all the factors
are fixed, write down the ANOVA table, including the expected
mean squares. What would you use as the “experimental error”
to test hypotheses?

5.23 The percentage of hardwood concentration in raw pulp,
the vat pressure, and the cooking time of the pulp are being
investigated for their effects on the strength of paper. Three
levels of hardwood concentration, three levels of pressure,
and two cooking times are selected. A factorial experiment
with two replicates is conducted, and the following data are
obtained:

Cooking Time 3.0 Hours

PressurePercentage of
Hardwood
Concentration 400 500 650

2 196.6 197.7 199.8

196.0 196.0 199.4

4 198.5 196.0 198.4

197.2 196.9 197.6

8 197.5 195.6 197.4

196.6 196.2 198.1

Cooking Time 4.0 Hours

PressurePercentage of
Hardwood
Concentration 400 500 650

2 198.4 199.6 200.6

198.6 200.4 200.9

4 197.5 198.7 199.6

198.1 198.0 199.0

8 197.6 197.0 198.5

198.4 197.8 199.8

(a) Analyze the data and draw conclusions. Use 𝛼 = 0.05.

(b) Prepare appropriate residual plots and comment on the
model’s adequacy.

(c) Under what set of conditions would you operate this
process? Why?

5.24 The quality control department of a fabric finishing
plant is studying the effect of several factors on the dyeing
of cotton–synthetic cloth used to manufacture men’s shirts.
Three operators, three cycle times, and two temperatures were
selected, and three small specimens of cloth were dyed under
each set of conditions. The finished cloth was compared to a
standard, and a numerical score was assigned. The results are
as follows. Analyze the data and draw conclusions. Comment
on the model’s adequacy.

Temperature

300∘C 350∘C

Operator Operator

Cycle Time 1 2 3 1 2 3

23 27 31 24 38 34

40 24 28 32 23 36 36

25 26 29 28 35 39

36 34 33 37 34 34

50 35 38 34 39 38 36

36 39 35 35 36 31

28 35 26 26 36 28

60 24 35 27 29 37 26

27 34 25 25 34 24

5.25 In Problem 5.8, suppose that we wish to reject the null
hypothesis with a high probability if the difference in the true
mean yield at any two pressures is as great as 0.5. If a rea-
sonable prior estimate of the standard deviation of yield is 0.1,
how many replicates should be run?

5.26 The yield of a chemical process is being studied. The
two factors of interest are temperature and pressure. Three lev-
els of each factor are selected; however, only nine runs can be
made in one day. The experimenter runs a complete replicate
of the design on each day. The data are shown in the following
table. Analyze the data, assuming that the days are blocks.

Day 1 Pressure Day 2 Pressure

Temperature 250 260 270 250 260 270

Low 86.3 84.0 85.8 86.1 85.2 87.3

Medium 88.5 87.3 89.0 89.4 89.9 90.3

High 89.1 90.2 91.3 91.7 93.2 93.7

5.27 Consider the data in Problem 5.12. Analyze the data,
assuming that replicates are blocks.
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5.28 Consider the data in Problem 5.13. Analyze the data,
assuming that replicates are blocks.

5.29 An article in the Journal of Testing and Evaluation
(Vol. 16, no. 2, pp. 508–515) investigated the effects of cyclic
loading and environmental conditions on fatigue crack growth
at a constant 22 MPa stress for a particular material. The data
from this experiment are shown below (the response is crack
growth rate):

Environment

Frequency Air H2O Salt H2O

2.29 2.06 1.90

10 2.47 2.05 1.93

2.48 2.23 1.75

2.12 2.03 2.06

2.65 3.20 3.10

1 2.68 3.18 3.24

2.06 3.96 3.98

2.38 3.64 3.24

2.24 11.00 9.96

0.1 2.71 11.00 10.01

2.81 9.06 9.36

2.08 11.30 10.40

(a) Analyze the data from this experiment (use 𝛼 = 0.05).

(b) Analyze the residuals.

(c) Repeat the analyses from parts (a) and (b) using ln (y)
as the response. Comment on the results.

5.30 An article in the IEEE Transactions on Electron
Devices (Nov. 1986, pp. 1754) describes a study on polysili-
con doping. The experiment shown below is a variation of their
study. The response variable is base current.

Anneal Temperature (∘C)Polysilicon
Doping (ions) 900 950 1000

1 × 1020 4.60 10.15 11.01

4.40 10.20 10.58

2 × 1020 3.20 9.38 10.81

3.50 10.02 10.60

(a) Is there evidence (with 𝛼 = 0.05) indicating that either
polysilicon doping level or anneal temperature affects
base current?

(b) Prepare graphical displays to assist in interpreting this
experiment.

(c) Analyze the residuals and comment on model ade-
quacy.

(d) Is the model

y = 𝛽0 + 𝛽1x1 + 𝛽2x2

+ 𝛽22x
2
2 + 𝛽12x1x2 + 𝜖

supported by this experiment (x1 = doping level, x2 =
temperature)? Estimate the parameters in this model
and plot the response surface.

5.31 An experiment was conducted to study the life (in
hours) of two different brands of batteries in three different
devices (radio, camera, and portable DVD player). A com-
pletely randomized two-factor factorial experiment was con-
ducted and the following data resulted.

Device

Brand of
Battery Radio Camera

DVD
Player

A 8.6 7.9 5.4

8.2 8.4 5.7

B 9.4 8.5 5.8

8.8 8.9 5.9

(a) Analyze the data and draw conclusions, using
𝛼 = 0.05.

(b) Investigate model adequacy by plotting the residuals.

(c) Which brand of batteries would you recommend?

5.32 I have recently purchased new golf clubs, which I
believe will significantly improve my game. Below are the
scores of three rounds of golf played at three different golf
courses with the old and the new clubs.

Course

Clubs Ahwatukee Karsten Foothills

Old 90 91 88

87 93 86

86 90 90

New 88 90 86

87 91 85

85 88 88
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(a) Conduct an analysis of variance. Using 𝛼 = 0.05, what
conclusions can you draw?

(b) Investigate model adequacy by plotting the residuals.

5.33 A manufacturer of laundry products is investigating
the performance of a newly formulated stain remover. The
new formulation is compared to the original formulation with
respect to its ability to remove a standard tomato-like stain in
a test article of cotton cloth using a factorial experiment. The
other factors in the experiment are the number of times the test
article is washed (1 or 2) and whether or not a detergent booster
is used. The response variable is the stain shade after washing
(12 is the darkest, 0 is the lightest). The data are shown in the
following table.

Number of
Washings

Number of
Washings

1 2

Formulation Booster Booster

Yes No Yes No

New 6, 5 6, 5 3, 2 4, 1

Original 10, 9 11, 11 10, 9 9, 10

(a) Conduct an analysis of variance. Using 𝛼 = 0.05, what
conclusions can you draw?

(b) Investigate model adequacy by plotting the residuals.

5.34 Bone anchors are used by orthopedic surgeons in
repairing torn rotator cuffs (a common shoulder tendon injury
among baseball players). The bone anchor is a threaded insert
that is screwed into a hole that has been drilled into the shoul-
der bone near the site of the torn tendon. The torn tendon is
then sutured to the anchor. In a successful operation, the tendon
is stabilized and reattaches itself to the bone. However, bone
anchors can pull out if they are subjected to high loads. An
experiment was performed to study the force required to pull
out the anchor for three anchor types and two different foam
densities (the foam simulates the natural variability found in
real bone). Two replicates of the experiment were performed.
The experimental design and the pullout force response data
are as follows.

Foam Density

Anchor Type Low High

A 190, 200 241, 255

B 185, 190 230, 237

C 210, 205 256, 260

(a) Analyze the data from this experiment.

(b) Investigate model adequacy by constructing appropri-
ate residual plots.

(c) What conclusions can you draw?

5.35 An experiment was performed to investigate the key-
board feel on a computer (crisp or mushy) and the size
of the keys (small, medium, or large). The response vari-
able is typing speed. Three replicates of the experiment
were performed. The experimental design and the data are
as follow.

Keyboard Feel

Key Size Mushy Crisp

Small 31, 33, 35 36, 40, 41

Medium 36, 35, 33 40, 41, 42

Large 37, 34, 33 38, 36, 39

(a) Analyze the data from this experiment.

(b) Investigate model adequacy by constructing appropri-
ate residual plots.

(c) What conclusions can you draw?

5.36 An article in Quality Progress (May 2011, pp. 42–48)
describes the use of factorial experiments to improve a silver
powder production process. This product is used in con-
ductive pastes to manufacture a wide variety of products
ranging from silicon wafers to elastic membrane switches.
Powder density (g∕cm2) and surface area (cm2∕g) are the
two critical characteristics of this product. The experiments
involved three factors—reaction temperature, ammonium
percent, and stirring rate. Each of these factors had two
levels and the design was replicated twice. The design is
shown below.

Ammonium
(%)

Stir Rate
(RPM)

Temperature
(∘C) Density

Surface
Area

2 100 8 14.68 0.40

2 100 8 15.18 0.43

30 100 8 15.12 0.42

30 100 8 17.48 0.41

2 150 8 7.54 0.69

2 150 8 6.66 0.67

30 150 8 12.46 0.52

30 150 8 12.62 0.36

2 100 40 10.95 0.58

2 100 40 17.68 0.43
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30 100 40 12.65 0.57

30 100 40 15.96 0.54

2 150 40 8.03 0.68

2 150 40 8.84 0.75

30 150 40 14.96 0.41

30 150 40 14.96 0.41

(a) Analyze the density response. Are any interactions
significant? Draw appropriate conclusions about the
effects of the significant factors on the response.

(b) Prepare appropriate residual plots and comment on
model adequacy.

(c) Construct contour plots to aid in practical interpretation
of the density response.

(d) Analyze the surface area response. Are any interac-
tions significant? Draw appropriate conclusions about
the effects of the significant factors on the response.

(e) Prepare appropriate residual plots and comment on
model adequacy.

(f) Construct contour plots to aid in practical interpretation
of the surface area response.

5.37 Continuation of Problem 5.36. Suppose that the
specifications require that surface area must be between 0.3
and 0.6 cm2∕g and that density must be less than 14 g∕cm3.
Find a set of operating conditions that will result in a product
that meets these requirements.

5.38 An article in Biotechnology Progress (2001, Vol. 17,
pp. 366–368) described an experiment to investigate
nisin extraction in aqueous two-phase solutions. A two-
factor factorial experiment was conducted using factors
A = concentration of PEG and B = concentration of Na2SO4.
Data similar to that reported in the paper are shown below.

A B Extraction (%)

13 11 62.9

13 11 65.4

15 11 76.1

15 11 72.3

13 13 87.5

13 13 84.2

15 13 102.3

15 13 105.6

(a) Analyze the extraction response. Draw appropriate
conclusions about the effects of the significant factors
on the response.

(b) Prepare appropriate residual plots and comment on
model adequacy.

(c) Construct contour plots to aid in practical interpretation
of the density response.

5.39 Reconsider the experiment in Problem 5.9. Suppose
that this experiment had been conducted in three blocks, with
each replicate a block. Assume that the observations in the data
table are given in order, that is, the first observation in each cell
comes from the first replicate, and so on. Reanalyze the data
as a factorial experiment in blocks and estimate the variance
component for blocks. Does it appear that blocking was useful
in this experiment?

5.40 Reconsider the experiment in Problem 5.11. Suppose
that this experiment had been conducted in three blocks, with
each replicate a block. Assume that the observations in the data
table are given in order, that is, the first observation in each cell
comes from the first replicate, and so on. Reanalyze the data
as a factorial experiment in blocks and estimate the variance
component for blocks. Does it appear that blocking was useful
in this experiment?

5.41 Reconsider the experiment in Problem 5.13. Suppose
that this experiment had been conducted in two blocks, with
each replicate a block. Assume that the observations in the data
table are given in order, that is, the first observation in each cell
comes from the first replicate, and so on. Reanalyze the data
as a factorial experiment in blocks and estimate the variance
component for blocks. Does it appear that blocking was useful
in this experiment?

5.42 Reconsider the three-factor factorial experiment in
Problem 5.23. Suppose that this experiment had been con-
ducted in two blocks, with each replicate a block. Assume that
the observations in the data table are given in order, that is, the
first observation in each cell comes from the first replicate, and
so on. Reanalyze the data as a factorial experiment in blocks
and estimate the variance component for blocks. Does it appear
that blocking was useful in this experiment?

5.43 Reconsider the three-factor factorial experiment in
Problem 5.24. Suppose that this experiment had been con-
ducted in three blocks, with each replicate a block. Assume
that the observations in the data table are given in order,
that is, the first observation in each cell comes from the
first replicate, and so on. Reanalyze the data as a factorial
experiment in blocks and estimate the variance component
for blocks. Does it appear that blocking was useful in this
experiment?

5.44 Reconsider the bone anchor experiment in Problem
5.34. Suppose that this experiment had been conducted in two
blocks, with each replicate a block. Assume that the obser-
vations in the data table are given in order, that is, the first
observation in each cell comes from the first replicate, and so
on. Reanalyze the data as a factorial experiment in blocks and
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estimate the variance component for blocks. Does it appear that
blocking was useful in this experiment?

5.45 Reconsider the keyboard experiment in Problem 5.35.
Suppose that this experiment had been conducted in three
blocks, with each replicate a block. Assume that the obser-
vations in the data table are given in order, that is, the first
observation in each cell comes from the first replicate, and so
on. Reanalyze the data as a factorial experiment in blocks and
estimate the variance component for blocks. Does it appear that
blocking was useful in this experiment?

5.46 The C. F. Eye Care company manufactures lenses for
transplantation into the eye following cataract surgery. An
engineering group has conducted an experiment involving two
factors to determine their effect on the lens polishing process.
The results of this experiment are summarized in the following
ANOVA display:

Source DF SS MS F P-Value

Factor A ? ? 0.0833 0.05 0.952

Factor B ? 96.333 96.3333 57.80 <0.001

Interaction 2 12.167 6.0833 3.65 ?

Error 6 10.000 ? ?

Total 11 118.667

Answer the following questions about this experiment.

(a) The sum of squares for factor A is .

(b) The number of degrees of freedom for factor A in the
experiment is .

(c) The number of degrees of freedom for factor B is .

(d) The mean square for error is .

(e) An upper bound for the P-value for the interaction test
statistic is .

(f) The engineers used levels of the factor A in this
experiment.

(g) The engineers used levels of the factor B in this
experiment.

(h) There are replicates of this experiment.

(i) Would you conclude that the effect of factor B depends
on the level of factor A?

Yes

No

(j) An estimate of the standard deviation of the response
variable is .

5.47 Reconsider the lens polishing experiment in Prob-
lem 5.46. Suppose that this experiment had been conducted
as a randomized complete block design. The sum of squares

for blocks is 4.00. Reconstruct the ANOVA given this new
information. What impact does the blocking have on the
conclusions from the original experiment?

5.48 In Problem 4.58 you met physics PhD student Laura
Van Ertia who had conducted a single-factor experiment in
her pursuit of the unified theory. She is at it again, and this
time she has moved on to a two-factor factorial conducted as
a completely randomized design. From her experiment, Laura
has constructed the following incomplete ANOVA display:

Source SS DF MS F

A 350.00 2 ? ?

B 300.00 ? 150 ?

AB 200.00 ? 50 ?

Error 150.00 18

Total 1000.00

(a) How many levels of factor B did she use in the
experiment?

(b) How many degrees of freedom are associated with
interaction?

(c) The error mean square is .

(d) The mean square for factor A is .

(e) How many replicates of the experiment were
conducted?

(f) What are your conclusions about interaction and the
two main effects?

(g) An estimate of the standard deviation of the response
variable is .

(h) If this experiment had been run in blocks there would
have been degrees of freedom for blocks.

5.49 Continuation of Problem 5.48. Suppose that Laura
did actually conduct the experiment in Problem 5.48 as a ran-
domized complete block design. Assume that the block sum of
squares is 60.00. Reconstruct the ANOVA display under this
new set of assumptions.

5.50 Consider the following ANOVA for a two-factor fac-
torial experiment:

Source DF SS MS F P

A 2 8.0000 4.00000 2.00 0.216

B 1 8.3333 8.33333 4.17 0.087

Interaction 2 10.6667 5.33333 2.67 0.148

Error 6 12.0000 2.00000

Total 11 39.0000
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In addition to the ANOVA, you are given the follow-
ing data totals. Row totals (factor A) = 18, 10, 14; column
totals (factor B) = 16, 26; cell totals = 10, 8, 2, 8, 4, 10, and
replicate totals = 19, 23. The grand total is 42. The original
experiment was a completely randomized design. Now sup-
pose that the experiment had been run in two complete blocks.
Answer the following questions about the ANOVA for the
blocked experiment.

(a) The block sum of squares is .

(b) There are degrees of freedom for blocks.

(c) The error sum of squares is now .

(d) The interaction effect is now significant at 1 percent.

Yes

No

5.51 Consider the following incomplete ANOVA table:

Source SS DF MS F

A 50.00 1 50.00 ?

B 80.00 2 40.00 ?

AB 30.00 2 15.00 ?

Error ? 12 ?

Total 172.00 17

In addition to the ANOVA table you know that the experiment
has been replicated three times and that the totals of the three
replicates are 10, 12, and 14 respectively. The original experi-
ment was run as a completely randomized design. Answer the
following questions:

(a) The pure error estimate of the standard deviation of the
sample observations is 1.

Yes

No

(b) Suppose that the experiment had been run in blocks,
so that it is an randomized complete block design. The
number of degrees of freedom for blocks would be .

(c) The block sum of squares is .

(d) The error sum of squares in the randomized complete
block design is now .

(e) For the randomized complete block design, what is the
estimate of the standard deviation of the sample obser-
vations?

5.52 Consider the following incomplete ANOVA table:

Source SS DF MS F

A 50.00 1 50.00 ?

B 80.00 2 40.00 ?

AB 30.00 2 15.00 ?

Blocks 10.00 1 ?

Error ? ? ?

Total 185.00 11

(a) The pure error estimate of the standard deviation of the
sample observations is 1.73.

True

False

(b) Suppose that the experiment had not been run in
blocks; that is, it is now a CRD. The number
of degrees of freedom for error would now be
__________________.

(c) The error mean square in the CRD would be
___________________.

(d) The F-test statistic for interaction in the CRD is signif-
icant at 𝛼 = 0.05.

True

False
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T h e 2k F a c t o r i a l D e s i g n

CHAPTER OUTLINE
6.1 INTRODUCTION
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6.5 A SINGLE REPLICATE OF THE 2k DESIGN

6.6 ADDITIONAL EXAMPLES OF UNREPLICATED
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6.9 WHY WE WORK WITH CODED DESIGN
VARIABLES

SUPPLEMENTAL MATERIAL FOR CHAPTER 6
S6.1 Factor Effect Estimates Are Least Squares Estimates
S6.2 Yates’s Method for Calculating Factor Effects
S6.3 A Note on the Variance of a Contrast
S6.4 The Variance of the Predicted Response
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S6.6 Center Points Versus Replication of Factorial Points
S6.7 Testing for “Pure Quadratic” Curvature Using a t-Test

The supplemental material is on the textbook website www.wiley.com/college/montgomery.

CHAPTER LEARNING OBJECTIVES
1. Learn about the 2k series of factorial designs.

2. Know how to compute main effects and interactions for 2k factorial designs.

3. Learn how the analysis of variance can be used for 2k factorial designs.

4. Know how to represent the results from a 2k factorial design as a regression model.

5. Know how to use graphical and analytical methods to analyze unreplicated 2k factorial designs.

6. Understand the basics of design optimality: D-optimality, I-optimality, and G-optimality, and why
factorial designs are generally optimal designs.

7. Know how to use design optimality criteria in constructing designs.

8. Know the value of adding center runs to 2k factorial designs.

9. Know why we work with coded variables in analyzing 2k factorial designs.

6.1 Introduction

Factorial designs are widely used in experiments involving several factors where it is necessary to study the joint
effect of the factors on a response. Chapter 5 presented general methods for the analysis of factorial designs. However,
several special cases of the general factorial design are important because they are widely used in research work and
also because they form the basis of other designs of considerable practical value.
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The most important of these special cases is that of k factors, each at only two levels. These levels may be
quantitative, such as two values of temperature, pressure, or time; or they may be qualitative, such as two machines,
two operators, the “high” and “low” levels of a factor, or perhaps the presence and absence of a factor. A complete
replicate of such a design requires 2 × 2 × · · · × 2 = 2k observations and is called a 𝟐k factorial design.

This chapter focuses on this extremely important class of designs. Throughout this chapter, we assume that (1)
the factors are fixed, (2) the designs are completely randomized, and (3) the usual normality assumptions are satisfied.

The 2k design is particularly useful in the early stages of experimental work when many factors are likely to be
investigated. It provides the smallest number of runs with which k factors can be studied in a complete factorial design.
Consequently, these designs are widely used in factor screening experiments (where the experiments is intended in
discovering the set of active factors from a large group of factors). It is also easy to develop effective blocking schemes
for these designs (Chapter 7) and to fix them in fractional versions (Chapter 8).

Because there are only two levels for each factor, we assume that the response is approximately linear over the
range of the factor levels chosen. In many factor screening experiments, when we are just starting to study the process
or the system, this is often a reasonable assumption. In Section 6.8, we will present a simple method for checking this
assumption and discuss what action to take if it is violated. The book by Mee (2009) is a useful supplement to this
chapter and Chapters 7 and 8.

6.2 The 22 Design

The first design in the 2k series is one with only two factors, say A and B, each run at two levels. This design is
called a 𝟐𝟐 factorial design. The levels of the factors may be arbitrarily called “low” and “high.” As an example,
consider an investigation into the effect of the concentration of the reactant and the amount of the catalyst on the
conversion (yield) in a chemical process. The objective of the experiment was to determine if adjustments to either of
these two factors would increase the yield. Let the reactant concentration be factor A and let the two levels of interest
be 15 and 25 percent. The catalyst is factor B, with the high level denoting the use of 2 pounds of the catalyst and
the low level denoting the use of only 1 pound. The experiment is replicated three times, so there are 12 runs. The
order in which the runs are made is random, so this is a completely randomized experiment. The data obtained are
as follows:

Factor Replicate

A B
Treatment
Combination I II III Total

− − A low, B low 28 25 27 80

+ − A high, B low 36 32 32 100

− + A low, B high 18 19 23 60

+ + A high, B high 31 30 29 90

The four treatment combinations in this design are shown graphically in Figure 6.1. By convention, we denote
the effect of a factor by a capital Latin letter. Thus, “A” refers to the effect of factor A, “B” refers to the effect of factor
B, and “AB” refers to the AB interaction. In the 22 design, the low and high levels of A and B are denoted by “−”
and “+,” respectively, on the A and B axes. Thus, − on the A axis represents the low level of concentration (15%),
whereas + represents the high level (25%), and − on the B axis represents the low level of catalyst, and + denotes the
high level.

The four treatment combinations in the design are also represented by lowercase letters, as shown in Figure 6.1.
We see from the figure that the high level of any factor in the treatment combination is denoted by the corresponding
lowercase letter and that the low level of a factor in the treatment combination is denoted by the absence of the corre-
sponding letter. Thus, a represents the treatment combination of A at the high level and B at the low level, b represents
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◾ F I GURE 6 . 1 Treatment combinations
in the 22 design
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A at the low level and B at the high level, and ab represents both factors at the high level. By convention, (1) is used to
denote both factors at the low level. This notation is used throughout the 2k series.

In a two-level factorial design, we may define the average effect of a factor as the change in response produced
by a change in the level of that factor averaged over the levels of the other factor. Also, the symbols (1), a, b, and ab
now represent the total of the response observation at all n replicates taken at the treatment combination, as illustrated
in Figure 6.1. Now the effect of A at the low level of B is [a − (1)]∕n, and the effect of A at the high level of B is
[ab − b]∕n. Averaging these two quantities yields the main effect of A:

A = 1
2n

{[ab − b] + [a − (1)]}

= 1
2n

[ab + a − b − (1)] (6.1)

The average main effect of B is found from the effect of B at the low level of A (i.e., [b − (1)]∕n) and at the high
level of A (i.e., [ab − a]∕n) as

B = 1
2n

{[ab − a] + [b − (1)]}

= 1
2n

[ab + b − a − (1)] (6.2)

We define the interaction effect AB as the average difference between the effect of A at the high level of B and
the effect of A at the low level of B. Thus,

AB = 1
2n

{[ab − b] − [a − (1)]}

= 1
2n

[ab + (1) − a − b] (6.3)

Alternatively, we may define AB as the average difference between the effect of B at the high level of A and the
effect of B at the low level of A. This will also lead to Equation 6.3.

The formulas for the effects of A, B, and AB may be derived by another method. The effect of A can be found
as the difference in the average response of the two treatment combinations on the right-hand side of the square in
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Figure 6.1 (call this average yA+ because it is the average response at the treatment combinations where A is at the high
level) and the two treatment combinations on the left-hand side (or yA− ). That is,

A = yA+ − yA−

= ab + a
2n

− b + (1)
2n

= 1
2n

[ab + a − b − (1)]

This is exactly the same result as in Equation 6.1. The effect of B, Equation 6.2, is found as the difference
between the average of the two treatment combinations on the top of the square (yB+) and the average of the two
treatment combinations on the bottom (yB−), or

B = yB+ − yB−

= ab + b
2n

− a + (1)
2n

= 1
2n

[ab + b − a − (1)]

Finally, the interaction effect AB is the average of the right-to-left diagonal treatment combinations in the square [ab
and (1)] minus the average of the left-to-right diagonal treatment combinations (a and b), or

AB = ab + (1)
2n

− a + b
2n

= 1
2n

[ab + (1) − a − b]

which is identical to Equation 6.3.
Using the experiment in Figure 6.1, we may estimate the average effects as

A = 1
2(3)

(90 + 100 − 60 − 80) = 8.33

B = 1
2(3)

(90 + 60 − 100 − 80) = −5.00

AB = 1
2(3)

(90 + 80 − 100 − 60) = 1.67

The effect of A (reactant concentration) is positive; this suggests that increasing A from the low level (15%) to the high
level (25%) will increase the yield. The effect of B (catalyst) is negative; this suggests that increasing the amount of
catalyst added to the process will decrease the yield. The interaction effect appears to be small relative to the two main
effects.

In experiments involving 2k designs, it is always important to examine the magnitude and direction of the
factor effects to determine which variables are likely to be important. The analysis of variance can generally be used
to confirm this interpretation (t-tests could be used too). Effect magnitude and direction should always be considered
along with the ANOVA, because the ANOVA alone does not convey this information. There are several excellent
statistics software packages that are useful for setting up and analyzing 2k designs. There are also special time-saving
methods for performing the calculations manually.

Consider determining the sums of squares for A, B, and AB. Note from Equation 6.1 that a contrast is used in
estimating A, namely

ContrastA = ab + a − b − (1) (6.4)

We usually call this contrast the total effect of A. From Equations 6.2 and 6.3, we see that contrasts are also used to
estimate B and AB. Furthermore, these three contrasts are orthogonal. The sum of squares for any contrast can be com-
puted from Equation 3.29, which states that the sum of squares for any contrast is equal to the contrast squared divided
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by the number of observations in each total in the contrast times the sum of the squares of the contrast coefficients.
Consequently, we have

SSA = [ab + a − b − (1)]2

4n
(6.5)

SSB = [ab + b − a − (1)]2

4n
(6.6)

and

SSAB = [ab + (1) − a − b]2

4n
(6.7)

as the sums of squares for A, B, and AB. Notice how simple these equations are. We can compute sums of squares by
only squaring one number.

Using the experiment in Figure 6.1, we may find the sums of squares from Equations 6.5, 6.6, and 6.7 as

SSA = (50)2

4(3)
= 208.33

SSB = (−30)2

4(3)
= 75.00 (6.8)

and

SSAB = (10)2

4(3)
= 8.33

The total sum of squares is found in the usual way, that is,

SST =
2∑
i=1

2∑
j=1

n∑
k=1

y2
ijk −

y2
...

4n
(6.9)

In general, SST has 4n − 1 degrees of freedom. The error sum of squares, with 4(n − 1) degrees of freedom, is usually
computed by subtraction as

SSE = SST − SSA − SSB − SSAB (6.10)

For the experiment in Figure 6.1, we obtain

SST =
2∑
i=1

2∑
j=1

3∑
k=1

y2
ijk −

y2
...

4(3)
= 9398.00 − 9075.00 = 323.00

and

SSE = SST − SSA − SSB − SSAB
= 323.00 − 208.33 − 75.00 − 8.33

= 31.34

using SSA, SSB, and SSAB from Equations 6.8. The complete ANOVA is summarized in Table 6.1. On the basis of the
P-values, we conclude that the main effects are statistically significant and that there is no interaction between these
factors. This confirms our initial interpretation of the data based on the magnitudes of the factor effects.

It is often convenient to write down the treatment combinations in the order (1), a, b, ab. This is referred to as
standard order (or Yates’s order, for Frank Yates who was one of Fisher coworkers and who made many important
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◾ TABLE 6 . 1
Analysis of Variance for the Experiment in Figure 6.1

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square Fq P-Value

A 208.33 1 208.33 53.15 0.0001

B 75.00 1 75.00 19.13 0.0024

AB 8.33 1 8.33 2.13 0.1826

Error 31.34 8 3.92

Total 323.00 11

contributions to designing and analyzing experiments). Using this standard order, we see that the contrast coefficients
used in estimating the effects are

Effects (1) a b ab

A −1 +1 −1 +1

B −1 −1 +1 +1

AB +1 −1 −1 +1

Note that the contrast coefficients for estimating the interaction effect are just the product of the corresponding coeffi-
cients for the two main effects. The contrast coefficient is always either +1 or −1, and a table of plus and minus signs
such as in Table 6.2 can be used to determine the proper sign for each treatment combination. The column headings in
Table 6.2 are the main effects (A and B), the AB interaction, and I, which represents the total or average of the entire
experiment. Notice that the column corresponding to I has only plus signs. The row designators are the treatment com-
binations. To find the contrast for estimating any effect, simply multiply the signs in the appropriate column of the table
by the corresponding treatment combination and add. For example, to estimate A, the contrast is −(1) + a − b + ab,
which agrees with Equation 6.1. Note that the contrasts for the effects A, B, and AB are orthogonal. Thus, the 22 (and
all 2k designs) is an orthogonal design. The ±1 coding for the low and high levels of the factors is often called the
orthogonal coding or the effects coding.

◾ TABLE 6 . 2
Algebraic Signs for Calculating Effects in the 22 Design

Factorial EffectTreatment
Combination I A B AB

(1) + − − +
a + + − −
b + − + −
ab + + + +
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The Regression Model. In a 2k factorial design, it is easy to express the results of the experiment in terms of
a regression model. Because the 2k is just a factorial design, we could also use either an effects or a means model, but
the regression model approach is much more natural and intuitive. For the chemical process experiment in Figure 6.1,
the regression model is

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝝐

where x1 is a coded variable that represents the reactant concentration, x2 is a coded variable that represents the
amount of catalyst, and the 𝛽’s are regression coefficients. The relationship between the natural variables, the reactant
concentration and the amount of catalyst, and the coded variables is

x1 =
Conc − (Conclow + Conchigh)∕2

(Conchigh − Conclow)∕2

and

x2 =
Catalyst − (Catalystlow + Catalysthigh)∕2

(Catalysthigh − Catalystlow)∕2

When the natural variables have only two levels, this coding will produce the familiar ±1 notation for the levels
of the coded variables. To illustrate this for our example, note that

x1 =
Conc − (15 + 25)∕2

(25 − 15)∕2

= Conc − 20
5

Thus, if the concentration is at the high level (Conc = 25%), then x1 = +1; if the concentration is at the low level
(Conc = 15%), then x1 = −1. Furthermore,

x2 =
Catalyst − (1 + 2)∕2

(2 − 1)∕2

=
Catalyst − 1.5

0.5

Thus, if the catalyst is at the high level (Catalyst = 2 pounds), then x2 = +1; if the catalyst is at the low level (Catalyst =
1 pound), then x2 = −1.

The fitted regression model is

ŷ = 27.5 +
(8.33

2

)
x1 +

(−5.00
2

)
x2

where the intercept is the grand average of all 12 observations, and the regression coefficients 𝛽1 and 𝛽2 are one-half
the corresponding factor effect estimates. The regression coefficient is one-half the effect estimate because a regression
coefficient measures the effect of a one-unit change in x on the mean of y, and the effect estimate is based on a two-unit
change (from−1 to+1). This simple method of estimating the regression coefficients results in least squares parameter
estimates. We will return to this topic again in Section 6.7. Also see the supplemental material for this chapter.

How Much Replication is Necessary? A standard question that arises in almost every experiment is how
much replication is necessary? We have discussed this in previous chapters, but there are some aspects of this topic
that are particularly useful in 2k designs, which are used extensively for factor screening. That is, studying a group
of k factors to determine which ones are active. Recall from our previous discussions that the choice of an appropriate
sample size in a designed experiment depends on how large the effect of interest is, the power of the statistical test,
and the choice of type I error. While the size of an important effect is obviously problem-dependent, in many prac-
tical situations experimenters are interested in detecting effects that are at least as large as twice the error standard
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deviation (2𝜎). Smaller effects are usually of less interest because changing the factor associated with such a small
effect often results in a change in response that is very small relative to the background noise in the system. Adequate
power is also problem-dependent, but in many practical situations achieving power of at least 0.80 or 80% should
be the goal.

We will illustrate how an appropriate choice of sample size can be determined using the 22 chemical process
experiment. Suppose that we are interested in detecting effects of size 2𝜎. If the basic 22 design is replicated twice
for a total of 8 runs, there will be 4 degrees of freedom for estimating a model-independent estimate of error (pure
error). If the experimenter uses a significance level or Type I error rate of 𝛼 = 0.05, this design results in a power of
0.572 or 57.2%. This is too low, and the experimenter should consider more replication. There is another alternative
that could be useful in screening experiments, use a higher type I error rate. In screening experiments Type I errors
(thinking a factor is active when it really isn't) usually does not have the same impact than a Type II error (failing to
identify an active factor). If a factor is mistakenly thought to be active, that error will be discovered in further work
and so the consequences of this type I error is usually small. However, failing to identify an active factor is usually
very problematic because that factor is set aside and typically never considered again. So in screening experiments
experimenters are often willing to consider higher Type I error rates, say 0.10 or 0.20.

Suppose that we use 𝛼 = 0.10 in our chemical process experiment. This would result in power of 75%. Using
𝛼 = 0.20 increases the power to 89%, a very reasonable value. The other alternative is to increase the sample size by
using additional replicates. If we use three replicates there will be 8 degrees of freedom for pure error and if we want to
detect effects of size 2𝜎 with 𝛼 = 0.05, this design will result in power of 85.7%. This is a very good value for power,
so the experimenters decided to use three replicates of the 22 design.

Software packages can be used to produce the power calculations given above. The boxed display below shows
the power calculations from JMP. The model has both main effects and the two-factor interaction and the effects of
size 2𝜎 is chosen by setting the square root of mean square error (Anticipated RMSE) to 1 and setting the size of each
anticipated model coefficient to 1.

Evaluate Design

Model
Intercept

X1

X2

X1*X2

Power Analysis
Significance Level 0.05

Anticipated RMSE 1

Anticipated

Term Coefficient Power

Intercept 1 0.857

X1 1 0.857

X2 1 0.857

X1*X2 1 0.857

Residuals and Model Adequacy. The regression model can be used to obtain the predicted or fitted value
of y at the four points in the design. The residuals are the differences between the observed and fitted values of y. For
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example, when the reactant concentration is at the low level (x1 = −1) and the catalyst is at the low level (x2 = −1),
the predicted yield is

ŷ = 27.5 +
(8.33

2

)
(−1) +

(−5.00
2

)
(−1) = 25.835

There are three observations at this treatment combination, and the residuals are

e1 = 28 − 25.835 = 2.165
e2 = 25 − 25.835 = −0.835
e3 = 27 − 25.835 = 1.165

The remaining predicted values and residuals are calculated similarly. For the high level of the reactant concentration
and the low level of the catalyst,

ŷ = 27.5 +
(8.33

2

)
(+1) +

(−5.00
2

)
(−1) = 34.165

and
e4 = 36 − 34.165 = 1.835
e5 = 32 − 34.165 = −2.165
e6 = 32 − 34.165 = −2.165

For the low level of the reactant concentration and the high level of the catalyst,

ŷ = 27.5 +
(8.33

2

)
(−1) +

(−5.00
2

)
(+1) = 20.835

and
e7 = 18 − 20.835 = −2.835
e8 = 19 − 20.835 = −1.835
e9 = 23 − 20.835 = 2.165

Finally, for the high level of both factors,

ŷ = 27.5 +
(8.33

2

)
(+1) +

(−5.00
2

)
(+1) = 29.165

and
e10 = 31 − 29.165 = 1.835
e11 = 30 − 29.165 = 0.835
e12 = 29 − 29.165 = −0.165

Figure 6.2 presents a normal probability plot of these residuals and a plot of the residuals versus the predicted yield.
These plots appear satisfactory, so we have no reason to suspect that there are any problems with the validity of our
conclusions.

The Response Surface. The regression model

ŷ = 27.5 +
(8.33

2

)
x1 +

(−5.00
2

)
x2

can be used to generate response surface plots. If it is desirable to construct these plots in terms of the natural factor
levels, then we simply substitute the relationships between the natural and coded variables that we gave earlier into
the regression model, yielding

ŷ = 27.5 +
(8.33

2

)(Conc − 20
5

)
+
(−5.00

2

)(
Catalyst − 1.5

0.5

)

= 18.33 + 0.8333 Conc − 5.00 Catalyst
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◾ F I GURE 6 . 2 Residual plots for the chemical process experiment

Figure 6.3a presents the three-dimensional response surface plot of yield from this model, and Figure 6.3b is the
contour plot. Because the model is first-order (that is, it contains only the main effects), the fitted response surface is
a plane. From examining the contour plot, we see that yield increases as reactant concentration increases and catalyst
amount decreases. Often, we use a fitted surface such as this to find a direction of potential improvement for a
process. A formal way to do so, called the method of steepest ascent, will be presented in Chapter 11 when we
discuss methods for systematically exploring response surfaces.
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◾ F I GURE 6 . 3 Response surface plot and contour plot of yield from the chemical process experiment
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6.3 The 23 Design

Suppose that three factors, A, B, and C, each at two levels, are of interest. The design is called a 𝟐𝟑 factorial design,
and the eight treatment combinations can now be displayed geometrically as a cube, as shown in Figure 6.4a. Using
the “+ and −” orthogonal coding to represent the low and high levels of the factors, we may list the eight runs in the
23 design as in Figure 6.4b. This is sometimes called the design matrix. Extending the label notation discussed in
Section 6.2, we write the treatment combinations in standard order as (1), a, b, ab, c, ac, bc, and abc. Remember that
these symbols also represent the total of all n observations taken at that particular treatment combination.

Three different notations are widely used for the runs in the 2k design. The first is the + and − notation, often
called the geometric coding (or the orthogonal coding or the effects coding). The second is the use of lowercase
letter labels to identify the treatment combinations. The final notation uses 1 and 0 to denote high and low factor
levels, respectively, instead of + and −. These different notations are illustrated below for the 23 design:

Run A B C Labels A B C

1 − − − (1) 0 0 0

2 + − − a 1 0 0

3 − + − b 0 1 0

4 + + − ab 1 1 0

5 − − + c 0 0 1

6 + − + ac 1 0 1

7 − + + bc 0 1 1

8 + + + abc 1 1 1

There are seven degrees of freedom between the eight treatment combinations in the 23 design. Three degrees of
freedom are associated with the main effects of A, B, and C. Four degrees of freedom are associated with interactions:
one each with AB, AC, and BC and one with ABC.

Consider estimating the main effects. First, consider estimating the main effect A. The effect of A when B and
C are at the low level is [a − (1)]∕n. Similarly, the effect of A when B is at the high level and C is at the low level is
[ab − b]∕n. The effect of A when C is at the high level and B is at the low level is [ac − c]∕n. Finally, the effect of

◾ F I GURE 6 . 4 The 23 factorial
design
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A when both B and C are at the high level is [abc − bc]∕n. Thus, the average effect of A is just the average of these
four, or

A = 1
4n

[a − (1) + ab − b + ac − c + abc − bc] (6.11)

This equation can also be developed as a contrast between the four treatment combinations in the right face of
the cube in Figure 6.5a (where A is at the high level) and the four in the left face (where A is at the low level). That
is, the A effect is just the average of the four runs where A is at the high level (yA+) minus the average of the four runs
where A is at the low level (yA−), or

A = yA+ − yA−

= a + ab + ac + abc
4n

− (1) + b + c + bc
4n

This equation can be rearranged as

A = 1
4n

[a + ab + ac + abc − (1) − b − c − bc]

which is identical to Equation 6.11.
In a similar manner, the effect of B is the difference in averages between the four treatment combinations in the

front face of the cube and the four in the back. This yields

B = yB+ − yB−

= 1
4n

[b + ab + bc + abc − (1) − a − c − ac] (6.12)

A B

(a) Main effects

C

– +
–

+

–

+

AB

B

C

A

(b) Two-factor interaction

(c) Three-factor interaction

= + runs

= – runs

BC

+ +

–

–

AC

+

+

–

–

ABC

–

◾ F I GURE 6 . 5 Geometric presentation of
contrasts corresponding to the main effects and
interactions in the 23 design
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The effect of C is the difference in averages between the four treatment combinations in the top face of the cube and
the four in the bottom, that is,

C = yC+ = yC−

= 1
4n

[c + ac + bc + abc − (1) − a − b − ab] (6.13)

The two-factor interaction effects may be computed easily. A measure of the AB interaction is the difference between
the average A effects at the two levels of B. By convention, one-half of this difference is called the AB interaction.
Symbolically,

B Average A Effect

High (+) [(abc − bc) + (ab − b)]
2n

Low (−) {(ac − c) + [a − (1)]}
2n

Difference
[abc − bc + ab − b − ac + c − a + (1)]

2n

Because the AB interaction is one-half of this difference,

AB = [abc − bc + ab − b − ac + c − a + (1)]
4n

(6.14)

We could write Equation 6.14 as follows:

AB = abc + ab + c + (1)
4n

− bc + b + ac + a
4n

In this form, the AB interaction is easily seen to be the difference in averages between runs on two diagonal planes in
the cube in Figure 6.5b. Using similar logic and referring to Figure 6.5b, we find that the AC and BC interactions are

AC = 1
4n

[(1) − a + b − ab − c + ac − bc + abc] (6.15)

and
BC = 1

4n
[(1) + a − b − ab − c − ac + bc + abc] (6.16)

The ABC interaction is defined as the average difference between the AB interaction at the two different levels
of C. Thus,

ABC = 1
4n

{[abc − bc] − [ac − c] − [ab − b] + [a − (1)]}

= 1
4n

[abc − bc − ac + c − ab + b + a − (1)] (6.17)

As before, we can think of the ABC interaction as the difference in two averages. If the runs in the two averages are
isolated, they define the vertices of the two tetrahedra that comprise the cube in Figure 6.5c.

In Equations 6.11 through 6.17, the quantities in brackets are contrasts in the treatment combinations. A table of
plus and minus signs can be developed from the contrasts, which is shown in Table 6.3. Signs for the main effects are
determined by associating a plus with the high level and a minus with the low level. Once the signs for the main effects
have been established, the signs for the remaining columns can be obtained by multiplying the appropriate preceding
columns row by row. For example, the signs in the AB column are the product of the A and B column signs in each
row. The contrast for any effect can be obtained easily from this table.

Table 6.3 has several interesting properties: (1) Except for column I, every column has an equal number of plus
and minus signs. (2) The sum of the products of the signs in any two columns is zero. (3) Column I multiplied times
any column leaves that column unchanged. That is, I is an identity element. (4) The product of any two columns yields
a column in the table. For example, A × B = AB, and

AB × B = AB2 = A
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◾ TABLE 6 . 3
Algebraic Signs for Calculating Effects in the 23 Design

Factorial EffectTreatment
Combination I A B AB C AC BC ABC

(1) + − − + − + + −
a + + − − − − + +
b + − + − − + − +
ab + + + + − − − −
c + − − + + − − +
ac + + − − + + − −
bc + − + − + − + −
abc + + + + + + + +

We see that the exponents in the products are formed by using modulus 2 arithmetic. (That is, the exponent can only
be 0 or 1; if it is greater than 1, it is reduced by multiples of 2 until it is either 0 or 1.) All of these properties are implied
by the orthogonality of the 23 design and the contrasts used to estimate the effects.

Sums of squares for the effects are easily computed because each effect has a corresponding single-degree-of-freedom
contrast. In the 23 design with n replicates, the sum of squares for any effect is

SS = (Contrast)2

8n
(6.18)

EXAMPLE 6 . 1 Plasma Etching

A 23 factorial design was used to develop a nitride etch
process on a single-wafer plasma etching tool. The design
factors are the gap between the electrodes, the gas flow
(C2F6 is used as the reactant gas), and the RF power applied
to the cathode (see Figure 3.1 for a schematic of the plasma

etch tool). Each factor is run at two levels, and the design
is replicated twice. The response variable is the etch rate
for silicon nitride (Å∕m). The etch rate data are shown
in Table 6.4, and the design is shown geometrically in
Figure 6.6.

◾ TABLE 6 . 4
The Plasma Etch Experiment, Example 6.1

Coded Factors Etch Rate Factor Levels

Run A B C Replicate 1 Replicate 2 Total Low (−1) High (+1)

1 −1 −1 −1 550 604 (1) = 1154 A (Gap, cm) 0.80 1.20

2 1 −1 −1 669 650 a = 1319 B (C2F6 flow, SCCM) 125 200

3 −1 1 −1 633 601 b = 1234 C (Power, W) 275 325

4 1 1 −1 642 635 ab = 1277

5 −1 −1 1 1037 1052 c = 2089

6 1 −1 1 749 868 ac = 1617

7 −1 1 1 1075 1063 bc = 2138

8 1 1 1 729 860 abc = 1589
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Power (C)

Gap (A)

C2 F6 Flow

325 w 

c = 2089 
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a = 1319 
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0.80 cm 1.20 cm 
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◾ F I GURE 6 . 6 The 23 design for the plasma etch
experiment for Example 6.1

Using the totals under the treatment combinations shown
in Table 6.4, we may estimate the factor effects as follows:

A = 1
4n

[a − (1) + ab − b + ac − c + abc − bc]

= 1
8
[1319 − 1154 + 1277 − 1234

+1617 − 2089 + 1589 − 2138]

= 1
8
[−813] = −101.625

B = 1
4n

[b + ab + bc + abc − (1) − a − c − ac]

= 1
8
[1234 + 1277 + 2138 + 1589 − 1154

−1319 − 2089 − 1617]

= 1
8
[59] = 7.375

C = 1
4n

[c + ac + bc + abc − (1) − a − b − ab]

= 1
8
[2089 + 1617 + 2138 + 1589 − 1154

−1319 − 1234 − 1277]

= 1
8
[2449] = 306.125

AB = 1
4n

[ab − a − b + (1) + abc − bc − ac + c]

= 1
8
[1277 − 1319 − 1234 + 1154

+1589 − 2138 − 1617 + 2089]

= 1
8
[−199] = −24.875

AC = 1
4n

[(1) − a + b − ab − c + ac − bc + abc]

= 1
8
[1154 − 1319 + 1234 − 1277 − 2089

+1617 − 2138 + 1589]

= 1
8
[−1229] = −153.625

BC = 1
4n

[(1) + a − b − ab − c − ac + bc + abc]

= 1
8
[1154 + 1319 − 1234 − 1277 − 2089

−1617 + 2138 + 1589]

= 1
8
[−17] = −2.125

and

ABC = 1
4n

[abc − bc − ac + c − ab + b + a − (1)]

= 1
8
[1589 − 2138 − 1617 + 2089 − 1277

+1234 + 1319 − 1154]

= 1
8
[45] = 5.625

The largest effects are for power (C = 306.125),
gap (A = −101.625), and the power–gap interaction
(AC = −153.625).

The sums of squares are calculated from Equation 6.18
as follows:

SSA =
(−813)2

16
= 41,310.5625

SSB =
(59)2

16
= 217.5625

SSC = (2449)2

16
= 374,850.0625

SSAB =
(−199)2

16
= 2475.0625

SSAC = (−1229)2

16
= 94,402.5625

SSBC = (−17)2

16
= 18.0625

and

SSABC = (45)2

16
= 126.5625
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The total sum of squares is SST = 531,420.9375 and by
subtraction SSE = 18,020.50. Table 6.5 summarizes the
effect estimates and sums of squares. The column labeled
“percent contribution” measures the percentage contribu-
tion of each model term relative to the total sum of
squares. The percentage contribution is often a rough but
effective guide to the relative importance of each model
term. Note that the main effect of C (Power) really dom-
inates this process, accounting for over 70 percent of the

total variability, whereas the main effect of A (Gap) and
the AC interaction account for about 8 and 18 percent,
respectively.

The ANOVA in Table 6.6 may be used to confirm the
magnitude of these effects. We note from Table 6.6 that the
main effects of Gap and Power are highly significant (both
have very small P-values). The AC interaction is also highly
significant; thus, there is a strong interaction between Gap
and Power.

◾ TABLE 6 . 5
Effect Estimate Summary for Example 6.1

Factor
Effect

Estimate
Sum of
Squares

Percent
Contribution

A −101.625 41,310.5625 7.7736

B 7.375 217.5625 0.0409

C 306.125 374,850.0625 70.5373

AB −24.875 2475.0625 0.4657

AC −153.625 94,402.5625 17.7642

BC −2.125 18.0625 0.0034

ABC 5.625 126.5625 0.0238

◾ TABLE 6 . 6
Analysis of Variance for the Plasma Etching Experiment

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F𝟎 P-Value

Gap (A) 41,310.5625 1 41,310.5625 18.34 0.0027

Gas flow (B) 217.5625 1 217.5625 0.10 0.7639

Power (C) 374,850.0625 1 374,850.0625 166.41 0.0001

AB 2475.0625 1 2475.0625 1.10 0.3252

AC 94,402.5625 1 94,402.5625 41.91 0.0002

BC 18.0625 1 18.0625 0.01 0.9308

ABC 126.5625 1 126.5625 0.06 0.8186

Error 18,020.5000 8 2252.5625

Total 531,420.9375 15
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Replication of the 23 Design. The experimenter in the plasma etching experiment of Example 6.1 used two
replicates of the 23 design. This will provide 8 degrees of freedom for pure error. Suppose that effects of size 2σ are of
interest, the experimenter wants to consider all main effects and interactions (the full factorial model) and use α = 0.05.
The JMP power calculations are shown below:

Evaluate Design

Model
Intercept
X1
X2
X3
X1*X2
X1*X3
X2*X3
X1*X2*X3

Power Analysis
Significance Level 0.05
Anticipated RMSE 1

Term
Anticipated
Coefficient Power

Intercept 1 0.937
X1 1 0.937
X2 1 0.937
X3 1 0.937
X1*X2 1 0.937
X1*X3 1 0.937
X2*X3 1 0.937
X1*X2*X3 1 0.937

The power of this design is 93.7%. Even if the experimenter decides to use α = 0.01 the power is still 72%. Two
replicates of the 23 design is a good choice for this experiment.

The Regression Model and Response Surface. The regression model for predicting etch rate is

ŷ = 𝛽0 + 𝛽1x1 + 𝛽3x3 + 𝛽13x1x3

= 776.0625 +
(−101.625

2

)
x1 +

(306.125
2

)
x3 +

(−153.625
2

)
x1x3

where the coded variables x1 and x3 represent A and C, respectively. The x1x3 term is the AC interaction. Residuals can
be obtained as the difference between observed and predicted etch rate values. We leave the analysis of these residuals
as an exercise for the reader.

Figure 6.7 presents the response surface and contour plot for etch rate obtained from the regression model. Notice
that because the model contains interaction, the contour lines of constant etch rate are curved (or the response surface
is a “twisted” plane). It is desirable to operate this process so that the etch rate is close to 900 Å∕m. The contour plot
shows that several combinations of gap and power will satisfy this objective. However, it will be necessary to control
both of these variables very precisely.
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◾ F I GURE 6 . 7 Response surface and contour plot of etch rate for Example 6.1

Computer Solution. Many statistics software packages are available that will set up and analyze two-level
factorial designs. The output from one of these computer programs, Design-Expert, is shown in Table 6.7. In the upper
part of the table, an ANOVA for the full model is presented. The format of this presentation is somewhat different
from the ANOVA results given in Table 6.6. Notice that the first line of the ANOVA is an overall summary for the full
model (all main effects and interactions), and the model sum of squares is

SSModel = SSA + SSB + SSC + SSAB + SSAC + SSBC + SSABC = 5.134 × 105

Thus, the statistic

F0 =
MSModel

MSE
= 73,342.92

2252.56
= 32.56

is testing the hypotheses
H0∶ 𝛽1 = 𝛽2 = 𝛽3 = 𝛽12 = 𝛽13 = 𝛽23 = 𝛽123 = 0
H1∶ at least one 𝛽 ≠ 0

Because F0 is large, we would conclude that at least one variable has a nonzero effect. Then each individual factorial
effect is tested for significance using the F-statistic. These results agree with Table 6.6.

Below the full model ANOVA in Table 6.7, several R2 statistics are presented. The ordinary R2 is

R2 =
SSModel

SSTotal
= 5.134 × 105

5.314 × 105
= 0.9661

and it measures the proportion of total variability explained by the model. A potential problem with this statistic is that
it always increases as factors are added to the model, even if these factors are not significant. The adjusted R2 statistic,
defined as

R2
Adj = 1 −

SSE∕df E
SSTotal∕df Total

= 1 −
18,020.50∕8

5.314 × 105∕15
= 0.9364

is a statistic that is adjusted for the “size” of the model, that is, the number of factors. The adjusted R2 can actually
decrease if nonsignificant terms are added to a model. The PRESS statistic is a measure of how well the model will
predict new data. (PRESS is actually an acronym for prediction error sum of squares, and it is computed as the sum
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◾ TABLE 6 . 7
Design-Expert Output for Example 6.1

Response: Etch rate

ANOVA for Selected Factorial Model

Analysis of variance table [Partial sum of squares]

Source
Sum of
Squares DF

Mean
Square

F
Value Prob > F

Model 5.134E + 005 7 73342.92 32.56 < 0.0001
A 41310.56 1 41310.56 18.34 0.0027
B 217.56 1 217.56 0.097 0.7639
C 3.749E + 005 1 3.749E + 005 166.41 < 0.0001

AB 2475.06 1 2475.06 1.10 0.3252
AC 94402.56 1 94402.56 41.91 0.0002
BC 18.06 1 18.06 8.019E-003 0.9308

ABC 126.56 1 126.56 0.056 0.8186
Pure Error 18020.50 8 2252.56
Cor Total 5.314E + 005 15

Std. Dev. 47.46 R-Squared 0.9661
Mean 776.06 Adj R-Squared 0.9364

C.V. 6.12 Pred R-Squared 0.8644
PRESS 72082.00 Adeq Precision 14.660

Factor
Coefficient
Estimated DF

Standard
Error

95% CI
Low

95% CI
High VIF

Intercept 776.06 1 11.87 748.70 803.42
A-Gap −50.81 1 11.87 −78.17 −23.45 1.00

B-Gas flow 3.69 1 11.87 −23.67 31.05 1.00
C-Power 153.06 1 11.87 125.70 180.42 1.00

AB −12.44 1 11.87 −39.80 14.92 1.00
AC −76.81 1 11.87 −104.17 −49.45 1.00
BC −1.06 1 11.87 −28.42 26.30 1.00

ABC 2.81 1 11.87 −24.55 30.17 1.00

Final Equation in Terms of Coded Factors:
Etch rate =
+776.06
−50.81 ∗ A
+3.69 ∗ B
+153.06 ∗ C
−12.44 ∗ A ∗ B
−76.81 ∗ A ∗ C
+1.06 ∗ B ∗ C
+2.81 ∗ A ∗ B ∗ C

Final Equation in Terms of Actual Factors:
Etch rate =
−6487.33333
+5355.41667 * Gap
+6.59667 * Gas flow
+24.10667 * Power
−6.15833 * Gap * Gas flow
−17.80000 * Gap * Power
−0.016133 * Gas flow * Power
+0.015000 * Gap * Gas flow * Power
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◾ TABLE 6 . 7 (Continued)

Response: Etch rate
ANOVA for Selected Factorial Model
Analysis of variance table [Partial sum of squares]

Source
Sum of
Squares DF

Mean
Square

F
Value Prob > F

Model 5.106E + 005 3 1.702E + 005 97.91 < 0.0001
A 41310.56 1 41310.56 23.77 0.0004
C 3.749E + 005 1 3.749E + 005 215.66 < 0.0001

AC 94402.56 1 94402.56 54.31 < 0.0001

Residual 20857.75 12 1738.15
Lack of Fit 2837.25 4 709.31 0.31 0.8604
Pure Error 18020.50 8 2252.56
Cor Total 5.314E + 005 15

Std. Dev. 41.69 R-Squared 0.9608
Mean 776.06 Adj R-Squared 0.9509
C.V. 5.37 Pred R-Squared 0.9302
PRESS 37080.44 Adeq Precision 22.055

Factor
Coefficient
Estimated DF

Standard
Error

95% CI
Low

95% CI
High VIF

Intercept 776.06 1 10.42 753.35 798.77
A-Gap −50.81 1 10.42 −73.52 28.10 1.00

C-Power 153.06 1 10.42 130.35 175.77 1.00
AC −76.81 1 10.42 −99.52 −54.10 1.00

Final Equation in Terms of Coded Factors:
Etch rate =
+776.06
−50.81 ∗ A

+153.06 ∗ C
−76.81 ∗ A ∗ C

Final Equation in Terms of Actual Factors:
Etch rate =

−5415.37500
+4354.68750 * Gap

+21.48500 * Power
−15.36250 * Gap * Power

Diagnostics Case Statistics
Standard
Order

Actual
Value

Predicted
Value Residual Leverage

Student
Residual

Cook’s
Distance Outlier t

Run
Order

1 550.00 597.00 −47.00 0.250 −1.302 0.141 −1.345 9
2 604.00 597.00 7.00 0.250 0.194 0.003 0.186 6
3 669.00 649.00 20.00 0.250 0.554 0.026 0.537 14
4 650.00 649.00 1.00 0.250 0.028 0.000 0.027 1
5 633.00 597.00 36.00 0.250 0.997 0.083 0.997 3
6 601.00 597.00 4.00 0.250 0.111 0.001 0.106 12
7 642.00 649.00 −7.00 0.250 −0.194 0.003 −0.186 13
8 635.00 649.00 −14.00 0.250 −0.388 0.013 −0.374 8
9 1037.00 1056.75 −19.75 0.250 −0.547 0.025 −0.530 5

10 1052.00 1056.75 −4.75 0.250 −0.132 0.001 −0.126 16
11 749.00 801.50 −52.50 0.250 −1.454 0.176 −1.534 2
12 868.00 801.50 66.50 0.250 1.842 0.283 2.082 15
13 1075.00 1056.75 18.25 0.250 0.505 0.021 0.489 4
14 1063.00 1056.75 6.25 0.250 0.173 0.002 0.166 7
15 729.00 801.50 −72.50 0.250 −2.008 0.336 −2.359 10
16 860.00 801.50 58.50 0.250 1.620 0.219 1.755 11
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of the squared prediction errors obtained by predicting the ith data point with a model that includes all observations
except the ith one.) A model with a small value of PRESS indicates that the model is likely to be a good predictor. The
“Prediction R2” statistic is computed as

R2
Pred = 1 − PRESS

SSTotal
= 1 − 72,082.00

5.314 × 105
= 0.8644

This indicates that the full model would be expected to explain about 86 percent of the variability in new data.
The next portion of the output presents the regression coefficient for each model term and the standard error

of each coefficient, defined as

se(𝛽) =
√

V(𝛽) =

√
MSE
n2k

=
√

MSE
N

=
√

2252.56
2(8)

= 11.87

The standard errors of all model coefficients are equal because the design is orthogonal. The 95 percent confidence
intervals on each regression coefficient are computed from

𝛽 − t0.025,N−pse(𝛽) ≤ 𝛽 ≤ 𝛽 + t0.025,N−pse(𝛽)

where the degrees of freedom on t are the number of degrees of freedom for error; that is, N is the total number of
runs in the experiment (16), and p is the number of model parameters (8). The full model in terms of both the coded
variables and the natural variables is also presented.

The last part of the display in Table 6.7 illustrates the output following the removal of the nonsignificant interac-
tion terms. This reduced model now contains only the main effects A, C, and the AC interaction. The error or residual
sum of squares is now composed of a pure error component arising from the replication of the eight corners of the
cube and a lack-of-fit component consisting of the sums of squares for the factors that were dropped from the model
(B, AB, BC, and ABC). Once again, the regression model representation of the experimental results is given in terms
of both coded and natural variables. The proportion of total variability in etch rate that is explained by this model is

R2 =
SSModel

SSTotal
= 5.106 × 105

5.314 × 105
= 0.9608

which is smaller than the R2 for the full model. Notice, however, that the adjusted R2 for the reduced model is actually
slightly larger than the adjustedR2 for the full model, and PRESS for the reduced model is considerably smaller, leading
to a larger value of R2

Pred for the reduced model. Clearly, removing the nonsignificant terms from the full model has
produced a final model that is likely to function more effectively as a predictor of new data. Notice that the confidence
intervals on the regression coefficients for the reduced model are shorter than the corresponding confidence intervals
for the full model.

The last part of the output presents the residuals from the reduced model. Design-Expert will also construct all
of the residual plots that we have previously discussed.

Other Methods for Judging the Significance of Effects. The analysis of variance is a formal way to
determine which factor effects are nonzero. Several other methods are useful. Below, we show how to calculate the
standard error of the effects, and we use these standard errors to construct confidence intervals on the effects.
Another method, which we will illustrate in Section 6.5, uses normal probability plots to assess the importance of
the effects.

The standard error of an effect is easy to find. If we assume that there are n replicates at each of the 2k runs in
the design, and if yi1, yi2, . . . , yin are the observations at the ith run, then

S2
i =

1
n−1

n∑
j=1

(yij − yi)2 i = 1, 2, . . . , 2k
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is an estimate of the variance at the ith run. The 2k variance estimates can be combined to give an overall variance
estimate:

S2 = 1

2k(n − 1)

2k∑
i=1

n∑
j=1

(yij − yi)2 (6.19)

This is also the variance estimate given by the error mean square in the analysis of variance. The variance of each
effect estimate is

V(Effect) = V

(
Contrast

n2k−1

)

= 1

(n2k−1)2
V(Contrast)

Each contrast is a linear combination of 2k treatment totals, and each total consists of n observations. Therefore,

V(Contrast) = n2k
𝜎

2

and the variance of an effect is
V(Effect) = 1

(n2k−1)2
n2k

𝜎
2 = 1

n2k−2
𝜎

2

The estimated standard error would be found by replacing 𝜎
2 by its estimate S2 and taking the square root of this last

expression:

se(Effect) = 2S√
n2k

(6.20)

Notice that the standard error of an effect is twice the standard error of an estimated regression coefficient in the
regression model for the 2k design (see the Design-Expert computer output for Example 6.1). It would be possible to
test the significance of any effect by comparing the effect estimates to its standard error:

t0 = Effect
se(Effect)

This is a t statistic with N − p degrees of freedom.
The 100(1 − 𝛼) percent confidence intervals on the effects are computed from Effect ± t

𝛼∕2,N−pse(Effect),
where the degrees of freedom on t are just the error or residual degrees of freedom (N − p = total number of runs −
number of model parameters).

To illustrate this method, consider the plasma etching experiment in Example 6.1. The mean square error for the
full model is MSE = 2252.56. Therefore, the standard error of each effect is (using S2 = MSE)

se(Effect) = 2S√
n2k

=
2
√

2252.56√
2(23)

= 23.73

Now t0.025,8 = 2.31 and t0.025,8se(Effect) = 2.31(23.73) = 54.82, so approximate 95 percent confidence intervals
on the factor effects are

A ∶−101.625 ± 54.82
B ∶ 7.375 ± 54.82
C ∶ 306.125 ± 54.82

AB ∶ −24.875 ± 54.82
AC ∶−153.625 ± 54.82
BC ∶ −2.125 ± 54.82

ABC ∶ 5.625 ± 54.82

This analysis indicates that A, C, and AC are important factors because they are the only factor effect estimates for
which the approximate 95 percent confidence intervals do not include zero.
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◾ F I GURE 6 . 8 Ranges of etch rates for
Example 6.1
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Dispersion Effects. The process engineer working on the plasma etching tool was also interested in disper-
sion effects; that is, do any of the factors affect variability in etch rate from run to run? One way to answer the question
is to look at the range of etch rates for each of the eight runs in the 23 design. These ranges are plotted on the cube
in Figure 6.8. Notice that the ranges in etch rates are much larger when both Gap and Power are at their high levels,
indicating that this combination of factor levels may lead to more variability in etch rate than other recipes. Fortunately,
etch rates in the desired range of 900 Å∕m can be achieved with settings of Gap and Power that avoid this situation.

6.4 The General 2k Design

The methods of analysis that we have presented thus far may be generalized to the case of a 𝟐k factorial design, that

is, a design with k factors each at two levels. The statistical model for a 2k design would include k main effects,

(
k
2

)

two-factor interactions,

(
k
3

)
three-factor interactions, . . . , and one k-factor interaction. That is, the complete model

would contain 2k − 1 effects for a 2k design. The notation introduced earlier for treatment combinations is also used
here. For example, in a 25 design abd denotes the treatment combination with factors A, B, and D at the high level and
factors C and E at the low level. The treatment combinations may be written in standard order by introducing the
factors one at a time, with each new factor being successively combined with those that precede it. For example, the
standard order for a 24 design is (1), a, b, ab, c, ac, bc, abc, d, ad, bd, abd, cd, acd, bcd, and abcd.

The general approach to the statistical analysis of the 2k design is summarized in Table 6.8. As we have indicated
previously, a computer software package is usually employed in this analysis process.

◾ TABLE 6 . 8
Analysis Procedure for a 2k Design

1. Estimate factor effects

2. Form initial model

a. If the design is replicated, fit the full model

b. If there is no replication, form the model using a normal probability
plot of the effects

3. Perform statistical testing

4. Refine model

5. Analyze residuals

6. Interpret results
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The sequence of steps in Table 6.8 should, by now, be familiar. The first step is to estimate factor effects and
examine their signs and magnitudes. This gives the experimenter preliminary information regarding which factors
and interactions may be important and in which directions these factors should be adjusted to improve the response. In
forming the initial model for the experiment, we usually choose the full model, that is, all main effects and interactions,
provided that at least one of the design points has been replicated (in the next section, we discuss a modification to this
step). Then in step 3, we use the analysis of variance to formally test for the significance of main effects and interaction.
Table 6.9 shows the general form of an analysis of variance for a 2k factorial design with n replicates. Step 4, refine
the model, usually consists of removing any nonsignificant variables from the full model. Step 5 is the usual residual
analysis to check for model adequacy and assumptions. Sometimes model refinement will occur after residual analysis
if we find that the model is inadequate or assumptions are badly violated. The final step usually consists of graphical
analysis—either main effect or interaction plots, or response surface and contour plots.

Although the calculations described above are almost always done with a computer, occasionally it is necessary
to manually calculate an effect estimate or sum of squares for an effect. To estimate an effect or to compute the sum
of squares for an effect, we must first determine the contrast associated with that effect. This can always be done by
using a table of plus and minus signs, such as Table 6.2 or Table 6.3. However, this is awkward for large values of k and

◾ TABLE 6 . 9
Analysis of Variance for a 2k Design

Source of
Variation

Sum of
Squares

Degrees of
Freedom

k main effects

A SSA 1

B SSB 1

⋮ ⋮ ⋮

K SSK 1(
k

2

)
two-factor interactions

AB SSAB 1

AC SSAC 1

⋮ ⋮ ⋮

JK SSJK 1(
k

3

)
three-factor interactions

ABC SSABC 1

ABD SSABD 1

⋮ ⋮ ⋮

IJK SSIJK 1

⋮ ⋮ ⋮(
k

k

)
k-factor interaction

ABC · · ·K SSABC···K 1

Error SSE 2k(n − 1)
Total SST n2k − 1
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we can use an alternate method. In general, we determine the contrast for effect AB · · ·K by expanding the right-hand
side of

ContrastAB···K = (a ± 1)(b ± 1) · · · (k ± 1) (6.21)

In expanding Equation 6.21, ordinary algebra is used with “1” being replaced by (1) in the final expression. The sign
in each set of parentheses is negative if the factor is included in the effect and positive if the factor is not included.

To illustrate the use of Equation 6.21, consider a 23 factorial design. The contrast for AB would be

ContrastAB = (a − 1)(b − 1)(c + 1)
= abc + ab + c + (1) − ac − bc − a − b

As a further example, in a 25 design, the contrast for ABCD would be

ContrastABCD = (a − 1)(b − 1)(c − 1)(d − 1)(e + 1)
= abcde + cde + bde + ade + bce

+ ace + abe + e + abcd + cd + bd

+ ad + bc + ac + ab + (1) − a − b − c

− abc − d − abd − acd − bcd − ae

− be − ce − abce − de − abde − acde − bcde

Once the contrasts for the effects have been computed, we may estimate the effects and compute the sums of
squares according to

AB · · ·K = 2

n2k
(ContrastAB···K) (6.22)

and
SSAB···K = 1

n2k
(ContrastAB···K)2 (6.23)

respectively, where n denotes the number of replicates. There is also a tabular algorithm due to Frank Yates that can
occasionally be useful for manual calculation of the effect estimates and the sums of squares. Refer to the supplemental
text material for this chapter.

6.5 A Single Replicate of the 2k Design

For even a moderate number of factors, the total number of treatment combinations in a 2k factorial design is large. For
example, a 25 design has 32 treatment combinations, a 26 design has 64 treatment combinations, and so on. Because
resources are usually limited, the number of replicates that the experimenter can employ may be restricted. Frequently,
available resources only allow a single replicate of the design to be run, unless the experimenter is willing to omit
some of the original factors.

An obvious risk when conducting an experiment that has only one run at each test combination is that we may
be fitting a model to noise. That is, if the response y is highly variable, misleading conclusions may result from the
experiment. The situation is illustrated in Figure 6.9a. In this figure, the straight line represents the true factor effect.
However, because of the random variability present in the response variable (represented by the shaded band), the
experimenter actually obtains the two measured responses represented by the dark dots. Consequently, the estimated
factor effect is close to zero, and the experimenter has reached an erroneous conclusion concerning this factor. Now
if there is less variability in the response, the likelihood of an erroneous conclusion will be smaller. Another way to
ensure that reliable effect estimates are obtained is to increase the distance between the low (−) and high (+) levels
of the factor, as illustrated in Figure 6.9b. Notice that in this figure, the increased distance between the low and high
factor levels results in a reasonable estimate of the true factor effect.



�

� �

�

6.5 A Single Replicate of the 2k Design 255

Estimate of
factor effect

Factor, x

(a) Small distance between factor levels

R
e
sp

o
n

se
, 
y

– +

True
factor
effect

Estimate of
factor effect

Factor, x

(b) Aggressive spacing of factor levels

R
e
sp

o
n

se
, 
y

– +

True
factor
effect

◾ F I GURE 6 . 9 The impact of the choice of factor levels in an unreplicated design

The single-replicate strategy is often used in screening experiments when there are relatively many factors under
consideration. Because we can never be entirely certain in such cases that the experimental error is small, a good
practice in these types of experiments is to spread out the factor levels aggressively. You might find it helpful to reread
the guidance on choosing factor levels in Chapter 1.

A single replicate of a 2k design is sometimes called an unreplicated factorial. With only one replicate, there is
no internal estimate of error (or “pure error”). One approach to the analysis of an unreplicated factorial is to assume that
certain high-order interactions are negligible and combine their mean squares to estimate the error. This is an appeal
to the sparsity of effects principle; that is, most systems are dominated by some of the main effects and low-order
interactions, and most high-order interactions are negligible.

While the effect sparsity principle has been observed by experimenters for many decades, only recently has it
been studied more objectively. A paper by Li, Sudarsanam, and Frey (2006) studied 113 response variables obtained
from 43 published experiments from a wide range of science and engineering disciplines. All of the experiments were
full factorials with between three and seven factors, so no assumptions had to be made about interactions. Most of
the experiments had either three or four factors. The authors found that about 40 percent of the main effects in the
experiments they studied were significant, while only about 11 percent of the two-factor interactions were significant.
Three-factor interactions were very rare, occurring only about 5 percent of the time. The authors also investigated the
absolute values of factor effects for main effects, two-factor interactions, and three-factor interactions. The median
of main effect strength was about four times larger than the median strength of two-factor interactions. The median
strength of two-factor interactions was more than two times larger than the median strength of three-factor interactions.
However, there were many two- and three-factor interactions that were larger than the median main effect. Another
paper by Bergquist, Vanhatalo, and Nordenvaad (2011) also studied the effect of the sparsity question using 22 different
experiments with 35 responses. They considered both full factorial and fractional factorial designs with factors at two
levels. Their results largely agree with those of Li et al. (2006), with the exception that three-factor interactions were
less frequent, occurring only about 2 percent of the time. This difference may be partially explained by the inclusion
of experiments with indications of curvature and the need for transformations in the Li et al. (2006) study. Bergquist
et al. (2011) excluded such experiments. Overall, both of these studies confirm the validity of the sparsity of effects
principle.

When analyzing data from unreplicated factorial designs, occasionally real high-order interactions occur. The
use of an error mean square obtained by pooling high-order interactions is inappropriate in these cases. A method
of analysis attributed to Daniel (1959) provides a simple way to overcome this problem. Daniel suggests examining
a normal probability plot of the estimates of the effects. The effects that are negligible are normally distributed,
with mean zero and variance 𝜎

2 and will tend to fall along a straight line on this plot, whereas significant effects will
have nonzero means and will not lie along the straight line. Thus, the preliminary model will be specified to contain
those effects that are apparently nonzero, based on the normal probability plot. The apparently negligible effects are
combined as an estimate of error.
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EXAMPLE 6 . 2 A Single Replicate of the 24 Design

A chemical product is produced in a pressure vessel. A fac-
torial experiment is carried out in the pilot plant to study
the factors thought to influence the filtration rate of this
product. The four factors are temperature (A), pressure (B),
concentration of formaldehyde (C), and stirring rate (D).
Each factor is present at two levels. The design matrix and
the response data obtained from a single replicate of the 24

experiment are shown in Table 6.10 and Figure 6.10. The
16 runs are made in random order. The process engineer is
interested in maximizing the filtration rate. Current process
conditions give filtration rates of around 75 gal∕h. The pro-
cess also currently uses the concentration of formaldehyde,
factor C, at the high level. The engineer would like to reduce
the formaldehyde concentration as much as possible but has
been unable to do so because it always results in lower fil-
tration rates.

We will begin the analysis of these data by constructing
a normal probability plot of the effect estimates. The table
of plus and minus signs for the contrast constants for the
24 design are shown in Table 6.11. From these contrasts, we

may estimate the 15 factorial effects and the sums of squares
shown in Table 6.12.

The normal probability plot of these effects is shown in
Figure 6.11. All of the effects that lie along the line are neg-
ligible, whereas the large effects are far from the line. The
important effects that emerge from this analysis are the main
effects of A, C, and D and the AC and AD interactions.
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◾ F I GURE 6 . 10 Data from the pilot plant
filtration rate experiment for Example 6.2

◾ TABLE 6 . 10
Pilot Plant Filtration Rate Experiment

Factor
Run
Number A B C D Run Label

Filtration
Rate
(gal/h)

1 − − − − (1) 45

2 + − − − a 71

3 − + − − b 48

4 + + − − ab 65

5 − − + − c 68

6 + − + − ac 60

7 − + + − bc 80

8 + + + − abc 65

9 − − − + d 43

10 + − − + ad 100

11 − + − + bd 45

12 + + − + abd 104

13 − − + + cd 75

14 + − + + acd 86

15 − + + + bcd 70

16 + + + + abcd 96
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◾ TABLE 6 . 11
Contrast Constants for the 24 Design

A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

(1) − − + − + + − − + + − + − − +
a + − − − − + + − − + + + + − −
b − + − − + − + − + − + + − + −
ab + + + − − − − − − − − + + + +
c − − + + − − + − + + − − + + −
ac + − − + + − − − − + + − − + +
bc − + − + − + − − + − + − + − +
abc + + + + + + + − − − − − − − −
d − − + − + + − + − − + − + + −
ad + − − − − + + + + − − − − + +
bd − + − − + − + + − + − − + − +
abd + + + − − − − + + + + − − − −
cd − − + + − − + + − − + + − − +
acd + − − + + − − + + − − + + − −
bcd − + − + − + − + − + − + − + −
abcd + + + + + + + + + + + + + + +

◾ TABLE 6 . 12
Factor Effect Estimates and Sums of Squares for
the 24 Factorial in Example 6.2

Model
Term

Effect
Estimate

Sum of
Squares

Percent
Contribution

A 21.625 1870.56 32.6397

B 3.125 39.0625 0.681608

C 9.875 390.062 6.80626

D 14.625 855.563 14.9288

AB 0.125 0.0625 0.00109057

AC −18.125 1314.06 22.9293

AD 16.625 1105.56 19.2911

BC 2.375 22.5625 0.393696

BD −0.375 0.5625 0.00981515

CD −1.125 5.0625 0.0883363

ABC 1.875 14.0625 0.245379

ABD 4.125 68.0625 1.18763

ACD −1.625 10.5625 0.184307

BCD −2.625 27.5625 0.480942

ABCD 1.375 7.5625 0.131959
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◾ F I GURE 6 . 11 Normal probability plot of the
effects for the 24 factorial in Example 6.2

The main effects of A, C, and D are plotted in
Figure 6.12a. All three effects are positive, and if we consid-
ered only these main effects, we would run all three factors
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at the high level to maximize the filtration rate. How-
ever, it is always necessary to examine any interactions
that are important. Remember that main effects do not
have much meaning when they are involved in significant
interactions.

The AC and AD interactions are plotted in Figure 6.12b.
These interactions are the key to solving the problem. Note
from the AC interaction that the temperature effect is very
small when the concentration is at the high level and very

large when the concentration is at the low level, with the
best results obtained with low concentration and high tem-
perature. TheAD interaction indicates that stirring rateD has
little effect at low temperature but a large positive effect at
high temperature. Therefore, the best filtration rates would
appear to be obtained when A and D are at the high level
and C is at the low level. This would allow the reduction
of the formaldehyde concentration to a lower level, another
objective of the experimenter.
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◾ F I GURE 6 . 12 Main effect and interaction plots for Example 6.2

The use of normal probability plot is not without criticism. If none of the effects are very large (say larger
than 2σ), then the plot may be ambiguous and hard to interpret. If there are few effects, in say an eight-run design, the
plot may be of little help.

Design Projection. Another interpretation of the effects in Figure 6.11 is possible. Because B (pressure) is
not significant and all interactions involving B are negligible, we may discard B from the experiment so that the design
becomes a 23 factorial in A, C, and D with two replicates. This is easily seen from examining only columns A, C, and
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◾ TABLE 6 . 13
Analysis of Variance for the Pilot Plant Filtration Rate Experiment in A, C, and D

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F0 P-Value

A 1870.56 1 1870.56 83.36 < 0.0001

C 390.06 1 390.06 17.38 < 0.0001

D 855.56 1 855.56 38.13 < 0.0001

AC 1314.06 1 1314.06 58.56 < 0.0001

AD 1105.56 1 1105.56 49.27 < 0.0001

CD 5.06 1 5.06 < 1

ACD 10.56 1 10.56 < 1

Error 179.52 8 22.44

Total 5730.94 15

D in the design matrix shown in Table 6.10 and noting that those columns form two replicates of a 23 design. The
analysis of variance for the data using this simplifying assumption is summarized in Table 6.13. The conclusions that
we would draw from this analysis are essentially unchanged from those of Example 6.2. Note that by projecting the
single replicate of the 24 into a replicated 23, we now have both an estimate of the ACD interaction and an estimate of
error based on what is sometimes called hidden replication.

The concept of projecting an unreplicated factorial into a replicated factorial in fewer factors is very useful. In
general, if we have a single replicate of a 2k design, and if h(h < k) factors are negligible and can be dropped, then the
original data correspond to a full two-level factorial in the remaining k − h factors with 2h replicates.

Diagnostic Checking. The usual diagnostic checks should be applied to the residuals of a 2k design. Our
analysis indicates that the only significant effects are A = 21.625, C = 9.875, D = 14.625, AC = −18.125, and AD =
16.625. If this is true, the estimated filtration rates are given by

ŷ = 70.06 +
(21.625

2

)
x1 +

(9.875
2

)
x3 +

(14.625
2

)
x4 −

(18.125
2

)
x1x3

+
(16.625

2

)
x1x4

where 70.06 is the average response, and the coded variables x1, x3, x4 take on values between−1 and+1. The predicted
filtration rate at run (1) is

ŷ = 70.06 +
(21.625

2

)
(−1) +

(9.875
2

)
(−1) +

(14.625
2

)
(−1)

−
(18.125

2

)
(−1)(−1) +

(16.625
2

)
(−1)(−1)

= 46.22
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Because the observed value is 45, the residual is e = y − ŷ = 45 − 46.25 = −1.25. The values of y, ŷ, and e = y − ŷ for
all 16 observations are as follows:

y ŷ e = y− ŷ

(1) 45 46.25 −1.25

a 71 69.38 1.63

b 48 46.25 1.75

ab 65 69.38 −4.38

c 68 74.25 −6.25

ac 60 61.13 −1.13

bc 80 74.25 5.75

abc 65 61.13 3.88

d 43 44.25 −1.25

ad 100 100.63 −0.63

bd 45 44.25 0.75

abd 104 100.63 3.38

cd 75 72.25 2.75

acd 86 92.38 −6.38

bcd 70 72.25 −2.25

abcd 96 92.38 3.63

A normal probability plot of the residuals is shown in Figure 6.13. The points on this plot lie reasonably close to a
straight line, lending support to our conclusion that A, C, D, AC, and AD are the only significant effects and that the
underlying assumptions of the analysis are satisfied.

◾ F I GURE 6 . 13 Normal probability plot of residuals for
Example 6.2
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The Response Surface. We used the interaction plots in Figure 6.12 to provide a practical interpretation of
the results of this experiment. Sometimes we find it helpful to use the response surface for this purpose. The response
surface is generated by the regression model

ŷ = 70.06 +
(21.625

2

)
x1 +

(9.875
2

)
x3 +

(14.625
2

)
x4

−
(18.125

2

)
x1x3 +

(16.625
2

)
x1x4

Figure 6.14a shows the response surface contour plot when stirring rate is at the high level (i.e., x4 = 1). The contours
are generated from the above model with x4 = 1, or

ŷ = 77.3725 +
(38.25

2

)
x1 +

(9.875
2

)
x3 −

(18.125
2

)
x1x3

Notice that the contours are curved lines because the model contains an interaction term.
Figure 6.14b is the response surface contour plot when temperature is at the high level (i.e., x1 = 1). When we

put x1 = 1 in the regression model, we obtain

ŷ = 80.8725 −
(8.25

2

)
x3 +

(31.25
2

)
x4

These contours are parallel straight lines because the model contains only the main effects of factors C (x3) and D (x4).
Both contour plots indicate that if we want to maximize the filtration rate, variables A (x1) and D (x4) should be

at the high level and that the process is relatively robust to concentration C. We obtained similar conclusions from the
interaction graphs.

The Half-Normal Plot of Effects. An alternative to the normal probability plot of the factor effects is the
half-normal plot. This is a plot of the absolute value of the effect estimates against their cumulative normal proba-
bilities. Figure 6.15 presents the half-normal plot of the effects for Example 6.2. The straight line on the half-normal
plot always passes through the origin and should also pass close to the fiftieth percentile data value. Many analysts feel
that the half-normal plot is easier to interpret, particularly when there are only a few effect estimates such as when the
experimenter has used an eight-run design. Some software packages will construct both plots.
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◾ F I GURE 6 . 14 Contour plots of filtration rate, Example 6.2
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◾ F I GURE 6 . 15 Half-normal plot of the factor effects
from Example 6.2
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Other Methods for Analyzing Unreplicated Factorials. A widely used analysis procedure for an unrepli-
cated two-level factorial design is the normal (or half-normal) plot of the estimated factor effects. However, unreplicated
designs are so widely used in practice that many formal analysis procedures have been proposed to overcome the sub-
jectivity of the normal probability plot. Hamada and Balakrishnan (1998) compared some of these methods. They
found that the method proposed by Lenth (1989) has good power to detect significant effects. It is also easy to imple-
ment, and as a result it appears in several software packages for analyzing data from unreplicated factorials. We give
a brief description of Lenth’s method.

Suppose that we have m contrasts of interest, say c1, c2, . . . , cm. If the design is an unreplicated 2k factorial
design, these contrasts correspond to the m = 2k − 1 factor effect estimates. The basis of Lenth’s method is to estimate
the variance of a contrast from the smallest (in absolute value) contrast estimates. Let

s0 = 1.5 × median(|cj|)
and

PSE = 1.5 × median(|cj| ∶ |cj| < 2.5s0)

PSE is called the “pseudostandard error,” and Lenth shows that it is a reasonable estimator of the contrast variance when
there are only a few active (significant) effects. The PSE is used to judge the significance of contrasts. An individual
contrast can be compared to the margin of error

ME = t0.025,d × PSE

where the degrees of freedom are defined as d = m∕3. For inference on a group of contrasts, Lenth suggests using the
simultaneous margin of error

SME = t
𝛾,d × PSE

where the percentage point of the t distribution used is 𝛾 = 1 − (1 + 0.951∕m)∕2.
To illustrate Lenth’s method, consider the 24 experiment in Example 6.2. The calculations result in s0 = 1.5 ×| − 2.625| = 3.9375 and 2.5 × 3.9375 = 9.84375, so

PSE = 1.5 × |1.75| = 2.625

ME = 2.571 × 2.625 = 6.75

SME = 5.219 × 2.625 = 13.70
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Now consider the effect estimates in Table 6.12. The SME criterion would indicate that the four largest effects (in
magnitude) are significant because their effect estimates exceed SME. The main effect of C is significant according to
the ME criterion, but not with respect to SME. However, because the AC interaction is clearly important, we would
probably include C in the list of significant effects. Notice that in this example, Lenth’s method has produced the same
answer that we obtained previously from examination of the normal probability plot of effects.

Several authors [see Loughin and Nobel (1997), Hamada and Balakrishnan (1998), Larntz and Whitcomb (1998),
Loughin (1998), and Edwards and Mee (2008)] have observed that Lenth’s method results in values of ME and SME
that are too conservative and have little power to detect significant effects. Simulation methods can be used to calibrate
his procedure. Larntz and Whitcomb (1998) suggest replacing the original ME and SME multipliers with adjusted
multipliers as follows:

Number of Contrasts 7 15 31

Original ME 3.764 2.571 2.218

Adjusted ME 2.295 2.140 2.082

Original SME 9.008 5.219 4.218

Adjusted SME 4.891 4.163 4.030

These are in close agreement with the results in Ye and Hamada (2000).
The JMP software package implements Lenth’s method as part of the screening platform analysis procedure for

two-level designs. In their implementation, P-values for each factor and interaction are computed from a “real-time”
simulation. This simulation assumes that none of the factors in the experiment are significant and calculates the
observed value of the Lenth statistic 10,000 times for this null model. ThenP-values are obtained by determining where
the observed Lenth statistics fall relative to the tails of these simulation-based reference distributions. These P-values
can be used as guidance in selecting factors for the model. Table 6.14 shows the JMP output from the screening anal-
ysis platform for the resin filtration rate experiment in Example 6.2. Notice that in addition to the Lenth statistics, the
JMP output includes a half-normal plot of the effects and a “Pareto” chart of the effect (contrast) magnitudes. When
the factors are entered into the model, the Lenth procedure would recommend including the same factors in the model
that we identified previously.

The final JMP output for the fitted model is shown in Table 6.15. The Prediction Profiler at the bottom of
the table has been set to the levels of the factors that maximize filtration rate. These are the same settings that we
determined earlier by looking at the contour plots.

In general, the Lenth method is a clever and very useful procedure. However, we recommend using it as a
supplement to the usual normal probability plot of effects, not as a replacement for it.

Bisgaard (1998–1999) has provided a nice graphical technique, called a conditional inference chart, to assist
in interpreting the normal probability plot. The purpose of the graph is to help the experimenter in judging significant
effects. This would be relatively easy if the standard deviation 𝜎 were known, or if it could be estimated from the data.
In unreplicated designs, there is no internal estimate of 𝜎, so the conditional inference chart is designed to help the
experimenter evaluate effect magnitude for a range of standard deviation values. Bisgaard bases the graph on the result
that the standard error of an effect in a two-level design with N runs (for an unreplicated factorial, N = 2k) is

2𝜎√
N

where 𝜎 is the standard deviation of an individual observation. Then ±2 times the standard error of an effect is

± 4𝜎√
N
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◾ TABLE 6 . 14
JMP Screening Platform Output for Example 6.2

Response Y
Summary of Fit
RSquare 1
RSquare Adj -
Root Mean Square Error -
Mean of Response 70.0625
Observations (or Sum Wgts) 16

Sorted Parameter Estimates

Term Estimate
Relative
Std Error

Pseudo
t-Ratio Pseudo t-Ratio

Pseudo
p-Value

Temp 10.8125 0.25 8.24 0.0004*
Temp*Conc −9.0625 0.25 −6.90 0.0010*
Temp*StirR 8.3125 0.25 6.33 0.0014*
StirR 7.3125 0.25 5.57 0.0026*
Conc 4.9375 0.25 3.76 0.0131*
Temp*Pressure*StirR 2.0625 0.25 1.57 0.1769
Pressure 1.5625 0.25 1.19 0.2873
Pressure*Conc*StirR −1.3125 0.25 −1.00 0.3632
Pressure*Conc 1.1875 0.25 0.90 0.4071
Temp*Pressure*Conc 0.9375 0.25 0.71 0.5070
Temp*Conc*StirR −0.8125 0.25 −0.62 0.5630
Temp*Pressure*Conc*StirR 0.6875 0.25 0.52 0.6228
Conc*StirR −0.5625 0.25 −0.43 0.6861
Pressure*StirR −0.1875 0.25 −0.14 0.8920
Temp*Pressure 0.0625 0.25 0.05 0.9639

No error degrees of freedom, so ordinary tests uncomputable. Relative Std Error corresponds to residual standard
error of 1.
Pseudo t-Ratio and p-Value calculated using Lenth PSE = 1.3125 and DFE = 5

Effect Screening

The parameter estimates have equal variances.
The parameter estimates are not correlated.

Lenth PSE
1.3125

Orthog t Test used Pseudo Standard Error

Normal Plot

+++++++ + + +
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Blue line is Lenth’s PSE, from the estimates population
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◾ TABLE 6 . 15
JMP Output for the Fitted Model Example 6.2

Response Filtration Rate Actual by Predicted Plot

110

110

100

100

90

90

80

F
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u
a
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80

70

70

Filtration Rate Predicted
P<.0001 RSq=0.97 RMSE=4.4173

60

60

50

50
40

40

Summary of Fit

RSquare 0.965952

RSquare Adj 0.948929

Root Mean Square Error 4.417296

Mean of Response 70.0625

Observations (or Sum Wgts) 16

Analysis of Variance

Sum of

Source DF Squares Mean Square F Ratio

Model 5 5535.8125 1107.16 56.7412

Error 10 195.1250 19.51 Prob F

C. Total 15 5730.9375 .0001*

Prob |t|

. 0001*

. 0001*

. 0001*

. 0001*

0.0012*

Prediction Profiler

100

80

1
Temperature

1
Stirring

Rate
–1

Concentration Desirability
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.5

0
.2

5

1

Lack of Fit

Sum of Mean F Ratio

Source DF Squares Square 0.3482

Lack of Fit 2 15.62500 7.8125 Prob F

Pure Error 8 179.50000 22.4375 0.7162

Total Error 10 195.12500 Max RSq

0.9687

Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|

Intercept 70.0625 1.104324 63.44 .0001*

Temperature 10.8125 1.104324 9.79 .0001*

Stirring Rate 7.3125 1.104324 6.62 .0001*

Concentration 4.9375 1.104324 4.47 0.0012*

Temperature 8.3125 1.104324 7.53 .0001*
*Stirring Rate

Temperature 9.0625 1.104324 8.21 .0001*
*Concentration

Sorted Parameter Estimates

Term Estimate Std Error t Ratio

Temperature 10.8125 1.104324 9.79

Temperature *Concentration 9.0625 1.104324 8.21

Temperature *Stirring Rate 8.3125 1.104324 7.53

Stirring Rate 7.3125 1.104324 6.62

Concentration 4.9375 1.104324 4.47
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◾ F I GURE 6 . 16 A conditional inference chart for
Example 6.2
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Once the effects are estimated, plot a graph as shown in Figure 6.16, with the effect estimates plotted along the vertical
or y-axis. In this figure, we have used the effect estimates from Example 6.2. The horizontal, or x-axis, of Figure 6.16
is a standard deviation (𝜎) scale. The two lines are at

y = + 4𝜎√
N

and y = − 4𝜎√
N

In our example, N = 16, so the lines are at y = +𝜎 and y = −𝜎. Thus, for any given value of the standard deviation 𝜎,
we can read off the distance between these two lines as an approximate 95 percent confidence interval on the negligible
effects.

In Figure 6.16, we observe that if the experimenter thinks that the standard deviation is between 4 and 8, then
factors A, C, D, and the AC and AD interactions are significant. If he or she thinks that the standard deviation is as large
as 10, factor C may not be significant. That is, for any given assumption about the magnitude of 𝜎, the experimenter
can construct a “yardstick” for judging the approximate significance of effects. The chart can also be used in reverse.
For example, suppose that we were uncertain about whether factor C is significant. The experimenter could then ask
whether it is reasonable to expect that 𝜎 could be as large as 10 or more. If it is unlikely that 𝜎 is as large as 10, then
we can conclude that C is significant.

Effect of Outliers in Unreplicated Designs. Experimenters often worry about the impact of outliers in
unreplicated designs, concerned that the outlier will invalidate the analysis and render the results of the experiment
useless. This usually isn’t a major concern. The reason for this is that the effect estimates are reasonably robust to
outliers. To see this, consider an unreplicated 24 design with an outlier for (say) the cd treatment combination. The
effect of any factor, say for example A, is

A = yA+ − yA−
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◾ F I GURE 6 . 17 The effect of outliers. (a) Half-normal probability plot (b) Normal probability plot

and the cd response appears in only one of the averages, in this case yA− . The average yA− is an average of eight
observations (half of the 16 runs in the 24), so the impact of the outlier cd is damped out by averaging it with the other
seven runs. This will happen with all of the other effect estimates. As an illustration, consider the 24 design in the resin
filtration rate experiment of Example 6.2. Suppose that the run cd = 375 (the correct response was 75). Figure 6.17a
shows the half-normal plot of the effects. It is obvious that the correct set of important effects is identified on the
graph. However, the half-normal plot gives an indication that an outlier may be present. Notice that the straight line
identifying the nonsignificant effects does not point toward the origin. In fact, the reference line from the origin is not
even close to the collection of nonsignificant effects. A full normal probability plot would also have provided evidence
of an outlier. The normal probability plot for this example is shown in Figure 6.17b. Notice that there are two distinct
lines on the normal probability plot, not a single line passing through the nonsignificant effects. This is usually a strong
indication that an outlier is present.

The illustration here involves a very severe outlier (375 instead of 75). This outlier is so dramatic that it would
likely be spotted easily just by looking at the sample data or certainly by examining the residuals.

What should we do when an outlier is present? If it is a simple data recording or transposition error, an exper-
imenter may be able to correct the outlier, replacing it with the right value. One suggestion is to replace it by an
estimate (following the tactic introduced in Chapter 4 for blocked designs). This will preserve the orthogonality of
the design and make interpretation easy. Replacing the outlier with an estimate that makes the highest order inter-
action estimate zero (in this case, replacing cd with a value that makes ABCD = 0) is one option. Discarding the
outlier and analyzing the remaining observations is another option. This same approach would be used if one of the
observations from the experiment is missing. Exercise 6.32 asks the reader to follow through with this suggestion for
Example 6.2.

Modern computer software can analyze the data from 2k designs with missing values because they use the method
of least squares to estimate the effects, and least squares does not require an orthogonal design. The impact of this is
that the effect estimates are no longer uncorrelated as they would be from an orthogonal design. The normal probability
plotting technique requires that the effect estimates be uncorrelated with equal variance, but the degree of correlation
introduced by a missing observation is relatively small in 2k designs where the number of factors k is at least four.
The correlation between the effect estimates and the model regression coefficients will not usually cause significant
problems in interpreting the normal probability plot.

Figure 6.18 presents the half-normal probability plot obtained for the effect estimates if the outlier observation
cd = 375 in Example 6.2 is omitted. This plot is easy to interpret, and exactly the same significant effects are identified
as when the full set of experimental data was used. The correlation between design factors in this situation is ±0.0714.
It can be shown that the correlation between the model regression coefficients is larger, that is ±0.5, but this still does
not lead to any difficulty in interpreting the half-normal probability plot.
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◾ F I GURE 6 . 18 Analysis of Example 6.2
with an outlier removed
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6.6 Additional Examples of Unreplicated 2k Designs

Unreplicated 2k designs are widely used in practice. They may be the most common variation of the 2k design. This
section presents four interesting applications of these designs, illustrating some additional analysis that can be helpful.

EXAMPLE 6 . 3 Data Transformation in a Factorial Design

Daniel (1976) describes a 24 factorial design used to study
the advance rate of a drill as a function of four factors: drill
load (A), flow rate (B), rotational speed (C), and the type
of drilling mud used (D). The data from the experiment are
shown in Figure 6.19.
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◾ F I GURE 6 . 19 Data from the drilling
experiment of Example 6.3

The normal probability plot of the effect estimates from
this experiment is shown in Figure 6.20. Based on this plot,
factors B, C, and D along with the BC and BD interactions
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◾ F I GURE 6 . 20 Normal probability plot of
effects for Example 6.3
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◾ F I GURE 6 . 21 Normal probability plot of
residuals for Example 6.3
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◾ F I GURE 6 . 22 Plot of residuals versus
predicted advance rate for Example 6.3

require interpretation. Figure 6.21 is the normal probabil-
ity plot of the residuals and Figure 6.22 is the plot of the
residuals versus the predicted advance rate from the model
containing the identified factors. There are clearly problems
with normality and equality of variance. A data transforma-
tion is often used to deal with such problems. Because the
response variable is a rate, the log transformation seems a
reasonable candidate.

Figure 6.23 presents a normal probability plot of the
effect estimates following the transformation y∗ = ln y.
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◾ F I GURE 6 . 23 Normal probability plot of
effects for Example 6.3 following log transformation

Notice that a much simpler interpretation now seems pos-
sible because only factors B, C, and D are active. That is,
expressing the data in the correct metric has simplified its
structure to the point that the two interactions are no longer
required in the explanatory model.

Figures 6.24 and 6.25 present, respectively, a normal
probability plot of the residuals and a plot of the resid-
uals versus the predicted advance rate for the model in
the log scale containing B, C, and D. These plots are
now satisfactory. We conclude that the model for y∗ = ln y
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◾ F I GURE 6 . 24 Normal probability plot
of residuals for Example 6.3 following log
transformation
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Predicted log advance rate
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◾ F I GURE 6 . 25 Plot of residuals versus
predicted advance rate for Example 6.3 Following
log transformation

requires only factors B,C, and D for adequate interpretation.
The ANOVA for this model is summarized in Table 6.16.
The model sum of squares is

SSModel = SSB + SSC + SSD
= 5.345 + 1.339 + 0.431

= 7.115

and R2 = SSModel∕SST = 7.115∕7.288 = 0.98, so the model
explains about 98 percent of the variability in the drill
advance rate.

◾ TABLE 6 . 16
Analysis of Variance for Example 6.3 Following the Log Transformation

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F0 P-Value

B (Flow) 5.345 1 5.345 381.79 < 0.0001

C (Speed) 1.339 1 1.339 95.64 < 0.0001

D (Mud) 0.431 1 0.431 30.79 < 0.0001

Error 0.173 12 0.014

Total 7.288 15

EXAMPLE 6 . 4 Location and Dispersion Effects in an Unreplicated
Factorial

A 24 design was run in a manufacturing process producing
interior sidewall and window panels for commercial air-
craft. The panels are formed in a press, and under present
conditions the average number of defects per panel in a
press load is much too high. (The current process aver-
age is 5.5 defects per panel.) Four factors are investigated
using a single replicate of a 24 design, with each repli-
cate corresponding to a single press load. The factors are
temperature (A), clamp time (B), resin flow (C), and press

closing time (D). The data for this experiment are shown
in Figure 6.26.

A normal probability plot of the factor effects is shown
in Figure 6.27. Clearly, the two largest effects are A = 5.75
and C = −4.25. No other factor effects appear to be large,
and A and C explain about 77 percent of the total variabil-
ity. We therefore conclude that lower temperature (A) and
higher resin flow (C) would reduce the incidence of panel
defects.
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◾ F I GURE 6 . 26 Data for the panel process
experiment of Example 6.4
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◾ F I GURE 6 . 27 Normal probability plot of the
factor effects for the panel process experiment of
Example 6.4

Careful residual analysis is an important aspect of
any experiment. A normal probability plot of the residuals
showed no anomalies, but when the experimenter plotted the
residuals versus each of the factors A through D, the plot of
residuals versus B (clamp time) presented the pattern shown
in Figure 6.28. This factor, which is unimportant insofar as
the average number of defects per panel is concerned, is very
important in its effect on process variability, with the lower
clamp time resulting in less variability in the average number
of defects per panel in a press load.
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◾ F I GURE 6 . 28 Plot of residuals versus clamp
time for Example 6.4

The dispersion effect of clamp time is also very evident
from the cube plot in Figure 6.29, which plots the average
number of defects per panel and the range of the number of

defects at each point in the cube defined by factors A, B, and
C. The average range when B is at the high level (the back
face of the cube in Figure 6.29) is RB+ = 4.75 and when B
is at the low level, it is RB− = 1.25.
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◾ F I GURE 6 . 29 Cube plot of temperature, clamp
time, and resin flow for Example 6.4

As a result of this experiment, the engineer decided
to run the process at low temperature and high resin flow to
reduce the average number of defects, at low clamp time
to reduce the variability in the number of defects per panel,
and at low press closing time (which had no effect on either
location or dispersion). The new set of operating conditions
resulted in a new process average of less than one defect
per panel.
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The residuals from a 2k design provide much information about the problem under study. Because residuals
can be thought of as observed values of the noise or error, they often give insight into process variability. We can
systematically examine the residuals from an unreplicated 2k design to provide information about process variability.

Consider the residual plot in Figure 6.28. The standard deviation of the eight residuals where B is at the low
level is S(B−) = 0.83, and the standard deviation of the eight residuals where B is at the high level is S(B+) = 2.72.
The statistic

F∗
B = ln

S2(B+)
S2(B−)

(6.24)

has an approximate normal distribution if the two variances 𝜎2(B+) and 𝜎
2(B−) are equal. To illustrate the calculations,

the value of F∗
B is

F∗
B = ln

S2(B+)
S2(B−)

= ln
(2.72)2

(0.83)2
= 2.37

Table 6.17 presents the complete set of contrasts for the 24 design along with the residuals for each run from
the panel process experiment in Example 6.4. Each column in this table contains an equal number of plus and minus
signs, and we can calculate the standard deviation of the residuals for each group of signs in each column, say S(i+) and
S(i−), i = 1, 2, . . . , 15. Then

F∗
i = ln

S2(i+)
S2(i−)

i = 1, 2, . . . , 15 (6.25)

◾ TABLE 6 . 17
Calculation of Dispersion Effects for Example 6.4

Run A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD Residual

1 − − + − + + − − + + − + − − + −0.94

2 + − − − − + + − − + + + + − − −0.69

3 − + − − + − + − + − + + − + − −2.44

4 + + + − − − − − − − − + + + + −2.69

5 − − + + − − + − + + − − + + − −1.19

6 + − − + + − − − − + + − − + + 0.56

7 − + − + − + − − + − + − + − + −0.19

8 + + + + + + + − − − − − − − − 2.06

9 − − + − + + − + − − + − + + − 0.06

10 + − − − − + + + + − − − − + + 0.81

11 − + − − + − + + − + − − + − + 2.06

12 + + + − − − − + + + + − − − − 3.81

13 − − + + − − + + − − + + − − + −0.69

14 + − − + + − − + + − − + + − − −1.44

15 − + − + − + − + − + − + − + − 3.31

16 + + + + + + + + + + + + + + + −2.44

S(i+) 2.25 2.72 2.21 1.91 1.81 1.80 1.80 2.24 2.05 2.28 1.97 1.93 1.52 2.09 1.61

S(i−) 1.85 0.83 1.86 2.20 2.24 2.26 2.24 1.55 1.93 1.61 2.11 1.58 2.16 1.89 2.33

F∗
i 0.39 2.37 0.34 −0.28 −0.43 −0.46 −0.44 0.74 0.12 0.70 −0.14 0.40 −0.70 0.20 −0.74
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◾ F I GURE 6 . 30 Normal probability plot of the
dispersion effects F∗

i for Example 6.4

is a statistic that can be used to assess the magnitude of the dispersion effects in the experiment. If the variance of the
residuals for the runs where factor i is positive equals the variance of the residuals for the runs where factor i is negative,
then F∗

i has an approximate normal distribution. The values of F∗
i are shown below each column in Table 6.15.

Figure 6.30 is a normal probability plot of the dispersion effects F∗
i . Clearly, B is an important factor with respect

to process dispersion. For more discussion of this procedure, see Box and Meyer (1986) and Myers, Montgomery, and
Anderson-Cook (2016). Also, in order for the model residuals to properly convey information about dispersion effects,
the location model must be correctly specified. Refer to the supplemental text material for this chapter for more details
and an example.

EXAMPLE 6 . 5 Duplicate Measurements on the Response

A team of engineers at a semiconductor manufacturer ran
a 24 factorial design in a vertical oxidation furnace. Four
wafers are “stacked” in the furnace, and the response vari-
able of interest is the oxide thickness on the wafers. The four
design factors are temperature (A), time (B), pressure (C),
and gas flow (D). The experiment is conducted by loading
four wafers into the furnace, setting the process variables
to the test conditions required by the experimental design,
processing the wafers, and then measuring the oxide thick-
ness on all four wafers. Table 6.18 presents the design and
the resulting thickness measurements. In this table, the four
columns labeled “Thickness” contain the oxide thickness
measurements on each individual wafer, and the last two
columns contain the sample average and sample variance of
the thickness measurements on the four wafers in each run.

The proper analysis of this experiment is to consider
the individual wafer thickness measurements as duplicate
measurements and not as replicates. If they were really
replicates, each wafer would have been processed individu-
ally on a single run of the furnace. However, because all four
wafers were processed together, they received the treatment
factors (that is, the levels of the design variables) simultane-
ously, so there is much less variability in the individual wafer
thickness measurements than would have been observed if

each wafer was a replicate. Therefore, the average of the
thickness measurements is the correct response variable to
initially consider.

Table 6.19 presents the effect estimates for this experi-
ment, using the average oxide thickness y as the response
variable. Note that factors A and B and the AB interaction
have large effects that together account for nearly 90 percent
of the variability in average oxide thickness. Figure 6.31 is
a normal probability plot of the effects. From examination
of this display, we would conclude that factors A, B, and C
and the AB and AC interactions are important. The analysis
of variance display for this model is shown in Table 6.20.

The model for predicting average oxide thickness is

ŷ = 399.19 + 21.56x1+
9.06x2 − 5.19x3 + 8.44x1x2 − 5.31x1x3

The residual analysis of this model is satisfactory.
The experimenters are interested in obtaining an aver-

age oxide thickness of 400 Å, and product specifications
require that the thickness must lie between 390 and 410 Å.
Figure 6.32 presents two contour plots of average thickness,
one with factor C (or x3), pressure, at the low level (that
is, x3 = −1) and the other with C (or x3) at the high level
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◾ TABLE 6 . 18
The Oxide Thickness Experiment

Standard
Order

Run
Order A B C D Thickness y s2

1 10 −1 −1 −1 −1 378 376 379 379 378 2

2 7 1 −1 −1 −1 415 416 416 417 416 0.67

3 3 −1 1 −1 −1 380 379 382 383 381 3.33

4 9 1 1 −1 −1 450 446 449 447 448 3.33

5 6 −1 −1 1 −1 375 371 373 369 372 6.67

6 2 1 −1 1 −1 391 390 388 391 390 2

7 5 −1 1 1 −1 384 385 386 385 385 0.67

8 4 1 1 1 −1 426 433 430 431 430 8.67

9 12 −1 −1 −1 1 381 381 375 383 380 12.00

10 16 1 −1 −1 1 416 420 412 412 415 14.67

11 8 −1 1 −1 1 371 372 371 370 371 0.67

12 1 1 1 −1 1 445 448 443 448 446 6

13 14 −1 −1 1 1 377 377 379 379 378 1.33

14 15 1 −1 1 1 391 391 386 400 392 34

15 11 −1 1 1 1 375 376 376 377 376 0.67

16 13 1 1 1 1 430 430 428 428 429 1.33

◾ TABLE 6 . 19
Effect Estimates for Example 6.5, Response
Variable Is Average Oxide Thickness

Model
Term

Effect
Estimate

Sum of
Squares

Percent
Contribution

A 43.125 7439.06 67.9339

B 18.125 1314.06 12.0001

C −10.375 430.562 3.93192

D −1.625 10.5625 0.0964573

AB 16.875 1139.06 10.402

AC −10.625 451.563 4.12369

AD 1.125 5.0625 0.046231

BC 3.875 60.0625 0.548494

BD −3.875 60.0625 0.548494

CD 1.125 5.0625 0.046231

ABC −0.375 0.5625 0.00513678

ABD 2.875 33.0625 0.301929

ACD −0.125 0.0625 0.000570753

BCD −0.625 1.5625 0.0142688

ABCD 0.125 0.0625 0.000570753

–10.63 2.81
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◾ F I GURE 6 . 31 Normal probability plot of the
effects for the average oxide thickness response,
Example 6.5
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◾ TABLE 6 . 20
Analysis of Variance (from Design-Expert) for the Average Oxide Thickness Response, Example 6.5

Source
Sum of

Squares DF
Mean

Square
F

Value Prob > F

Model 10774.31 5 2154.86 122.35 <0.000

A 7439.06 1 7439.06 422.37 <0.000

B 1314.06 1 1314.06 74.61 <0.000

C 430.56 1 430.56 24.45 0.0006

AB 1139.06 1 1139.06 64.67 <0.000

AC 451.46 1 451.56 25.64 0.0005

Residual 176.12 10 17.61

Cor Total 10950.44 15

Std. Dev. 4.20 R-Squared 0.9839

Mean 399.19 Adj R-Squared 0.9759

C.V. 1.05 Pred R-Squared 0.9588

PRESS 450.88 Adeq Precision 27.967

Factor
Coefficient

Estimate DF
Standard

Error
95% CI

Low
95% CI

High

Intercept 399.19 1 1.05 396.85 401.53

A-Time 21.56 1 1.05 19.22 23.90

B-Temp 9.06 1 1.05 6.72 11.40

C-Pressure −5.19 1 1.05 −7.53 −2.85

AB 8.44 1 1.05 6.10 10.78

AC −5.31 1 1.05 −7.65 −2.97
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◾ F I GURE 6 . 32 Contour plots of average oxide thickness with pressure (x3) held constant
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◾ TABLE 6 . 21
Analysis of Variance (from Design-Expert) of the Individual Wafer Oxide Thickness Response

Source Sum of Squares DF Mean Square F Value Prob > F

Model 43801.75 15 2920.12 476.75 <0.0001

A 29756.25 1 29756.25 4858.16 <0.0001

B 5256.25 1 5256.25 858.16 <0.0001

C 1722.25 1 1722.25 281.18 <0.0001

D 42.25 1 42.25 6.90 0.0115

AB 4556.25 1 4556.25 743.88 <0.0001

AC 1806.25 1 1806.25 294.90 <0.0001

AD 20.25 1 20.25 3.31 0.0753

BC 240.25 1 240.25 39.22 <0.0001

BD 240.25 1 240.25 39.22 <0.0001

CD 20.25 1 20.25 3.31 0.0753

ABD 132.25 1 132.25 21.59 <0.0001

ABC 2.25 1 2.25 0.37 0.5473

ACD 0.25 1 0.25 0.041 0.8407

BCD 6.25 1 6.25 1.02 0.3175

ABCD 0.25 1 0.25 0.041 0.8407

Residual 294.00 48 6.12

Lack of Fit 0.000 0

Pure Error 294.00 48 6.13

Cor Total 44095.75 63

(that is, x3 = +1). From examining these contour plots, it
is obvious that there are many combinations of time and
temperature (factors A and B) that will produce acceptable
results. However, if pressure is held constant at the low level,
the operating “window” is shifted toward the left, or lower,
end of the time axis, indicating that lower cycle times will
be required to achieve the desired oxide thickness.

It is interesting to observe the results that would be
obtained if we incorrectly consider the individual wafer
oxide thickness measurements as replicates. Table 6.21
presents a full-model ANOVA based on treating the experi-
ment as a replicated 24 factorial. Notice that there are many
significant factors in this analysis, suggesting a much more
complex model than the one that we found when using the
average oxide thickness as the response. The reason for this
is that the estimate of the error variance in Table 6.21 is too
small (�̂�2 = 6.12). The residual mean square in Table 6.21
reflects a combination of the variability between wafers
within a run and variability between runs. The estimate of
error obtained from Table 6.20 is much larger, �̂�2 = 17.61,
and it is primarily a measure of the between-run variability.
This is the best estimate of error to use in judging the signif-
icance of process variables that are changed from run to run.

A logical question to ask is: What harm results from
identifying too many factors as important, as the incorrect
analysis in Table 6.21 would certainly do. The answer is that
trying to manipulate or optimize the unimportant factors
would be a waste of resources, and it could result in adding
unnecessary variability to other responses of interest.

When there are duplicate measurements on the response,
these observations almost always contain useful informa-
tion about some aspect of process variability. For example,
if the duplicate measurements are multiple tests by a gauge
on the same experimental unit, then the duplicate measure-
ments give some insight about gauge capability. If the dupli-
cate measurements are made at different locations on an
experimental unit, they may give some information about
the uniformity of the response variable across that unit. In
our example, because we have one observation on each of
the four experimental units that have undergone processing
together, we have some information about the within-run
variability in the process. This information is contained in
the variance of the oxide thickness measurements from the
four wafers in each run. It would be of interest to deter-
mine whether any of the process variables influence the
within-run variability.
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◾ F I GURE 6 . 33 Normal probability plot of the
effects using ln (s2) as the response, Example 6.5

Figure 6.33 is a normal probability plot of the effect esti-
mates obtained using ln(s2) as the response. Recall from
Chapter 3 that we indicated that the log transformation is
generally appropriate for modeling variability. There are not
any strong individual effects, but factor A and BD inter-
action are the largest. If we also include the main effects
of B and D to obtain a hierarchical model, then the model
for ln(s2) is

l̂n(s2) = 1.08 + 0.41x1 − 0.40x2 + 0.20x4 − 0.56x2x4

The model accounts for just slightly less than half of the
variability in the ln(s2) response, which is certainly not spec-
tacular as empirical models go, but it is often difficult to
obtain exceptionally good models of variances.

Figure 6.34 is a contour plot of the predicted variance
(not the log of the predicted variance) with pressure x3 at
the low level (recall that this minimizes cycle time) and
gas flow x4 at the high level. This choice of gas flow gives
the lowest values of predicted variance in the region of the
contour plot.

The experimenters here were interested in selecting val-
ues of the design variables that gave a mean oxide thick-
ness within the process specifications and as close to 400
Å as possible, while simultaneously making the within-
run variability small, say s2 ≤ 2. One possible way to
find a suitable set of conditions is to overlay the con-
tour plots in Figures 6.32 and 6.34. The overlay plot is
shown in Figure 6.35, with the specifications on mean
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◾ F I GURE 6 . 34 Contour plot of s2 (within-run
variability) with pressure at the low level and gas flow
at the high level

oxide thickness and the constraint s2 ≤ 2 shown as contours.
In this plot, pressure is held constant at the low level and gas
flow is held constant at the high level. The open region near
the upper left center of the graph identifies a feasible region
for the variables time and temperature.

This is a simple example of using contour plots to study
two responses simultaneously. We will discuss this problem
in more detail in Chapter 11.
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◾ F I GURE 6 . 35 Overlay of the average oxide
thickness and s2 responses with pressure at the low level
and gas flow at the high level
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EXAMPLE 6 . 6 Credit Card Marketing

An article in the International Journal of Research in
Marketing (“Experimental Design on the Front Lines of
Marketing: Testing New Ideas to Increase Direct Mail
Sales,” 2006, Vol. 23, pp. 309–319) describes an experiment
to test new ideas to increase direct mail sales by the credit
card division of a financial services company. They want to
improve the response rate to its credit card offers. They know
from experience that the interest rates are an important fac-
tor in attracting potential customers, so they have decided to
focus on factors involving both interest rates and fees. They
want to test changes in both introductory and long-term
rates, as well as the effects of adding an account-opening
fee and lowering the annual fee. The factors tested in the
experiment are as follows:

Factor (−) Control (+) New Idea

A: Annual fee Current Lower

B: Account-opening fee No Yes

C: Initial interest rate Current Lower

D: Long-term interest rate Low High

The marketing team used columns A through D of the
24 factorial test matrix shown in Table 6.22 to create 16 mail
packages. The +∕− sign combinations in the 11 interaction
(product) columns are used solely to facilitate the statistical
analysis of the results. Each of the 16 test combinations was
mailed to 7500 customers, and 2837 customers responded
positively to the offers.

Table 6.23 is the JMP output for the screening anal-
ysis. Lenth’s method with simulated P-values is used
to identify significant factors. All four main effects are
significant, and one interaction (AB, or Annual Fee ×
Account Opening Fee). The prediction profiler indicates the
settings of the four factors that will result in the maximum
response rate. The lower annual fee, no account opening
fee, the lower long-term interest rate and either value of the
initial interest rate produce the best response, 3.39 percent.
The optimum conditions occur at one of the actual test com-
binations because all four design factors were treated as
qualitative. With continuous factors, the optimal conditions
are usually not at one of the experimental runs.

◾ TABLE 6 . 22
The 24 Factorial Design Used in the Credit Card Marketing Experiment, Example 6.6

Annual-
Fee

Account-
Opening
Fee

Initial
Interest
Rate

Long-Term
Interest
Rate (Interactions)Test

Cell A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD Orders
Response
Rate

1 − − − − + + + + + + − − − − + 184 2.45%

2 + − − − − − − + + + + + + − − 252 3.36%

3 − + − − − + + − − + + + − + − 162 2.16%

4 + + − − + − − − − + − − + + + 172 2.29%

5 − − + − + − + − + − + − + + − 187 2.49%

6 + − + − − + − − + − − + − + + 254 3.39%

7 − + + − − − + + − − − + + − + 174 2.32%

8 + + + − + + − + − − + − − − − 183 2.44%

9 − − − + + + − + − − − + + + − 138 1.84%

10 + − − + − − + + − − + − − + + 168 2.24%

11 − + − + − + − − + − + − + − + 127 1.69%

12 + + − + + − + − + − − + − − − 140 1.87%

13 − − + + + − − − − + + + − − + 172 2.29%

14 + − + + − + + − − + − − + − − 219 2.92%

15 − + + + − − − + + + − − − + − 153 2.04%

16 + + + + + + + + + + + + + + + 152 2.03%
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◾ TABLE 6 . 23
JMP Output for Example 6.6
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Prediction Profiler

Response Response Rate

Summary of Fit
RSquare 1

RSquare Adj .

Root Mean Square Error .

Mean of Response 2.36375

Observations (or Sum Wgts) 16

Sorted Parameter Estimates

Term
Account Opening Fee[No]
Long-term Interest Rate[Low]
Annual Fee[Current]
Annual Fee[Current]*Account Opening Fee[No]
initial Interest Rate[Current]
initial Interest Rate[Current]*Long-term Interest Rate[Low]
Annual Fee[Current]*Long-term Interest Rate[Low]
Account Opening Fee[No]*initial Interest Rate[Current]*Long-term Interest Rate[Low]
Account Opening Fee[No]*Long-term Interest Rate[Low]
Annual Fee[Current]*Account Opening Fee[No]*Long-term Interest Rate[Low]
Annual Fee[Current]*Account Opening Fee[No]*initial Interest Rate[Current]
Annual Fee[Current]*Account Opening Fee[No]*initial Interest Rate[Current]*Long-term Interest Rate[Low]
Account Opening Fee[No]*initial Interest Rate[Current]
Annual Fee[Current]*initial Interest Rate[Current]*Long-term Interest Rate[Low]
Annual Fee[Current]*initial Interest Rate[Current]

No error degrees of freedom, so ordinary tests uncomputable.
Relative Std Error corresponds to residual standard error of 1.
Pseudo t-Ratio and p-Value calculated using Lenth PSE 0.07125
and DFE 5

Relative
Std Error

Pseudo
t-Ratio

Pseudo
Estimate p-Value

0.25875 0.25 3.63 0.0150*
0.24875 0.25 3.49 0.0174*
0.20375 0.25 2.86 0.0354*
0.15125 0.25 2.12 0.0872
0.12625 0.25 1.77 0.1366
0.07875 0.25 1.11 0.3194
0.05375 0.25 0.75 0.4846
0.05375 0.25 0.75 0.4846
0.05125 0.25 0.72 0.5042
0.04375 0.25 0.61 0.5661
0.02625 0.25 0.37 0.7276
0.02625 0.25 0.37 0.7276
0.02375 0.25 0.33 0.7524
0.00375 0.25 0.05 0.9601
0.00125 0.25 0.02 0.9867
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6.7 2k Designs are Optimal Designs

Two-level factorial designs have many interesting and useful properties. In this section, a brief description of some
of these properties is given. We have remarked in previous sections that the model regression coefficients and effect
estimates from a 2k design are least squares estimates. This is discussed in the supplemental text material for this
chapter and presented in more detail in Chapter 10, but it is useful to give a proof of this here.

Consider a very simple case of the 22 design with one replicate. This is a four-run design, with treatment com-
binations (1), a, b, and ab. The design is shown geometrically in Figure 6.1. The model we fit to the data from this
design is

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝜀

where x1 and x2 are the main effects of the two factors on the ±1 scale and x1x2 is the two-factor interaction. We can
write out each one of the four runs in this design in terms of this model as follows:

(1) = 𝛽0 + 𝛽1(−1) + 𝛽2(−1) + 𝛽12(−1)(−1) + 𝜖1

a = 𝛽0 + 𝛽1(1) + 𝛽2(−1) + 𝛽12(1)(−1) + 𝜖2

b = 𝛽0 + 𝛽1(−1) + 𝛽2(1) + 𝛽2(−1)(1) + 𝜖3

ab = 𝛽0 + 𝛽1(1) + 𝛽2(1) + 𝛽12(1)(1) + 𝜖4

It is much easier if we write these four equations in matrix form:

y = X𝜷 + 𝜖,where y =
⎡⎢⎢⎢⎣

(1)
a
b
ab

⎤⎥⎥⎥⎦
,X =

⎡⎢⎢⎢⎣

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

⎤⎥⎥⎥⎦
,𝜷 =

⎡⎢⎢⎢⎣

𝛽0
𝛽1
𝛽2
𝛽12

⎤⎥⎥⎥⎦
, and 𝜖 =

⎡⎢⎢⎢⎣

𝜀1
𝜀2
𝜀3
𝜀4

⎤⎥⎥⎥⎦
The least squares estimates of the model parameters are the values of the 𝛽’s that minimize the sum of the squares of
the model errors, 𝜖i, i = 1, 2, 3, 4. The least squares estimates are

�̂� = (X′X)−1X′y (6.26)

where the prime (′) denotes a transpose and (X′X)−1 is the inverse of X′X. We will prove this result later in Chapter
10. For the 22 design, the quantities X′X and X′y are

X′X =
⎡⎢⎢⎢⎣

1 1 1 1
−1 1 −1 1
−1 −1 1 1
1 −1 −1 1

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

⎤⎥⎥⎥⎦
and

X′y =
⎡⎢⎢⎢⎣

1 1 1 1
−1 1 −1 1
−1 −1 1 1

1 −1 −1 1

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

(1)
a
b
ab

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

(1) + a + b + ab
−(1) + a − b + ab
−(1) − a + b + ab
(1) − a − b + ab

⎤⎥⎥⎥⎦
The X′X matrix is diagonal because the 22 design is orthogonal. The least squares estimates are as follows:

�̂� = (X′X)−1X′y

=
⎡⎢⎢⎢⎣

4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

⎤⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎣

(1) + a + b + ab
−(1) + a − b + ab
−(1) − a + b + ab
(1) − a − b + ab

⎤⎥⎥⎥⎦
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1) + a + b + ab
4

−(1) + a − b + ab
4

−(1) − a + b + ab
4

(1) − a − b + ab
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The least squares estimates of the model regression coefficients are exactly equal to one-half of the usual effect
estimates.

It turns out that the variance of any model regression coefficient is easy to find:

V(𝛽) = 𝜎
2(diagonal element of (X′X)−1) (6.27)

= 𝜎
2

4

All model regression coefficients have the same variance. Furthermore, there is no other four-run design on
the design space bounded by ±1 that makes the variance of the model regression coefficients smaller. In general, the
variance of any model regression coefficient in a 2k design where each design point is replicated n times is V(𝛽) =
𝜎

2∕(n2k) = 𝜎
2∕N, where N is the total number of runs in the design. This is the minimum possible variance for the

regression coefficient.
For the 22 design, the determinant of the X′X matrix is

|(X′X)| = 256

This is the maximum possible value of the determinant for a four-run design on the design space bounded by ±1.
It turns out that the volume of the joint confidence region that contains all the model regression coefficients is inversely
proportional to the square root of the determinant of X′X. Therefore, to make this joint confidence region as small as
possible, we would want to choose a design that makes the determinant of X′X as large as possible. This is accomplished
by choosing the 22 design.

In general, a design that minimizes the variance of the model regression coefficients is called a D-optimal
design. The D terminology is used because these designs are found by selecting runs in the design to maximize the
determinant of X′X. The 2k design is a D-optimal design for fitting the first-order model or the first-order model
with interaction. Many computer software packages, such as JMP, Design-Expert, and Minitab, have algorithms for
findingD-optimal designs. These algorithms can be very useful in constructing experimental designs for many practical
situations. We will make use of them in subsequent chapters.

Now consider the variance of the predicted response in the 22 design

V[ŷ(x1x2)] = V(𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2)

The variance of the predicted response is a function of the point in the design space where the prediction is made
(x1 and x2) and the variance of the model regression coefficients. The estimates of the regression coefficients are
independent because the 22 design is orthogonal and they all have variance 𝜎

2∕4, so

V[ŷ(x1, x2)] = V(𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2)

= 𝜎
2

4
(1 + x2

1 + x2
2 + x2

1x
2
2)

The maximum prediction variance occurs when x1 = x2 = ±1 and is equal to 𝜎
2. To determine how good this is,

we need to know the best possible value of prediction variance that we can attain. It turns out that the smallest possible
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value of the maximum prediction variance over the design space is p𝜎2∕N, where p is the number of model parameters
and N is the number of runs in the design. The 22 design has N = 4 runs and the model has p = 4 parameters, so the
model that we fit to the data from this experiment minimizes the maximum prediction variance over the design region.
A design that has this property is called a G-optimal design. In general, 2k designs are G-optimal designs for fitting
the first-order model or the first-order model with interaction.

We can evaluate the prediction variance at any point of interest in the design space. For example, when we are
at the center of the design where x1 = x2 = 0, the prediction variance is

V[ŷ(x1 = 0, x2 = 0)] = 𝜎
2

4

When x1 = 1 and x2 = 0, the prediction variance is

V[ŷ(x1 = 1, x2 = 0)] = 𝜎
2

2

An alternative to evaluating the prediction variance at a lot of points in the design space is to consider the average
prediction variance over the design space. One way to calculate this average prediction variance is

I = 1
A

1

∫
−1

1

∫
−1

V[ŷ(x1, x2)]dx1dx2

where A is the area (in general the volume) of the design space. To compute the average, we are integrating the variance
function over the design space and dividing by the area of the region.

Sometimes I is called the integrated variance criterion. Now for a 22 design, the area of the design region is
A = 4, and

I = 1
A

1

∫
−1

1

∫
−1

V[ŷ(x1, x2)]dx1dx2

= 1
4

1

∫
−1

1

∫
−1

𝜎
2 1

4
(1 + x2

1 + x2
2 + x2

1x
2
2)dx1dx2

= 4𝜎2

9

It turns out that this is the smallest possible value of the average prediction variance that can be obtained from
a four-run design used to fit a first-order model with interaction on this design space. A design with this property is
called an I-optimal design. In general, 2k designs are I-optimal designs for fitting the first-order model or the first-order
model with interaction. The JMP software will construct I-optimal designs. This can be very useful in constructing
designs when response prediction is the goal of the experiment.

It is also possible to display the prediction variance over the design space graphically. Figure 6.36 is output from
JMP illustrating three possible displays of the prediction variance from a 22 design. The first graph is the prediction
variance profiler, which plots the unscaled prediction variance

UPV =
V[ŷ(x1, x2)]

𝜎2

against the levels of each design factor. The “crosshairs” on the graphs are adjustable, so that the unscaled prediction
variance can be displayed at any desired combination of the variables x1 and x2. Here, the values chosen are x1 = −1
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◾ F I GURE 6 . 36 JMP prediction variance output for the 22 design

and x2 = +1, for which the unscaled prediction variance is

UPV =
V[ŷ(x1, x2)]

𝜎2

=

𝜎
2

4
(1 + x2

1 + x2
2 + x2

1x
2
2)

𝜎2

=

𝜎
2

4
(4)

𝜎2

= 1
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The second graph is a fraction of design space (FDS) plot, which shows the unscaled prediction variance on the
vertical scale and the fraction of design space on the horizontal scale. This graph also has an adjustable crosshair
that is shown at the 50 percent point on the fraction of design space scale. The crosshairs indicate that the unscaled
prediction variance will be at most 0.425 𝜎

2 (remember that the unscaled prediction variance divides by 𝜎
2, that’s why

the point on the vertical scale is 0.425) over a region that covers 50 percent of the design region. Therefore, an FDS plot
gives a simple display of how the prediction variance is distributed throughout the design region. An ideal FDS plot
would be flat with a small value of the unscaled prediction variance. FDS plots are an ideal way to compare designs
in terms of their potential prediction performance.

The final display in the JMP output is a surface plot of the unscaled prediction variance. The contours of constant
prediction variance for the 22 are circular; that is, all points in the design space that are at the same distance from the
center of the design have the same prediction variance.

Optimal design tools in software can be used to aid the experimenter in constructing designs when the require-
ments of the experiment are such that a standard design isn’t available. For example, consider a situation where an
experimenter is interested in three continuous factors, each at two levels, and wants to be sure that all main effects and
two-factor interactions can be estimated. It is also desirable to have replication so that formal statistical testing can be
conducted. A logical design choice would seem to be the 23 factorial with two replicates, requiring 16 runs. However,
the experimental budget can only accommodate 12 runs. There isn’t a standard design available with this sample size,
so an optimal design is a reasonable alternative in this situation.

The left side of the display below shows a 12-run D-optimal design created using the optimal design tool in
JMP. The right-hand side contains some estimation efficiency information. The first thing we notice is that the relative
standard error of the model regression coefficients are all equal, but they are not 1∕

√
12 = 0.289, as they would be

for a 12-run orthogonal design (the relative standard error is the standard error of the model parameter apart from
the unknown constant 𝜎). This is because the D-optimal design is not orthogonal. The main effects are orthogonal
to each other but not to all of the two-factor interactions. Every main effect is correlated with the two-factor inter-
action not including that factor and the correlation is 0.33. However, all model coefficients have the same relative
standard error, so this D-optimal design is an equi-variance design, meaning all parameters are estimated with the
same precision. This design is not exactly D-optimal; it’s D-efficiency is 94.28%. The reason that this design isn’t
D-optimal is that it isn’t orthogonal. There isn’t an orthogonal design with 12 runs available for this problem situa-
tion. The length of the confidence intervals on each model parameter (apart from the intercept) is increased by 6.1%
relative to what the length would be if a 12-run orthogonal design could be used. The power of this design using
𝛼 = 0.10 is 84.6%.
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6.8 The Addition of Center Points to the 2k Design

A potential concern in the use of two-level factorial designs is the assumption of linearity in the factor effects.
Of course, perfect linearity is unnecessary, and the 2k system will work quite well even when the linearity assumption
holds only very approximately. In fact, we have noted that if interaction terms are added to a main effect or first-order
model, resulting in

y = 𝛽0 +
k∑

j=1

𝛽jxj +
∑∑

i<j

𝛽ijxixj + 𝜖 (6.28)

then we have a model capable of representing some curvature in the response function. This curvature, of course,
results from the twisting of the plane induced by the interaction terms 𝛽ijxixj.

In some situations, the curvature in the response function will not be adequately modeled by Equation 6.28. In
such cases, a logical model to consider is

y = 𝛽0 +
k∑

j=1

𝛽jxj +
∑∑

i<j

𝛽ijxixj +
k∑

j=1

𝛽ijx
2
j + 𝜖 (6.29)

where the 𝛽jj represent pure second-order or quadratic effects. Equation 6.29 is called a second-order response
surface model.

In running a two-level factorial experiment, we usually anticipate fitting the first-order model in Equation 6.28,
but we should be alert to the possibility that the second-order model in Equation 6.29 is more appropriate. There is a
method of replicating certain points in a 2k factorial that will provide protection against curvature from second-order
effects as well as allow an independent estimate of error to be obtained. The method consists of adding center points to
the 2k design. These consist of nC replicates run at the points xi = 0(i = 1, 2, . . . , k). One important reason for adding
the replicate runs at the design center is that center points do not affect the usual effect estimates in a 2k design. When
we add center points, we assume that the k factors are quantitative.

To illustrate the approach, consider a 22 design with one observation at each of the factorial points (−,−),
(+,−), (−,+), and (+,+) and nC observations at the center point (0, 0). Figures 6.37 and 6.38 illustrate the situation.

1.00
1.00 2.00

2.00

–1.00
–2.00–2.00

–1.00
0.00

0.00

yF

yC

x2 x1

y

◾ F I GURE 6 . 37 A 22 design with center points
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◾ F I GURE 6 . 38 A 22 design with
center points
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Let yF be the average of the four runs at the four factorial points, and yC be the average of the nC runs at the center
point. If the difference yF − yC is small, then the center points lie on or near the plane passing through the factorial
points, and there is no quadratic curvature. On the other hand, if yF − yC is large, then quadratic curvature is present.
A single-degree-of-freedom sum of squares for pure quadratic curvature is given by

SSPure quadratic =
nFnC(yF − yC)2

nF + nC
(6.30)

where, in general, nF is the number of factorial design points. This sum of squares may be incorporated into the ANOVA
and may be compared to the error mean square to test for pure quadratic curvature. More specifically, when points are
added to the center of the 2k design, the test for curvature (using Equation 6.30) actually tests the hypotheses

H0∶
k∑

j=1

𝛽jj = 0

H1∶
k∑

j=1

𝛽jj ≠ 0

Furthermore, if the factorial points in the design are unreplicated, one may use the nC center points to construct an esti-
mate of error with nC − 1 degrees of freedom. A t-test can also be used to test for curvature. Refer to the supplemental
text material for this chapter.

EXAMPLE 6 . 7

We will illustrate the addition of center points to a 2k design
by reconsidering the pilot plant experiment in Example 6.2.
Recall that this is an unreplicated 24 design. Refer to the
original experiment shown in Table 6.10. Suppose that four
center points are added to this experiment, and at the points
x1 = x2 = x3 = x4 = 0 the four observed filtration rates were
73, 75, 66, and 69. The average of these four center points
is yC = 70.75, and the average of the 16 factorial runs is
yF = 70.06. Since yC and yF are very similar, we suspect that
there is no strong curvature present.

Table 6.24 summarizes the analysis of variance for this
experiment. In the upper portion of the table, we have fit
the full model. The mean square for pure error is calculated
from the center points as follows:

MSE =
SSE

nC − 1
=

∑
Center points

(yi − yc)
2

nC − 1
(6.31)

Thus, in Table 6.22,

MSE =

4∑
i=1

(yi − 70.75)2

4 − 1
= 48.75

3
= 16.25

The difference yF − yC = 70.06 − 70.75 = −0.69 is used
to compute the pure quadratic (curvature) sum of squares in
the ANOVA table from Equation 6.30 as follows:

SSPure quadratic =
nFnC(yF − yC)2

nF + nC

= (16)(4)(−0.69)2

16 + 4
= 1.51

The ANOVA indicates that there is no evidence of
second-order curvature in the response over the region of
exploration. That is, the null hypothesis H0 ∶ 𝛽11 + 𝛽22 +
𝛽33 + 𝛽44 = 0 cannot be rejected. The significant effects are
A, C, D, AC, and AD. The ANOVA for the reduced model
is shown in the lower portion of Table 6.24. The results of
this analysis agree with those from Example 6.2, where the
important effects were isolated using the normal probability
plotting method.
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◾ TABLE 6 . 24
Analysis of Variance for Example 6.6

ANOVA for the Full Model

Source of
Variation

Sum of
Squares DF

Mean
Square F Prob > F

Model 5730.94 15 382.06 23.51 0.0121

A 1870.56 1 1870.56 115.11 0.0017

B 39.06 1 39.06 2.40 0.2188

C 390.06 1 390.06 24.00 0.0163

D 855.56 1 855.56 52.65 0.0054

AB 0.063 1 0.063 3.846E-003 0.9544

AC 1314.06 1 1314.06 80.87 0.0029

AD 1105.56 1 1105.56 68.03 0.0037

BC 22.56 1 22.56 1.39 0.3236

BD 0.56 1 0.56 0.035 0.8643

CD 5.06 1 5.06 0.31 0.6157

ABC 14.06 1 14.06 0.87 0.4209

ABD 68.06 1 68.06 4.19 0.1332

ACD 10.56 1 10.56 0.65 0.4791

BCD 27.56 1 27.56 1.70 0.2838

ABCD 7.56 1 7.56 0.47 0.5441

Pure quadratic

Curvature 1.51 1 1.51 0.093 0.7802

Pure error 48.75 3 16.25

Cor total 5781.20 19

Model 5535.81 5 1107.16 59.02 <0.000

A 1870.56 1 1870.56 99.71 <0.000

C 390.06 1 390.06 20.79 0.0005

D 855.56 1 855.56 45.61 <0.000

AC 1314.06 1 1314.06 70.05 <0.000

AD 1105.56 1 1105.56 58.93 <0.000

Pure quadratic

curvature 1.51 1 1.51 0.081 0.7809

Residual 243.87 13 18.76

Lack of fit 195.12 10 19.51 1.20 0.4942

Pure error 48.75 3 16.25

Cor total 5781.20 19
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◾ F I GURE 6 . 39 Central composite designs x2

x1

x3

x2

x1

(a) Two factors (b) Three factors

In Example 6.6, we concluded that there was no indication of quadratic effects; that is, a first-order model in A,
C, D, along with the AC and AD interaction, is appropriate. However, there will be situations where the quadratic terms
(x2

i ) will be required. To illustrate for the case of k = 2 design factors, suppose that the curvature test is significant so
that we will now have to assume a second-order model such as

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝛽11x
2
1 + 𝛽22x

2
2 + 𝜖

Unfortunately, we cannot estimate the unknown parameters (the 𝛽’s) in this model because there are six parameters to
estimate and the 22 design and center points in Figure 6.38 have only five independent runs.

A simple and highly effective solution to this problem is to augment the 2k design with four axial runs, as
shown in Figure 6.39a for the case of k = 2. The resulting design, called a central composite design, can now be
used to fit the second-order model. Figure 6.39b shows a central composite design for k = 3 factors. This design has
14 + nC runs (usually 3 ≤ nC ≤ 5) and is a very efficient design for fitting the 10-parameter second-order model in
k = 3 factors.

Central composite designs are used extensively in building second-order response surface models. These designs
will be discussed in more detail in Chapter 11.

We conclude this section with a few additional useful suggestions and observations concerning the use of cen-
ter points.

1. When a factorial experiment is conducted in an ongoing process, consider using the current operating con-
ditions (or recipe) as the center point in the design. This often assures the operating personnel that at least
some of the runs in the experiment are going to be performed under familiar conditions, and so the results
obtained (at least for these runs) are unlikely to be any worse than are typically obtained.

2. When the center point in a factorial experiment corresponds to the usual operating recipe, the experimenter
can use the observed responses at the center point to provide a rough check of whether anything “unusual”
occurred during the experiment. That is, the center point responses should be very similar to the responses
observed historically in routine process operation. Often operating personnel will maintain a control chart
for monitoring process performance. Sometimes the center point responses can be plotted directly on the
control chart as a check of the manner in which the process was operating during the experiment.

3. Consider running the replicates at the center point in nonrandom order. Specifically, run one or two center
points at or near the beginning of the experiment, one or two near the middle, and one or two near the
end. By spreading the center points out in time, the experimenter has a rough check on the stability of the
process during the experiment. For example, if a trend has occurred in the response while the experiment
was performed, plotting the center point responses versus time order may reveal this.

4. Sometimes experiments must be conducted in situations where there is little or no prior information about
process variability. In these cases, running two or three center points as the first few runs in the experiment
can be very helpful. These runs can provide a preliminary estimate of variability. If the magnitude of the
variability seems reasonable, continue; on the contrary, if larger than anticipated (or reasonable!) variability
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◾ F I GURE 6 . 40 A 23 factorial design with one
qualitative factor and center points

is observed, stop. Often it will be very profitable to study the question of why the variability is so large before
proceeding with the rest of the experiment.

5. Usually, center points are employed when all design factors are quantitative. However, sometimes there
will be one or more qualitative or categorical variables and several quantitative ones. Center points can still
be employed in these cases. To illustrate, consider an experiment with two quantitative factors, time and
temperature, each at two levels, and a single qualitative factor, catalyst type, also with two levels (organic
and nonorganic). Figure 6.40 shows the 23 design for these factors. Notice that the center points are placed
in the opposed faces of the cube that involve the quantitative factors. In other words, the center points can be
run at the high- and low-level treatment combinations of the qualitative factors as long as those subspaces
involve only quantitative factors.

It is interesting to note that adding center runs to a 2k design is never a D-optimal design strategy. To illustrate,
recall the 12-run D-optimal design for three factors that we constructed at the end of Section 6.7. The D-efficiency
of that design was 94.28%. The D-efficiency of the 23 design with four center points is only 70.64%. Furthermore,
in the 12-run D-optimal design the relative standard error of the model parameters was 0.306, while in the design
with four center points it is 0.354. As one would expect, the D-optimal design results in model parameters that
are more precisely estimated. The fraction of design space plot in Figure 6.41 compares the prediction variance
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performance of the two designs. The lower curve in this figure is the FDS curve for the D-optimal design. Clearly,
the D-optimal design outperforms the 23 design with four center points in terms of the ability to predict the response
over almost all of the design space. However, the D-optimal design does not have the capability to detect potential
curvature in the response function. The trade-off between the two designs is a decision that the experimenter needs to
consider carefully.

6.9 Why We Work with Coded Design Variables

The reader will have noticed that we have performed all of the analysis and model fitting for a 2k factorial design in
this chapter using coded design variables, −1 ≤ xi ≤ +1, and not the design factors in their original units (sometimes
called actual, natural, or engineering units). When the engineering units are used, we can obtain different numerical
results in comparison to the coded unit analysis, and often the results will not be as easy to interpret.

To illustrate some of the differences between the two analyses, consider the following experiment. A simple
DC-circuit is constructed in which two different resistors, 1 and 2Ω, can be connected. The circuit also contains
an ammeter and a variable-output power supply. With a resistor installed in the circuit, the power supply is
adjusted until a current flow of either 4 or 6 amps is obtained. Then the voltage output of the power supply is read
from a voltmeter. Two replicates of a 22 factorial design are performed, and Table 6.25 presents the results. We
know that Ohm’s law determines the observed voltage, apart from measurement error. However, the analysis of
these data via empirical modeling lends some insight into the value of coded units and the engineering units in
designed experiments.

Tables 6.26 and 6.27 present the regression models obtained using the design variables in the usual coded vari-
ables (x1 and x2) and the engineering units, respectively. Minitab was used to perform the calculations. Consider first
the coded variable analysis in Table 6.26. The design is orthogonal and the coded variables are also orthogonal. Notice
that both main effects (x1 = current) and (x2 = resistance) are significant as is the interaction. In the coded variable
analysis, the magnitudes of the model coefficients are directly comparable; that is, they all are dimensionless, and they
measure the effect of changing each design factor over a one-unit interval. Furthermore, they are all estimated with the
same precision (notice that the standard error of all three coefficients is 0.053). The interaction effect is smaller than
either main effect, and the effect of current is just slightly more than one-half the resistance effect. This suggests that
over the range of the factors studied, resistance is a more important variable. Coded variables are very effective for
determining the relative size of factor effects.

◾ TABLE 6 . 25
The Circuit Experiment

I (Amps) R (Ohms) x1 x2 V (Volts)

4 1 −1 −1 3.802

4 1 −1 −1 4.013

6 1 1 −1 6.065

6 1 1 −1 5.992

4 2 −1 1 7.934

4 2 −1 1 8.159

6 2 1 1 11.865

6 2 1 1 12.138
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◾ TABLE 6 . 26
Regression Analysis for the Circuit Experiment Using Coded Variables

The regression equation is

V = 7.50 + 1.52 × 1 + 2.53 × 2 + 0.458 × 1 × 2

Predictor Coef StDev T P
Constant 7.49600 0.05229 143.35 0.000
x 1 1.51900 0.05229 29.05 0.000
x 2 2.52800 0.05229 48.34 0.000
x 1 x 2 0.45850 0.05229 8.77 0.001

S = 0.1479 R-Sq = 99.9% R-Sq(adj) = 99.8%

Analysis of Variance

Source DF SS MS F P
Regression 3 71.267 23.756 1085.95 0.000

Residual Error 4 0.088 0.022
Total 7 71.354

◾ TABLE 6 . 27
Regression Analysis for the Circuit Experiment Using Engineering Units

The regression equation is

V = -0.806 + 0.144 I + 0.471 R + 0.917 IR

Predictor Coef StDev T P
Constant -0.8055 0.8432 -0.96 0.394
I 0.1435 0.1654 0.87 0.434
R 0.4710 0.5333 0.88 0.427
IR 0.9170 0.1046 8.77 0.001

S = 0.1479 R-Sq = 99.9% R-Sq(adj) = 99.8%

Analysis of Variance

Source DF SS MS F P
Regression 3 71.267 23.756 1085.95 0.000

Residual Error 4 0.088 0.022
Total 7 71.354

Now consider the analysis based on the engineering units, as shown in Table 6.27. In this model, only the inter-
action is significant. The model coefficient for the interaction term is 0.9170, and the standard error is 0.1046. We can
construct a t statistic for testing the hypothesis that the interaction coefficient is unity:

t0 =
𝛽IR − 1

se(𝛽IR)
= 0.9170 − 1

0.1046
= −0.7935
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◾ TABLE 6 . 28
Regression Analysis for the Circuit Experiment (Interaction Term Only)

The regression equation is

V = 1.00 IR

Predictor Coef Std. Dev. T P
Noconstant
IR 1.00073 0.00550 181.81 0.000

S = 0.1255
Analysis of Variance

Source DF SS MS F P
Regression 3 71.267 23.756 1085.95 0.000

Residual Error 4 0.088 0.022
Total 7 71.354

The P-value for this test statistic is P = 0.76. Therefore, we cannot reject the null hypothesis that the coefficient
is unity, which is consistent with Ohm’s law. Note that the regression coefficients are not dimensionless and that they
are estimated with differing precision. This is because the experimental design, with the factors in the engineering
units, is not orthogonal.

Because the intercept and the main effects are not significant, we could consider fitting a model containing
only the interaction term IR. The results are shown in Table 6.28. Notice that the estimate of the interaction term
regression coefficient is now different from what it was in the previous engineering-units analysis because the design
in engineering units is not orthogonal. The coefficient is also virtually unity.

Generally, the engineering units are not directly comparable, but they may have physical meaning as in the present
example. This could lead to possible simplification based on the underlying mechanism. In almost all situations, the
coded unit analysis is preferable. It is fairly unusual for a simplification based on some underlying mechanism (as
in our example) to occur. The fact that coded variables let an experimenter see the relative importance of the design
factors is useful in practice.

6.10 Problems

6.1 In a 24 factorial design, the number of degrees of free-
dom for the model, assuming the complete factorial model, is

(a) 7 (b) 5 (c) 6

(d) 11 (e) 12 (f) none of the above

6.2 A 23 factorial is replicated twice. The number of pure
error or residual degrees of freedom are

(a) 4 (b) 12 (c) 15

(d) 2 (e) 8 (f) none of the above

6.3 A 23 factorial is replicated twice. The ANOVA indi-
cates that all main effects are significant but the interactions
are not significant. The interaction terms are dropped from

the model. The number of residual degrees of freedom for the
reduced model are

(a) 12 (b) 8 (c) 16

(d) 14 (e) 10 (f) none of the above

6.4 A 23 factorial is replicated three times. The ANOVA
indicates that all main effects are significant but two of the
interactions are not significant. The interaction terms are
dropped from the model. The number of residual degrees of
freedom for the reduced model are

(a) 12 (b) 14 (c) 6

(d) 10 (e) 8 (f) none of the above
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6.5 An engineer is interested in the effects of cutting speed
(A), tool geometry (B), and cutting angle (C) on the life (in
hours) of a machine tool. Two levels of each factor are chosen,
and three replicates of a 23 factorial design are run. The results
are as follows:

Replicate

A B C
Treatment

Combination I II III

− − − (1) 22 31 25
+ − − a 32 43 29
− + − b 35 34 50
+ + − ab 55 47 46
− − + c 44 45 38
+ − + ac 40 37 36
− + + bc 60 50 54
+ + + abc 39 41 47

(a) Estimate the factor effects. Which effects appear to be
large?

(b) Use the analysis of variance to confirm your conclusions
for part (a).

(c) Write down a regression model for predicting tool life
(in hours) based on the results of this experiment.

(d) Analyze the residuals. Are there any obvious problems?

(e) On the basis of an analysis of main effect and interac-
tion plots, what coded factor levels of A, B, and C would
you recommend using?

6.6 Reconsider part (c) of Problem 6.5. Use the regression
model to generate response surface and contour plots of the
tool life response. Interpret these plots. Do they provide insight
regarding the desirable operating conditions for this process?

6.7 Find the standard error of the factor effects and approx-
imate 95 percent confidence limits for the factor effects in
Problem 6.5. Do the results of this analysis agree with the con-
clusions from the analysis of variance?

6.8 Plot the factor effects from Problem 6.5 on a graph rel-
ative to an appropriately scaled t distribution. Does this graphi-
cal display adequately identify the important factors? Compare
the conclusions from this plot with the results from the analysis
of variance.

6.9 A router is used to cut locating notches on a printed cir-
cuit board. The vibration level at the surface of the board as it is
cut is considered to be a major source of dimensional variation
in the notches. Two factors are thought to influence vibration:
bit size (A) and cutting speed (B). Two bit sizes ( 1

16
and 1

8
in.)

and two speeds (40 and 90 rpm) are selected, and four boards
are cut at each set of conditions shown below. The response
variable is vibration measured as the resultant vector of three
accelerometers (x, y, and z) on each test circuit board.

Replicate

A B
Treatment
Combination I II III IV

− − (1) 18.2 18.9 12.9 14.4

+ − a 27.2 24.0 22.4 22.5

− + b 15.9 14.5 15.1 14.2

+ + ab 41.0 43.9 36.3 39.9

(a) Analyze the data from this experiment.

(b) Construct a normal probability plot of the residuals, and
plot the residuals versus the predicted vibration level.
Interpret these plots.

(c) Draw the AB interaction plot. Interpret this plot.
What levels of bit size and speed would you recommend
for routine operation?

6.10 Reconsider the experiment described in Problem 6.5.
Suppose that the experimenter only performed the eight tri-
als from replicate I. In addition, he ran four center points and
obtained the following response values: 36, 40, 43, 45.

(a) Estimate the factor effects. Which effects are large?

(b) Perform an analysis of variance, including a check for
pure quadratic curvature. What are your conclusions?

(c) Write down an appropriate model for predicting tool
life, based on the results of this experiment. Does this
model differ in any substantial way from the model in
Problem 6.5, part (c)?

(d) Analyze the residuals.

(e) What conclusions would you draw about the appropriate
operating conditions for this process?

6.11 An experiment was performed to improve the yield
of a chemical process. Four factors were selected, and two
replicates of a completely randomized experiment were run.
The results are shown in the following table:

Replicate Replicate
Treatment
Combination I II

Treatment
Combination I II

(1) 90 93 d 98 95

a 74 78 ad 72 76

b 81 85 bd 87 83

ab 83 80 abd 85 86

c 77 78 cd 99 90

ac 81 80 acd 79 75

bc 88 82 bcd 87 84

abc 73 70 abcd 80 80
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(a) Estimate the factor effects.

(b) Prepare an analysis of variance table and determine
which factors are important in explaining yield.

(c) Write down a regression model for predicting yield,
assuming that all four factors were varied over the range
from −1 to + 1 (in coded units).

(d) Plot the residuals versus the predicted yield and on a nor-
mal probability scale. Does the residual analysis appear
satisfactory?

(e) Two three-factor interactions,ABC andABD, apparently
have large effects. Draw a cube plot in the factors A,
B, and C with the average yields shown at each corner.
Repeat using the factors A, B, and D. Do these two plots
aid in data interpretation? Where would you recommend
that the process be run with respect to the four variables?

6.12 A bacteriologist is interested in the effects of two dif-
ferent culture media and two different times on the growth
of a particular virus. He or she performs six replicates of
a 22 design, making the runs in random order. Analyze
the bacterial growth data that follow and draw appropri-
ate conclusions. Analyze the residuals and comment on the
model’s adequacy.

Culture Medium

Time (h) 1 2

21 22 25 26

12 23 28 24 25

20 26 29 27

37 39 31 34

18 38 38 29 33

35 36 30 35

6.13 An industrial engineer employed by a beverage bottler
is interested in the effects of two different types of 32-ounce
bottles on the time to deliver 12-bottle cases of the product.
The two bottle types are glass and plastic. Two workers are
used to perform a task consisting of moving 40 cases of the
product 50 feet on a standard type of hand truck and stack-
ing the cases in a display. Four replicates of a 22 factorial
design are performed, and the times observed are listed in
the following table. Analyze the data and draw appropriate

conclusions. Analyze the residuals and comment on the
model’s adequacy.

Worker

Bottle Type 1 2

Glass 5.12 4.89 6.65 6.24

4.98 5.00 5.49 5.55

Plastic 4.95 4.43 5.28 4.91

4.27 4.25 4.75 4.71

6.14 In Problem 6.13, the engineer was also interested
in potential fatigue differences resulting from the two types
of bottles. As a measure of the amount of effort required,
he measured the elevation of the heart rate (pulse) induced
by the task. The results follow. Analyze the data and draw
conclusions. Analyze the residuals and comment on the
model’s adequacy.

Worker

Bottle Type 1 2

Glass 39 45 20 13

58 35 16 11

Plastic 44 35 13 10

42 21 16 15

6.15 Calculate approximate 95 percent confidence limits
for the factor effects in Problem 6.14. Do the results of this
analysis agree with the analysis of variance performed in
Problem 6.14?

6.16 An article in theAT&TTechnical Journal (March/April
1986, Vol. 65, pp. 39–50) describes the application of two-level
factorial designs to integrated circuit manufacturing. A basic
processing step is to grow an epitaxial layer on polished sili-
con wafers. The wafers mounted on a susceptor are positioned
inside a bell jar, and chemical vapors are introduced. The sus-
ceptor is rotated, and heat is applied until the epitaxial layer
is thick enough. An experiment was run using two factors:
arsenic flow rate (A) and deposition time (B). Four replicates
were run, and the epitaxial layer thickness was measured (𝜇m).
The data are shown in Table P6.1.
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◾ TABLE P6 . 1
The 22 Design for Problem 6.16

Replicate Factor Levels

A B I II III IV Low (−) High (+)

− − 14.037 16.165 13.972 13.907 A 55% 59%

+ − 13.880 13.860 14.032 13.914

− + 14.821 14.757 14.843 14.878 B Short Long

+ + 14.888 14.921 14.415 14.932 (10 min) (15 min)

(a) Estimate the factor effects.

(b) Conduct an analysis of variance. Which factors are
important?

(c) Write down a regression equation that could be used
to predict epitaxial layer thickness over the region
of arsenic flow rate and deposition time used in this
experiment.

(d) Analyze the residuals. Are there any residuals that
should cause concern?

(e) Discuss how you might deal with the potential outlier
found in part (d).

6.17 Continuation of Problem 6.16. Use the regression
model in part (c) of Problem 6.16 to generate a response sur-
face contour plot for epitaxial layer thickness. Suppose it is
critically important to obtain layer thickness of 14.5 𝜇m. What
settings of arsenic flow rate and decomposition time would you
recommend?

6.18 Continuation of Problem 6.17. How would your
answer to Problem 6.17 change if arsenic flow rate was more
difficult to control in the process than the deposition time?

6.19 A nickel–titanium alloy is used to make components
for jet turbine aircraft engines. Cracking is a potentially serious
problem in the final part because it can lead to nonrecoverable
failure. A test is run at the parts producer to determine the effect
of four factors on cracks. The four factors are pouring tem-
perature (A), titanium content (B), heat treatment method (C),
and amount of grain refiner used (D). Two replicates of a 24

design are run, and the length of crack (in mm × 10−2) induced
in a sample coupon subjected to a standard test is measured.
The data are shown in Table P6.2.

◾ TABLE P6 . 2
The Experiment for problem 6.19

Replicate

A B C D
Treatment

Combination I II

− − − − (1) 7.037 6.376

+ − − − a 14.707 15.219

− + − − b 11.635 12.089

+ + − − ab 17.273 17.815

− − + − c 10.403 10.151

+ − + − ac 4.368 4.098

− + + − bc 9.360 9.253

+ + + − abc 13.440 12.923

− − − + d 8.561 8.951

+ − − + ad 16.867 17.052

− + − + bd 13.876 13.658

+ + − + abd 19.824 19.639

− − + + cd 11.846 12.337

+ − + + acd 6.125 5.904

− + + + bcd 11.190 10.935

+ + + + abcd 15.653 15.053

(a) Estimate the factor effects. Which factor effects appear
to be large?

(b) Conduct an analysis of variance. Do any of the factors
affect cracking? Use 𝛼 = 0.05.
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(c) Write down a regression model that can be used
to predict crack length as a function of the signifi-
cant main effects and interactions you have identified
in part (b).

(d) Analyze the residuals from this experiment.

(e) Is there an indication that any of the factors affect the
variability in cracking?

(f) What recommendations would you make regarding pro-
cess operations? Use interaction and/or main effect plots
to assist in drawing conclusions.

6.20 Continuation of Problem 6.19. One of the variables
in the experiment described in Problem 6.19, heat treatment
method (C), is a categorical variable. Assume that the remain-
ing factors are continuous.

(a) Write two regression models for predicting crack length,
one for each level of the heat treatment method vari-
able. What differences, if any, do you notice in these
two equations?

(b) Generate appropriate response surface contour plots for
the two regression models in part (a).

(c) What set of conditions would you recommend for the
factors A, B, and D if you use heat treatment method
C = +?

(d) Repeat part (c) assuming that you wish to use heat treat-
ment method C = −.

6.21 An experimenter has run a single replicate of a 24

design. The following effect estimates have been calculated:

A = 76.95 AB = −51.32 ABC = −2.82
B = −67.52 AC = 11.69 ABD = −6.50
C = −7.84 AD = 9.78 ACD = 10.20
D = −18.73 BC = 20.78 BCD = −7.98

BD = 14.74 ABCD = −6.25
CD = 1.27

(a) Construct a normal probability plot of these effects.

(b) Identify a tentative model, based on the plot of the
effects in part (a).

6.22 The effect estimates from a 24 factorial design
are as follows: ABCD = −1.5138, ABC = −1.2661, ABD =
−0.9852, ACD = −0.7566, BCD = −0.4842, CD = −0.0795,
BD = −0.0793, AD = 0.5988, BC = 0.9216, AC = 1.1616,
AB = 1.3266, D = 4.6744, C = 5.1458, B = 8.2469, and A =
12.7151. Are you comfortable with the conclusions that all
main effects are active?

6.23 The effect estimates from a 24 factorial experiment
are listed here. Are any of the effects significant? ABCD =
−2.5251, BCD = 4.4054, ACD = −0.4932, ABD = −5.0842,
ABC = −5.7696, CD = 4.6707, BD = −4.6620, BC =
−0.7982, AD = −1.6564, AC = 1.1109, AB = −10.5229,
D = −6.0275, C = −8.2045, B = −6.5304, and A = −0.7914.

6.24 Consider a variation of the bottle filling experiment
from Example 5.3. Suppose that only two levels of carbona-
tion are used so that the experiment is a 23 factorial design
with two replicates. The data are shown in Table P6.3.

◾ TABLE P6 . 3
Fill Height Experiment from Problem 6.24

Coded Factors Fill Height Deviation Factor Levels

Run A B C Replicate 1 Replicate 2 Low (−1) High (+1)

1 − − − −3 −1 A (%) 10 12
2 + − − 0 1 B (psi) 25 30
3 − + − −1 0 C (b/m) 200 250
4 + + − 2 3
5 − − + −1 0
6 + − + 2 1
7 − + + 1 1
8 + + + 6 5

(a) Analyze the data from this experiment. Which factors
significantly affect fill height deviation?

(b) Analyze the residuals from this experiment. Are there
any indications of model inadequacy?

(c) Obtain a model for predicting fill height deviation in
terms of the important process variables. Use this model
to construct contour plots to assist in interpreting the
results of the experiment.
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(d) In part (a), you probably noticed that there was an inter-
action term that was borderline significant. If you did
not include the interaction term in your model, include
it now and repeat the analysis. What difference did this
make? If you elected to include the interaction term in
part (a), remove it and repeat the analysis. What differ-
ence does the interaction term make?

6.25 I am always interested in improving my golf scores.
Since a typical golfer uses the putter for about 35–45 per-
cent of his or her strokes, it seems reasonable that improving

one’s putting is a logical and perhaps simple way to improve
a golf score (“The man who can putt is a match for any
man.”—Willie Parks, 1864–1925, two time winner of the
British Open). An experiment was conducted to study the
effects of four factors on putting accuracy. The design factors
are length of putt, type of putter, breaking putt versus straight
putt, and level versus downhill putt. The response variable is
distance from the ball to the center of the cup after the ball
comes to rest. One golfer performs the experiment, a 24 fac-
torial design with seven replicates was used, and all putts are
made in random order. The results are shown in Table P6.4.

◾ TABLE P6 . 4
The Putting Experiment from Problem 6.25

Design Factors Distance from Cup (replicates)

Length of
Putt (ft) Type of Putter

Break
of Putt

Slope
of Putt 1 2 3 4 5 6 7

10 Mallet Straight Level 10.0 18.0 14.0 12.5 19.0 16.0 18.5

30 Mallet Straight Level 0.0 16.5 4.5 17.5 20.5 17.5 33.0

10 Cavity back Straight Level 4.0 6.0 1.0 14.5 12.0 14.0 5.0

30 Cavity back Straight Level 0.0 10.0 34.0 11.0 25.5 21.5 0.0

10 Mallet Breaking Level 0.0 0.0 18.5 19.5 16.0 15.0 11.0

30 Mallet Breaking Level 5.0 20.5 18.0 20.0 29.5 19.0 10.0

10 Cavity back Breaking Level 6.5 18.5 7.5 6.0 0.0 10.0 0.0

30 Cavity back Breaking Level 16.5 4.5 0.0 23.5 8.0 8.0 8.0

10 Mallet Straight Downhill 4.5 18.0 14.5 10.0 0.0 17.5 6.0

30 Mallet Straight Downhill 19.5 18.0 16.0 5.5 10.0 7.0 36.0

10 Cavity back Straight Downhill 15.0 16.0 8.5 0.0 0.5 9.0 3.0

30 Cavity back Straight Downhill 41.5 39.0 6.5 3.5 7.0 8.5 36.0

10 Mallet Breaking Downhill 8.0 4.5 6.5 10.0 13.0 41.0 14.0

30 Mallet Breaking Downhill 21.5 10.5 6.5 0.0 15.5 24.0 16.0

10 Cavity back Breaking Downhill 0.0 0.0 0.0 4.5 1.0 4.0 6.5

30 Cavity back Breaking Downhill 18.0 5.0 7.0 10.0 32.5 18.5 8.0

(a) Analyze the data from this experiment. Which factors
significantly affect putting performance?

(b) Analyze the residuals from this experiment. Are there
any indications of model inadequacy?

6.26 Semiconductor manufacturing processes have long
and complex assembly flows, so matrix marks and automated
2d-matrix readers are used at several process steps throughout
factories. Unreadable matrix marks negatively affect factory
run rates because manual entry of part data is required before
manufacturing can resume. A 24 factorial experiment was con-
ducted to develop a 2d-matrix laser mark on a metal cover that
protects a substrate-mounted die. The design factors are A =

laser power (9 and 13 W), B = laser pulse frequency (4000
and 12,000 Hz), C = matrix cell size (0.07 and 0.12 in.), and
D = writing speed (10 and 20 in.∕sec), and the response vari-
able is the unused error correction (UEC). This is a measure
of the unused portion of the redundant information embedded
in the 2d-matrix. A UEC of 0 represents the lowest reading
that still results in a decodable matrix, while a value of 1 is
the highest reading. A DMX Verifier was used to measure the
UEC. The data from this experiment are shown in Table P6.5.

(a) Analyze the data from this experiment. Which factors
significantly affect the UEC?

(b) Analyze the residuals from this experiment. Are there
any indications of model inadequacy?
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◾ TABLE P6 . 5
The 24 Experiment for Problem 6.26

Standard
Order

Run
Order

Laser
Power

Pulse
Frequency

Cell
Size

Writing
Speed UEC

8 1 1.00 1.00 1.00 −1.00 0.8
10 2 1.00 −1.00 −1.00 1.00 0.81
12 3 1.00 1.00 −1.00 1.00 0.79

9 4 −1.00 −1.00 −1.00 1.00 0.6
7 5 −1.00 1.00 1.00 −1.00 0.65

15 6 −1.00 1.00 1.00 1.00 0.55
2 7 1.00 −1.00 −1.00 −1.00 0.98
6 8 1.00 −1.00 1.00 −1.00 0.67

16 9 1.00 1.00 1.00 1.00 0.69
13 10 −1.00 −1.00 1.00 1.00 0.56

5 11 −1.00 −1.00 1.00 −1.00 0.63
14 12 1.00 −1.00 1.00 1.00 0.65

1 13 −1.00 −1.00 −1.00 −1.00 0.75
3 14 −1.00 1.00 −1.00 −1.00 0.72
4 15 1.00 1.00 −1.00 −1.00 0.98

11 16 −1.00 1.00 −1.00 1.00 0.63

6.27 Reconsider the experiment described in Problem 6.24.
Suppose that four center points are available and that the UEC
response at these four runs is 0.98, 0.95, 0.93, and 0.96, respec-
tively. Reanalyze the experiment incorporating a test for curva-
ture into the analysis. What conclusions can you draw? What
recommendations would you make to the experimenters?

6.28 A company markets its products by direct mail. An
experiment was conducted to study the effects of three fac-
tors on the customer response rate for a particular product.

◾ TABLE P6 . 6
The Direct Mail Experiment from Problem 6.28

Coded Factors Number of Orders Factor Levels

Run A B C Replicate 1 Replicate 2 Low (−1) High (+1)

1 − − − 50 54 A (class) 3rd 1st
2 + − − 44 42 B (type) BW Color
3 − + − 46 48 C ($) $19.95 $24.95
4 + + − 42 43
5 − − + 49 46
6 + − + 48 45
7 − + + 47 48
8 + + + 56 54

The three factors are A = type of mail used (3rd class,
1st class), B = type of descriptive brochure (color, black-
and-white), andC = offered price ($19.95, $24.95). The mail-
ings are made to two groups of 8000 randomly selected
customers, with 1000 customers in each group receiving each
treatment combination. Each group of customers is considered
as a replicate. The response variable is the number of orders
placed. The experimental data are shown in Table P6.6.

(a) Analyze the data from this experiment. Which factors
significantly affect the customer response rate?
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(b) Analyze the residuals from this experiment. Are there
any indications of model inadequacy?

(c) What would you recommend to the company?

6.29 Consider the single replicate of the 24 design in
Example 6.2. Suppose that we had arbitrarily decided to ana-
lyze the data assuming that all three- and four-factor interac-
tions were negligible. Conduct this analysis and compare your
results with those obtained in the example. Do you think that it
is a good idea to arbitrarily assume interactions to be negligible
even if they are relatively high-order ones?

6.30 An experiment was run in a semiconductor fabrica-
tion plant in an effort to increase yield. Five factors, each
at two levels, were studied. The factors (and levels) were
A = aperture setting (small, large), B = exposure time (20%
below nominal, 20% above nominal), C = development time
(30 and 45 s), D = mask dimension (small, large), and E =
etch time (14.5 and 15.5 min). The unreplicated 25 design
shown below was run.

(1) = 7 d = 8 e = 8 de = 6

a = 9 ad = 10 ae = 12 ade = 10

b = 34 bd = 32 be = 35 bde = 30

ab = 55 abd = 50 abe = 52 abde = 53

c = 16 cd = 18 ce = 15 cde = 15

ac = 20 acd = 21 ace = 22 acde = 20

bc = 40 bcd = 44 bce = 45 bcde = 41

abc = 60 abcd = 61 abce = 65 abcde = 63

(a) Construct a normal probability plot of the effect esti-
mates. Which effects appear to be large?

(b) Conduct an analysis of variance to confirm your findings
for part (a).

(c) Write down the regression model relating yield to the
significant process variables.

(d) Plot the residuals on normal probability paper. Is the plot
satisfactory?

(e) Plot the residuals versus the predicted yields and versus
each of the five factors. Comment on the plots.

(f) Interpret any significant interactions.

(g) What are your recommendations regarding process
operating conditions?

(h) Project the 25 design in this problem into a 2k design
in the important factors. Sketch the design and show the
average and range of yields at each run. Does this sketch
aid in interpreting the results of this experiment?

6.31 Continuation of Problem 6.30. Suppose that the
experimenter had run four center points in addition to the 32

trials in the original experiment. The yields obtained at the
center point runs were 68, 74, 76, and 70.

(a) Reanalyze the experiment, including a test for pure
quadratic curvature.

(b) Discuss what your next step would be.

6.32 In a process development study on yield, four factors
were studied, each at two levels: time (A), concentration (B),
pressure (C), and temperature (D). A single replicate of a 24

design was run, and the resulting data are shown in Table P6.7.

(a) Construct a normal probability plot of the effect esti-
mates. Which factors appear to have large effects?

(b) Conduct an analysis of variance using the normal prob-
ability plot in part (a) for guidance in forming an error
term. What are your conclusions?

(c) Write down a regression model relating yield to the
important process variables.

(d) Analyze the residuals from this experiment. Does your
analysis indicate any potential problems?

(e) Can this design be collapsed into a 23 design with two
replicates? If so, sketch the design with the average and
range of yield shown at each point in the cube. Interpret
the results.

6.33 Continuation of Problem 6.32. Use the regression
model in part (c) of Problem 6.32 to generate a response sur-
face contour plot of yield. Discuss the practical value of this
response surface plot.

6.34 The scrumptious brownie experiment. The author is
an engineer by training and a firm believer in learning by doing.
I have taught experimental design for many years to a wide
variety of audiences and have always assigned the planning,
conduct, and analysis of an actual experiment to the class par-
ticipants. The participants seem to enjoy this practical experi-
ence and always learn a great deal from it. This problem uses
the results of an experiment performed by Gretchen Krueger
at Arizona State University.

There are many different ways to bake brownies. The
purpose of this experiment was to determine how the pan
material, the brand of brownie mix, and the stirring method
affect the scrumptiousness of brownies. The factor levels were
as follows:

Factor Low (−) High (+)

A = pan material Glass Aluminum

B = stirring method Spoon Mixer

C = brand of mix Expensive Cheap

The response variable was scrumptiousness, a subjective
measure derived from a questionnaire given to the subjects
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◾ TABLE P6 . 7
Process Development Experiment from Problem 6.32

Factor LevelsRun
Number

Actual
Run

Order A B C D
Yield
(lbs) Low (−) High (+)

1 5 − − − − 12 A (h) 2.5 3
2 9 + − − − 18 B (%) 14 18
3 8 − + − − 13 C (psi) 60 80
4 13 + + − − 16 D (∘C) 225 250
5 3 − − + − 17
6 7 + − + − 15
7 14 − + + − 20
8 1 + + + − 15
9 6 − − − + 10

10 11 + − − + 25
11 2 − + − + 13
12 15 + + − + 24
13 4 − − + + 19
14 16 + − + + 21
15 10 − + + + 17
16 12 + + + + 23

who sampled each batch of brownies. (The questionnaire dealt
with issues such as taste, appearance, consistency, aroma.) An
eight-person test panel sampled each batch and filled out the
questionnaire. The design matrix and the response data are as
follows.

(a) Analyze the data from this experiment as if there were
eight replicates of a 23 design. Comment on the results.

(b) Is the analysis in part (a) the correct approach? There are
only eight batches; do we really have eight replicates of
a 23 factorial design?

(c) Analyze the average and standard deviation of the
scrumptiousness ratings. Comment on the results. Is this
analysis more appropriate than the one in part (a)? Why
or why not?

Test Panel ResultsBrownie
Batch A B C 1 2 3 4 5 6 7 8

1 − − − 11 9 10 10 11 10 8 9
2 + − − 15 10 16 14 12 9 6 15
3 − + − 9 12 11 11 11 11 11 12
4 + + − 16 17 15 12 13 13 11 11
5 − − + 10 11 15 8 6 8 9 14
6 + − + 12 13 14 13 9 13 14 9
7 − + + 10 12 13 10 7 7 17 13
9 + + + 15 12 15 13 12 12 9 14

6.35 An experiment was conducted on a chemical process
that produces a polymer. The four factors studied were tem-
perature (A), catalyst concentration (B), time (C), and pres-
sure (D). Two responses, molecular weight and viscosity, were
observed. The design matrix and response data are shown in
Table P6.8.

(a) Consider only the molecular weight response. Plot the
effect estimates on a normal probability scale. What
effects appear important?

(b) Use an analysis of variance to confirm the results from
part (a). Is there indication of curvature?

(c) Write down a regression model to predict molecular
weight as a function of the important variables.

(d) Analyze the residuals and comment on model adequacy.

(e) Repeat parts (a)–(d) using the viscosity response.

6.36 Continuation of Problem 6.35. Use the regression
models for molecular weight and viscosity to answer the
following questions.

(a) Construct a response surface contour plot for molecular
weight. In what direction would you adjust the process
variables to increase molecular weight?

(b) Construct a response surface contour plot for viscosity.
In what direction would you adjust the process variables
to decrease viscosity?
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◾ TABLE P6 . 8
The 24 Experiment for Problem 6.35

Factor LevelsRun
Number

Actual
Run

Order A B C D
Molecular

Weight Viscosity Low (−) High (+)

1 18 − − − − 2400 1400 A (∘C) 100 120

2 9 + − − − 2410 1500 B (%) 4 8

3 13 − + − − 2315 1520 C (min) 20 30

4 8 + + − − 2510 1630 D (psi) 60 75

5 3 − − + − 2615 1380

6 11 + − + − 2625 1525

7 14 − + + − 2400 1500

8 17 + + + − 2750 1620

9 6 − − − + 2400 1400

10 7 + − − + 2390 1525

11 2 − + − + 2300 1500

12 10 + + − + 2520 1500

13 4 − − + + 2625 1420

14 19 + − + + 2630 1490

15 15 − + + + 2500 1500

16 20 + + + + 2710 1600

17 1 0 0 0 0 2515 1500

18 5 0 0 0 0 2500 1460

19 16 0 0 0 0 2400 1525

20 12 0 0 0 0 2475 1500

(c) What operating conditions would you recommend if
it was necessary to produce a product with molecular
weight between 2400 and 2500 and the lowest possible
viscosity?

6.37 Consider the single replicate of the 24 design in
Example 6.2. Suppose that we ran five points at the cen-
ter (0, 0, 0, 0) and observed the responses 93, 95, 91, 89,
and 96. Test for curvature in this experiment. Interpret the
results.

6.38 A missing value in a 2k factorial. It is not unusual to
find that one of the observations in a 2k design is missing due
to faulty measuring equipment, a spoiled test, or some other
reason. If the design is replicated n times (n > 1), some of the
techniques discussed in Chapter 5 can be employed. However,
for an unreplicated factorial (n = 1) some other method must
be used. One logical approach is to estimate the missing value
with a number that makes the highest order interaction contrast
zero. Apply this technique to the experiment in Example 6.2
assuming that run ab is missing. Compare the results with the
results of Example 6.2.

6.39 An engineer has performed an experiment to study
the effect of four factors on the surface roughness of a
machined part. The factors (and their levels) are A = tool angle
(12, 15∘), B = cutting fluid viscosity (300, 400), C = feed rate
(10 and 15 in.∕min), and D = cutting fluid cooler used (no,
yes). The data from this experiment (with the factors coded
to the usual −1, +1 levels) are shown in Table P6.9.

(a) Estimate the factor effects. Plot the effect estimates
on a normal probability plot and select a tentative
model.

(b) Fit the model identified in part (a) and analyze the resid-
uals. Is there any indication of model inadequacy?

(c) Repeat the analysis from parts (a) and (b) using 1∕y
as the response variable. Is there an indication that the
transformation has been useful?

(d) Fit a model in terms of the coded variables that can
be used to predict the surface roughness. Convert
this prediction equation into a model in the natural
variables.
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◾ TABLE P6 . 9
The Surface Roughness Experiment from Problem 6.39

Run A B C D
Surface

Roughness

1 − − − − 0.00340

2 + − − − 0.00362

3 − + − − 0.00301

4 + + − − 0.00182

5 − − + − 0.00280

6 + − + − 0.00290

7 − + + − 0.00252

8 + + + − 0.00160

9 − − − + 0.00336

10 + − − + 0.00344

11 − + − + 0.00308

12 + + − + 0.00184

13 − − + + 0.00269

14 + − + + 0.00284

15 − + + + 0.00253

16 + + + + 0.00163

6.40 Resistivity on a silicon wafer is influenced by
several factors. The results of a 24 factorial experiment
performed during a critical processing step are shown in
Table P6.10.

◾ TABLE P6 . 10
The Resistivity Experiment from Problem 6.40

Run A B C D Resistivity

1 − − − − 1.92

2 + − − − 11.28

3 − + − − 1.09

4 + + − − 5.75

5 − − + − 2.13

6 + − + − 9.53

7 − + + − 1.03

8 + + + − 5.35

9 − − − + 1.60

10 + − − + 11.73

11 − + − + 1.16

12 + + − + 4.68

13 − − + + 2.16

14 + − + + 9.11

15 − + + + 1.07

16 + + + + 5.30

(a) Estimate the factor effects. Plot the effect estimates
on a normal probability plot and select a tentative
model.

(b) Fit the model identified in part (a) and analyze the resid-
uals. Is there any indication of model inadequacy?

(c) Repeat the analysis from parts (a) and (b) using ln(y)
as the response variable. Is there an indication that the
transformation has been useful?

(d) Fit a model in terms of the coded variables that can be
used to predict the resistivity.

6.41 Continuation of Problem 6.40. Suppose that the
experimenter had also run four center points along with the
16 runs in Problem 6.40. The resistivity measurements at the
center points are 8.15, 7.63, 8.95, and 6.48. Analyze the exper-
iment again incorporating the center points. What conclusions
can you draw now?

6.42 The book by Davies (Design and Analysis of Indus-
trial Experiments) describes an experiment to study the
yield of isatin. The factors studied and their levels are
as follows:

Factor Low (−) High (+)

A: Acid strength (%) 87 93

B: Reaction time (min) 15 30

C: Amount of acid (mL) 35 45

D: Reaction temperature (∘C) 60 70

The data from the 24 factorial are shown in Table P6.11.

(a) Fit a main-effects-only model to the data from this
experiment. Are any of the main effects significant?

(b) Analyze the residuals. Are there any indications of
model inadequacy or violation of the assumptions?

(c) Find an equation for predicting the yield of isatin over
the design space. Express the equation in both coded and
engineering units.

(d) Is there any indication that adding interactions to
the model would improve the results that you have
obtained?
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◾ TABLE P6 . 11
The 24 Factorial Experiment in Problem 6.42

A B C D Yield

−1 −1 −1 −1 6.08

1 −1 −1 −1 6.04

−1 1 −1 −1 6.53

1 1 −1 −1 6.43

−1 −1 1 −1 6.31

1 −1 1 −1 6.09

−1 1 1 −1 6.12

1 1 1 −1 6.36

−1 −1 −1 1 6.79

1 −1 −1 1 6.68

−1 1 −1 1 6.73

1 1 −1 1 6.08

−1 −1 1 1 6.77

1 −1 1 1 6.38

−1 1 1 1 6.49

1 1 1 1 6.23

6.43 An article inQuality and Reliability Engineering Inter-
national (2010, Vol. 26, pp. 223–233) presents a 25 factorial
design. The experiment is shown in Table P6.12.

(a) Analyze the data from this experiment. Identify the sig-
nificant factors and interactions.

(b) Analyze the residuals from this experiment. Are there
any indications of model inadequacy or violations of the
assumptions?

(c) One of the factors from this experiment does not seem to
be important. If you drop this factor, what type of design
remains? Analyze the data using the full factorial model
for only the four active factors. Compare your results
with those obtained in part (a).

(d) Find settings of the active factors that maximize the pre-
dicted response.

6.44 A paper in the Journal of Chemical Technology and
Biotechnology (“Response Surface Optimization of the Criti-
cal Media Components for the Production of Surfactin,” 1997,
Vol. 68, pp. 263–270) describes the use of a designed exper-
iment to maximize surfactin production. A portion of the
data from this experiment is shown in Table P6.13. Surfactin
was assayed by an indirect method, which involves mea-
surement of surface tensions of the diluted broth samples.
Relative surfactin concentrations were determined by seri-
ally diluting the broth until the critical micelle concentration
(CMC) was reached. The dilution at which the surface ten-
sion starts rising abruptly was denoted by CMC−1 and was

◾ TABLE P6 . 12
The 25 Design in Problem 6.43

A B C D E y

−1.00 −1.00 −1.00 −1.00 −1.00 8.11

1.00 −1.00 −1.00 −1.00 −1.00 5.56

−1.00 1.00 −1.00 −1.00 −1.00 5.77

1.00 1.00 −1.00 −1.00 −1.00 5.82

−1.00 −1.00 1.00 −1.00 −1.00 9.17

1.00 −1.00 1.00 −1.00 −1.00 7.8

−1.00 1.00 1.00 −1.00 −1.00 3.23

1.00 1.00 1.00 −1.00 −1.00 5.69

−1.00 −1.00 −1.00 1.00 −1.00 8.82

1.00 −1.00 −1.00 1.00 −1.00 14.23

−1.00 1.00 −1.00 1.00 −1.00 9.2

1.00 1.00 −1.00 1.00 −1.00 8.94

−1.00 −1.00 1.00 1.00 −1.00 8.68

1.00 −1.00 1.00 1.00 −1.00 11.49

−1.00 1.00 1.00 1.00 −1.00 6.25

1.00 1.00 1.00 1.00 −1.00 9.12

−1.00 −1.00 −1.00 −1.00 1.00 7.93

1.00 −1.00 −1.00 −1.00 1.00 5

−1.00 1.00 −1.00 −1.00 1.00 7.47

1.00 1.00 −1.00 −1.00 1.00 12

−1.00 −1.00 1.00 −1.00 1.00 9.86

1.00 −1.00 1.00 −1.00 1.00 3.65

−1.00 1.00 1.00 −1.00 1.00 6.4

1.00 1.00 1.00 −1.00 1.00 11.61

−1.00 −1.00 −1.00 1.00 1.00 12.43

1.00 −1.00 −1.00 1.00 1.00 17.55

−1.00 1.00 −1.00 1.00 1.00 8.87

1.00 1.00 −1.00 1.00 1.00 25.38

−1.00 −1.00 1.00 1.00 1.00 13.06

1.00 −1.00 1.00 1.00 1.00 18.85

−1.00 1.00 1.00 1.00 1.00 11.78

1.00 1.00 1.00 1.00 1.00 26.05

considered proportional to the amount of surfactant present in
the original sample.

(a) Analyze the data from this experiment. Identify the sig-
nificant factors and interactions.

(b) Analyze the residuals from this experiment. Are there
any indications of model inadequacy or violations of the
assumptions?

(c) What conditions would optimize the surfactin
production?
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◾ TABLE P6 . 13
The Factorial Experiment in Problem 6.44

Run

Glucose

(g dm−3)
NH4NO3

(g dm−3)
FeSO4

(g dm−3 × 10−4)
MnSO4

(g dm−3 × 10−2)
y

(CMC)−1

1 20.00 2.00 6.00 4.00 23

2 60.00 2.00 6.00 4.00 15

3 20.00 6.00 6.00 4.00 16

4 60.00 6.00 6.00 4.00 18

5 20.00 2.00 30.00 4.00 25

6 60.00 2.00 30.00 4.00 16

7 20.00 6.00 30.00 4.00 17

8 60.00 6.00 30.00 4.00 26

9 20.00 2.00 6.00 20.00 28

10 60.00 2.00 6.00 20.00 16

11 20.00 6.00 6.00 20.00 18

12 60.00 6.00 6.00 20.00 21

13 20.00 2.00 30.00 20.00 36

14 60.00 2.00 30.00 20.00 24

15 20.00 6.00 30.00 20.00 33

16 60.00 6.00 30.00 20.00 34

6.45 Continuation of Problem 6.44. The experiment in
Problem 6.44 actually included six center points. The
responses at these conditions were 35, 35, 35, 36, 36, and 34.
Is there any indication of curvature in the response function?
Are additional experiments necessary? What would you rec-
ommend doing now?

6.46 An article in the Journal of Hazardous Materials
(“Feasibility of Using Natural Fishbone Apatite as a Substi-
tute for Hydroxyapatite in Remediating Aqueous Heavy Met-
als,” Vol. 69, Issue 2, 1999, pp. 187–196) describes an experi-
ment to study the suitability of fishbone, a natural, apatite, rich
substance, as a substitute for hydroxyapatite in the sequester-
ing of aqueous divalent heavy metal ions. Direct comparison
of hydroxyapatite and fishbone apatite was performed using
a three-factor two-level full factorial design. Apatite (30 or
60 mg) was added to 100 mL deionized water and gently agi-
tated overnight in a shaker. The pH was then adjusted to 5
or 7 using nitric acid. Sufficient concentration of lead nitrate
solution was added to each flask to result in a final volume of
200 mL and a lead concentration of 0.483 or 2.41 mM, respec-
tively. The experiment was a 23 replicated twice and it was
performed for both fishbone and synthetic apatite. Results are
shown in Table P6.14.

(a) Analyze the lead response for fishbone apatite. What
factors are important?

(b) Analyze the residuals from this response and comment
on model adequacy.

(c) Analyze the pH response for fishbone apatite. What fac-
tors are important?

(d) Analyze the residuals from this response and comment
on model adequacy.

(e) Analyze the lead response for hydroxyapatite apatite.
What factors are important?

(f) Analyze the residuals from this response and comment
on model adequacy.

(g) Analyze the pH response for hydroxyapatite apatite.
What factors are important?

(h) Analyze the residuals from this response and comment
on model adequacy.

(i) What differences do you see between fishbone and
hydroxyapatite apatite? The authors of this paper con-
cluded that that fishbone apatite was comparable to
hydroxyapatite apatite. Because the fishbone apatite is
cheaper, it was recommended for adoption. Do you
agree with these conclusions?

◾ TABLE P6 . 14
The Experiment for Problem 6.46. For apatite, + is
60 mg and − is 30 mg per 200 mL metal solution.
For initial pH, + is 7 and − is 4. For Pb + is 2.41 mM
(500 ppm) and − is 0.483 mM (100 ppm)

Fishbone Hydroxyapatite

Apatite pH Pb Pb, mM pH Pb, mM pH

+ + + 1.82 5.22 0.11 3.49

+ + + 1.81 5.12 0.12 3.46

+ + − 0.01 6.84 0.00 5.84

+ + − 0.00 6.61 0.00 5.90

+ − + 1.11 3.35 0.80 2.70

+ − + 1.04 3.34 0.76 2.74

+ − − 0.00 5.77 0.03 3.36

+ − − 0.01 6.25 0.05 3.24

− + + 2.11 5.29 1.03 3.22

− + + 2.18 5.06 1.05 3.22

− + − 0.03 5.93 0.00 5.53

− + − 0.05 6.02 0.00 5.43

− − + 1.70 3.39 1.34 2.82

− − + 1.69 3.34 1.26 2.79

− − − 0.05 4.50 0.06 3.28

− − − 0.05 4.74 0.07 3.28
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6.47 Often the fitted regression model from a 2k factorial
design is used to make predictions at points of interest in the
design space. Assume that the model contains all main effects
and two-factor interactions.

(a) Find the variance of the predicted response ŷ at a point
x1, x2, . . . , xk in the design space. Hint: Remember that
the x’s are coded variables and assume a 2k design with
an equal number of replicates n at each design point so
that the variance of a regression coefficient 𝛽 is 𝜎2∕(n2k)
and that the covariance between any pair of regression
coefficients is zero.

(b) Use the result in part (a) to find an equation for a
100(1 − 𝛼) percent confidence interval on the true mean
response at the point x1, x2, . . . , xk in design space.

6.48 Hierarchical models. Several times we have used the
hierarchy principle in selecting a model; that is, we have
included nonsignificant lower order terms in a model because
they were factors involved in significant higher order terms.
Hierarchy is certainly not an absolute principle that must be
followed in all cases. To illustrate, consider the model resulting
from Problem 6.5, which required that a nonsignificant main
effect be included to achieve hierarchy. Using the data from
Problem 6.5.

(a) Fit both the hierarchical and the nonhierarchical models.

(b) Calculate the PRESS statistic, the adjusted R2, and the
mean square error for both models.

(c) Find a 95 percent confidence interval on the estimate of
the mean response at a cube corner (x1 = x2 = x3 = ±1).
Hint: Use the results of Problem 6.40.

(d) Based on the analyses you have conducted, which model
do you prefer?

6.49 Suppose that you want to run a 23 factorial design. The
variance of an individual observation is expected to be about
4. Suppose that you want the length of a 95 percent confidence
interval on any effect to be less than or equal to 1.5. How many
replicates of the design do you need to run?

6.50 Suppose that a full 24 factorial uses the following factor
levels:

Factor Low (−) High (+)

A: Acid strength (%) 85 95

B: Reaction time (min) 15 35

C: Amount of acid (mL) 35 45

D: Reaction temperature (∘C) 60 80

The fitted model from this experiment is ŷ = 24 + 16x1 −
34x2 + 12x3 + 6x4 − 10x1x2 + 16x1x3. Predict the response at
the following points:

(a) A = 89, B = 20, C = 38, D = 66

(b) A = 90, B = 16, C = 40, D = 70

(c) A = 87, B = 28, C = 42, D = 61

(d) A = 90, B = 27, C = 37, D = 69

6.51 An article inQuality and Reliability Engineering Inter-

national (2010, Vol. 26, pp. 223–233) presents a 25 factorial

design. The experiment is shown in Table P6.15.

◾ TABLE P6 . 15
The Experiment for Problem 6.51

A B C D E y

−1 −1 −1 −1 −1 8.11

1 −1 −1 −1 −1 5.56

−1 1 −1 −1 −1 5.77

1 1 −1 −1 −1 5.82

−1 −1 1 −1 −1 9.17

1 −1 1 −1 −1 7.8

−1 1 1 −1 −1 3.23

1 1 1 −1 −1 5.69

−1 −1 −1 1 −1 8.82

1 −1 −1 1 −1 14.23

−1 1 −1 1 −1 9.2

1 1 −1 1 −1 8.94

−1 −1 1 1 −1 8.68

1 −1 1 1 −1 11.49

−1 1 1 1 −1 6.25

1 1 1 1 −1 9.12

−1 −1 −1 −1 1 7.93

1 −1 −1 −1 1 5

−1 1 −1 −1 1 7.47

1 1 −1 −1 1 12

−1 −1 1 −1 1 9.86

1 −1 1 −1 1 3.65

−1 1 1 −1 1 6.4

1 1 1 −1 1 11.61

−1 −1 −1 1 1 12.43

1 −1 −1 1 1 17.55

−1 1 −1 1 1 8.87

1 1 −1 1 1 25.38

−1 −1 1 1 1 13.06

1 −1 1 1 1 18.85

−1 1 1 1 1 11.78

1 1 1 1 1 26.05
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(a) Analyze the data from this experiment. Identify the sig-
nificant factors and interactions.

(b) Analyze the residuals from this experiment. Are there
any indications of model inadequacy or violations of the
assumptions?

(c) One of the factors from this experiment does not seem to
be important. If you drop this factor, what type of design

remains? Analyze the data using the full factorial model
for only the four active factors. Compare your results
with those obtained in part (a).

(d) Find settings of the active factors that maximize the pre-
dicted response.

6.52 Consider the 23 shown below:

57

36

32
46

48

57
65

50
44
53
56

68

Process Variables
Coded Variables

Run
Temp
(∘C)

Pressure
(psig)

Conc
(g/l) x1 x2 x3 Yield, y

1 120 40 15 −1 −1 −1 32

2 160 40 15 1 −1 −1 46

3 120 80 15 −1 1 −1 57

4 160 80 15 1 1 −1 65

5 120 40 30 −1 −1 1 36

6 160 40 30 1 −1 1 48

7 120 80 30 −1 1 1 57

8 160 80 30 1 1 1 68

9 140 60 22.5 0 0 0 50

10 140 60 22.5 0 0 0 44

11 140 60 22.5 0 0 0 53

12 140 60 22.5 0 0 0 56

x1 = Temp− 140

20
, x2 =

Pressure− 60
20

, x3 =
Conc− 22.5

7.5

When running a designed experiment, it is sometimes diffi-
cult to reach and hold the precise factor levels required by the
design. Small discrepancies are not important, but large ones
are potentially of more concern. To illustrate, the experiment
presented in Table P6.16 shows a variation of the 23 design
above, where many of the test combinations are not exactly
the ones specified in the design. Most of the difficulty seems
to have occurred with the temperature variable.

Fit a first-order model to both the original data and the
data in Table P6.16. Compare the inference from the two mod-
els. What conclusions can you draw from this simple example?

6.53 In two-level design, the expected value of a nonsignif-
icant factor effect is zero.

(a) True

(b) False

6.54 A half-normal plot of factor effects plots the expected
normal percentile versus the effect estimate.

(a) True

(b) False

◾ TABLE P6 . 16
Revised Experimental Data

Process Variables
Coded Variables

Run
Temp
(∘C)

Pressure
(psig)

Conc
(g/l) x1 x2 x3

Yield,
y

1 125 41 14 −0.75 −0.95 −1.133 32

2 158 40 15 0.90 −1 −1 46

3 121 82 15 −0.95 1.1 −1 57

4 160 80 15 1 1 −1 65

5 118 39 33 −1.10 −1.05 1.14 36

6 163 40 30 1.15 −1 1 48

7 122 80 30 −0.90 1 1 57

8 165 83 30 1.25 1.15 1 68

9 140 60 22.5 0 0 0 50

10 140 60 22.5 0 0 0 44

11 140 60 22.5 0 0 0 53

12 140 60 22.5 0 0 0 56
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6.55 In an unreplicated design, the degrees of freedom asso-
ciated with the “pure error” component of error are zero.

(a) True

(b) False

6.56 In a replicated 23 design (16 runs), the estimate of the
model intercept is equal to one-half of the total of all 16 runs.

(a) True

(b) False

6.57 Adding center runs to a 2k design affects the estimate
of the intercept term but not the estimates of any other factor
effects.

(a) True

(b) False

6.58 The mean square for pure error in a replicated factorial
design can get smaller if nonsignificant terms are added to a
model.

(a) True

(b) False

6.59 A 2k factorial design is a D-optimal design for fitting a
first-order model.

(a) True

(b) False

6.60 If a D-optimal design algorithm is used to create a
12-run design for fitting a first-order model in three variables
with all three two-factor interactions, the algorithm will con-
struct a 23 factorial with four center runs.

(a) True

(b) False

6.61 Suppose that you want to replicate 2 of the 8 runs in
a 23 factorial design. How many ways are there to choose the
2 runs to replicate? Suppose that you decide to replicate the

run with all three factors at the high level and the run with all
three factors at the low level.

(a) Is the resulting design orthogonal?

(b) What are the relative variances of the model coefficients
if the main effects plus two-factor interaction model are
fit to the data from this design?

(c) What is the power for detecting effects of two standard
deviations in magnitude?

6.62 The display below summarizes the results of analyzing
a 24 factorial design.

Term
Intercept

Effect
Estimate

Sum of
Squares % Contribution

A 6.25 3.25945

B 5.25 110.25 57.4967

C 3.5 49 25.5541

D 0.75 1.1734

AB 0.75 2.25 1.1734

AC –0.5 1 0.521512

AD 0.75 2.25 1.1734

BC 1.5 9

BD 0.25 0.25 0.130378

CD 0.5 1 0.521512

ABC –1 4 2.08605

ABD 2.25 1.1734

ACD –0.5 0.521512

BCD 0 0 0

ABCD –0.5 1

(a) Fill in the missing information in this table.

(b) Construct a normal probability plot of the effects. Which
factors seem to be active?
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B l o c k i n g a n d C o n f o u n d i n g
i n t h e 2k F a c t o r i a l D e s i g n

CHAPTER OUTLINE
7.1 INTRODUCTION

7.2 BLOCKING A REPLICATED 2k FACTORIAL DESIGN

7.3 CONFOUNDING IN THE 2k FACTORIAL DESIGN

7.4 CONFOUNDING THE 2k FACTORIAL DESIGN IN
TWO BLOCKS

7.5 ANOTHER ILLUSTRATION OF WHY BLOCKING IS
IMPORTANT

7.6 CONFOUNDING THE 2k FACTORIAL DESIGN IN
FOUR BLOCKS

7.7 CONFOUNDING THE 2k FACTORIAL DESIGN IN 2p

BLOCKS

7.8 PARTIAL CONFOUNDING

SUPPLEMENTAL MATERIAL FOR CHAPTER 7
S7.1 The Error Term in a Blocked Design
S7.2 The Prediction Equation for a Blocked Design
S7.3 Run Order Is Important

The supplemental material is on the textbook website www.wiley.com/college/montgomery.

CHAPTER LEARNING OBJECTIVES
1. Learn about how the blocking technique can be used with 2k factorial designs.

2. Learn about how blocking can be used with unreplicated 2k factorial designs, and how this leads to
confounding of effects.

3. Know how to construct the 2k factorial designs in 2p blocks.

4. Understand how to construct designs that confound different effects in different replicates.

7.1 Introduction

In many situations it is impossible to perform all of the runs in a 2k factorial experiment under homogeneous conditions.
For example, a single batch of raw material might not be large enough to make all of the required runs. In other cases,
it might be desirable to deliberately vary the experimental conditions to ensure that the treatments are equally effective
(i.e., robust) across many situations that are likely to be encountered in practice. For example, a chemical engineer
may run a pilot plant experiment with several batches of raw material because he knows that different raw material
batches of different quality grades are likely to be used in the actual full-scale process.

308
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The design technique used in these situations is blocking. Chapter 4was an introduction to the blocking principle,
and you may find it helpful to read the introductory material in that chapter again. We also discussed blocking general
factorial experiments in Chapter 5. In this chapter, we will build on the concepts introduced in Chapter 4, focusing on
some special techniques for blocking in the 2k factorial design.

7.2 Blocking a Replicated 2k Factorial Design

Suppose that the 2k factorial design has been replicated n times. This is identical to the situation discussed in Chapter 5,
where we showed how to run a general factorial design in blocks. If there are n replicates, then each set of nonhomo-
geneous conditions defines a block, and each replicate is run in one of the blocks. The runs in each block (or replicate)
would be made in random order. The analysis of the design is similar to that of any blocked factorial experiment; for
example, see the discussion in Section 5.6.

EXAMPLE 7 . 1

Consider the chemical process experiment first described
in Section 6.2. Suppose that only four experimental trials
can be made from a single batch of raw material. There-
fore, three batches of raw material will be required to run
all three replicates of this design. Table 7.1 shows the
design, where each batch of raw material corresponds to
a block.

The ANOVA for this blocked design is shown in
Table 7.2. All of the sums of squares are calculated
exactly as in a standard, unblocked 2k design. The sum of
squares for blocks is calculated from the block totals. Let
B1, B2, and B3 represent the block totals (see Table 7.1).
Then

SSBlocks =
3∑
i=1

B2
i

4
−

y2
...

12

= (113)2 + (106)2 + (111)2

4
− (330)2

12
= 6.50

There are two degrees of freedom among the three blocks.
Table 7.2 indicates that the conclusions from this analysis,
had the design been run in blocks, are identical to those in
Section 6.2 and that the block effect is relatively small. The
F-Statistic for blocks is F0 = (6.50/2)/4.14 = 0.79, which is
not significant.

◾ TABLE 7 . 1
Chemical Process Experiment in Three Blocks

Block 1 Block 2 Block 3

(1) = 28

a = 36

b = 18

ab = 31

(1) = 25

a = 32

b = 19

ab = 30

(1) = 27

a = 32

b = 23

ab = 29

Block totals: B1 = 113 B2 = 106 B3 = 111
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◾ TABLE 7 . 2
Analysis of Variance for the Chemical Process Experiment in Three Blocks

Source of Variation
Sum of
Squares

Degrees of
Freedom

Mean
Square F0 P-Value

Blocks 6.50 2 3.25

A (concentration) 208.33 1 208.33 50.32 0.0004

B (catalyst) 75.00 1 75.00 18.12 0.0053

AB 8.33 1 8.33 2.01 0.2060

Error 24.84 6 4.14

Total 323.00 11

The analysis shown in Example 7.1 assumes that blocks are a fixed effect. It is probably more realistic to think
of the batches of raw material used in the experiment as random. The display below shows the analysis from JMP
employing the REML method to treat blocks as a random effect. The estimate of the block variance component is
actually very small and negative. This is consistent with the conclusions from the previous analysis where the block
effect wasn’t significant. The JMP output reports the log worth statistic in addition to the usual P-value. Log worth is
calculated as log worth – log10(P-value). Values of log worth that are 2 or greater are usually taken as an indication
that the factor is significant.

Response Y
Effect Summary

Source LogWorth P-Value

Concentration 3.405 0.00039
43500.0272.2tsylataC

17502.0786.0tsylataC*noitartnecnoC

Summary of Fit

RSquare 0.89048

RSquare Adj 0.849409

Root Mean Square Error 2.034426

Mean of Response 27.5

Observations (or Sum Wgts) 12

Parameter Estimates

Term Estimate Std Error DFDen t Ratio Prob > |t|

Intercept 27.5 0.520416 2 52.84 0.0004*

Concentration 4.1666667 0.587288 6 7.09 0.0004*

Catalyst 2.5 0.587288 6 4.26 0.0053*

Concentration*Catalyst 0.8333333 0.587288 6 1.42 0.2057
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REML Variance Component Estimates

Random

Effect Var Ratio Var Component Std Error 95% Lower 95% Upper Pct of Total

Blocks −0.053691 −0.222222 1.0084838 −2.198814 1.7543697 0.000

Residual 4.1388889 2.3895886 1.7186441 20.069866 100.000

Total 4.1388889 2.3895886 1.7186441 20.069866 100.000

−2 LogLikelihood = 43.522517328
Note: Total is the sum of the positive variance components.
Total including negative estimates = 3.9166667

Fixed Effect Tests

Source Nparm DF DFDen F Ratio Prob > F

Concentration 1 1 6 50.3356 0.0004*

Catalyst 1 1 6 18.1208 0.0053*

Concentration*Catalyst 1 1 6 2.0134 0.2057

7.3 Confounding in the 2k Factorial Design

In many problems it is impossible to perform a complete replicate of a factorial design in one block. Confounding
is a design technique for arranging a complete factorial experiment in blocks, where the block size is smaller than
the number of treatment combinations in one replicate. The technique causes information about certain treatment
effects (usually high-order interactions) to be indistinguishable from, or confounded with, blocks. In this chapter
we concentrate on confounding systems for the 2k factorial design. Note that even though the designs presented are
incomplete block designs because each block does not contain all the treatments or treatment combinations, the special
structure of the 2k factorial system allows a simplified method of analysis.

We consider the construction and analysis of the 2k factorial design in 2p incomplete blocks, where p < k. Con-
sequently, these designs can be run in two blocks (p = 1), four blocks (p = 2), eight blocks (p = 3), and so on.

7.4 Confounding the 2k Factorial Design in Two Blocks

Suppose that we wish to run a single replicate of the 22 design. Each of the 22 = 4 treatment combinations requires a
quantity of raw material, for example, and each batch of raw material is only large enough for two treatment combina-
tions to be tested. Thus, two batches of raw material are required. If batches of raw material are considered as blocks,
then we must assign two of the four treatment combinations to each block.

Figure 7.1 shows one possible design for this problem. The geometric view, Figure 7.1a, indicates that treatment
combinations on opposing diagonals are assigned to different blocks. Notice from Figure 7.1b that block 1 contains
the treatment combinations (1) and ab and that block 2 contains a and b. Of course, the order in which the treatment
combinations are run within a block is randomly determined. We would also randomly decide which block to run first.
Suppose we estimate the main effects of A and B just as if no blocking had occurred. From Equations 6.1 and 6.2,
we obtain

A = 1
2
[ab + a − b − (1)]

B = 1
2
[ab + b − a − (1)]
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◾ F I GURE 7 . 1 A 22 design in two blocks

–

–

–
+

+

(a) Geometric view

(b) Assignment of the four
runs to two blocks

= Run in block 1

Block 1 Block 2

= Run in block 2

A

B
(1)

ab

a

b

Note that both A and B are unaffected by blocking because in each estimate there is one plus and one minus treatment
combination from each block. That is, any difference between block 1 and block 2 will cancel out.

Now consider the AB interaction
AB = 1

2
[ab + (1) − a − b]

Because the two treatment combinations with the plus sign [ab and (1)] are in block 1 and the two with the minus sign
(a and b) are in block 2, the block effect and the AB interaction are identical. That is, AB is confounded with blocks.

The reason for this is apparent from the table of plus and minus signs for the 22 design. This was originally
given as Table 6.2, but for convenience it is reproduced as Table 7.3 here. From this table, we see that all treatment
combinations that have a plus sign on AB are assigned to block 1, whereas all treatment combinations that have a
minus sign on AB are assigned to block 2. This approach can be used to confound any effect (A, B, or AB) with blocks.
For example, if (1) and b had been assigned to block 1 and a and ab to block 2, the main effect A would have been
confounded with blocks. The usual practice is to confound the highest order interaction with blocks.

This scheme can be used to confound any 2k design in two blocks. As a second example, consider a 23 design run
in two blocks. Suppose we wish to confound the three-factor interaction ABC with blocks. From the table of plus and
minus signs shown in Table 7.4, we assign the treatment combinations that are minus on ABC to block 1 and those that
are plus on ABC to block 2. The resulting design is shown in Figure 7.2. Once again, we emphasize that the treatment
combinations within a block are run in random order.

Other Methods for Constructing the Blocks. There is another method for constructing these designs. The
method uses the linear combination

L = 𝛼1x1 + 𝛼2x2 + · · · + akxk (7.1)

where xi is the level of the ith factor appearing in a particular treatment combination and 𝛼i is the exponent appearing
on the ith factor in the effect to be confounded. For the 2k system, we have 𝛼i = 0 or 1 and xi = 0 (low level) or xi = 1
(high level). Equation 7.1 is called a defining contrast. Treatment combinations that produce the same value of L
(mod 2) will be placed in the same block. Because the only possible values of L (mod 2) are 0 and 1, this will assign
the 2k treatment combinations to exactly two blocks.

◾ TABLE 7 . 3
Table of Plus and Minus Signs for the 22 Design

Factorial EffectTreatment
Combination I A B AB Block

(1) + − − + 1

a + + − − 2

b + − + − 2

ab + + + + 1
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◾ TABLE 7 . 4
Table of Plus and Minus Signs for the 23 Design

Factorial EffectTreatment
Combination I A B AB C AC BC ABC Block

(1) + − − + − + + − 1

a + + − − − − + + 2

b + − + − − + − + 2

ab + + + + − − − − 1

c + − − + + − − + 2

ac + + − − + + − − 1

bc + − + − + − + − 1

abc + + + + + + + + 2

(a) Geometric view (b) Assignment of the eight
runs to two blocks

= Run in block 1
Block 1 Block 2

= Run in block 2

(1)

ab

a

b

ac c

bc abc
B

C

A

◾ F I GURE 7 . 2 The 23 design in
two blocks with ABC confounded

To illustrate the approach, consider a 23 design with ABC confounded with blocks. Here x1 corresponds to A, x2
to B, x3 to C, and 𝛼1 = 𝛼2 = 𝛼3 = 1. Thus, the defining contrast corresponding to ABC is

L = x1 + x2 + x3

The treatment combination (1) is written 000 in the (0, 1) notation; therefore,

L = 1(0) + 1(0) + 1(0) = 0 = 0 (mod 2)

Similarly, the treatment combination a is 100, yielding

L = 1(1) + 1(0) + 1(0) = 1 = 1 (mod 2)

Thus, (1) and a would be run in different blocks. For the remaining treatment combinations, we have

b∶ L = 1(0) + 1(1) + 1(0) = 1 = 1 (mod 2)
ab∶ L = 1(1) + 1(1) + 1(0) = 2 = 0 (mod 2)
c∶ L = 1(0) + 1(0) + 1(1) = 1 = 1 (mod 2)
ac∶ L = 1(1) + 1(0) + 1(1) = 2 = 0 (mod 2)
bc∶ L = 1(0) + 1(1) + 1(1) = 2 = 0 (mod 2)
abc∶ L = 1(1) + 1(1) + 1(1) = 3 = 1 (mod 2)



�

� �

�

314 Chapter 7 Blocking and Confounding in the 2k Factorial Design

Thus, (1), ab, ac, and bc are run in block 1 and a, b, c, and abc are run in block 2. This is the same design shown in
Figure 7.2, which was generated from the table of plus and minus signs.

Another method may be used to construct these designs. The block containing the treatment combination (1) is
called the principal block. The treatment combinations in this block have a useful group-theoretic property; namely,
they form a group with respect to multiplication modulus 2. This implies that any element [except (1)] in the principal
block may be generated by multiplying two other elements in the principal block modulus 2. For example, consider
the principal block of the 23 design with ABC confounded, as shown in Figure 7.2.

Note that

ab ⋅ ac = a2bc = bc

ab ⋅ bc = ab2c = ac

ac ⋅ bc = abc2 = ab

Treatment combinations in the other block (or blocks) may be generated by multiplying one element in the new block
by each element in the principal block modulus 2. For the 23 with ABC confounded, because the principal block is (1),
ab, ac, and bc, we know that b is in the other block. Thus, the elements of this second block are

b ⋅ (1) = b
b ⋅ ab = ab2 = a
b ⋅ ac = abc
b ⋅ bc = b2c = c

This agrees with the results obtained previously.

Estimation of Error. When the number of variables is small, say k = 2 or 3, it is usually necessary to replicate
the experiment to obtain an estimate of error. For example, suppose that a 23 factorial must be run in two blocks with
ABC confounded, and the experimenter decides to replicate the design four times. The resulting design might appear
as in Figure 7.3. Note that ABC is confounded in each replicate.

The analysis of variance for this design is shown in Table 7.5. There are 32 observations and 31 total degrees of
freedom. Furthermore, because there are eight blocks, seven degrees of freedom must be associated with these blocks.
One breakdown of those seven degrees of freedom is shown in Table 7.5. The error sum of squares actually consists
of the interactions between replicates and each of the effects (A,B,C,AB,AC,BC). It is usually safe to consider these
interactions to be zero and to treat the resulting mean square as an estimate of error. Main effects and two-factor
interactions are tested against the mean square error. Cochran and Cox (1957) observe that the block or ABC mean
square could be compared to the error for the ABCmean square, which is really replicates × blocks. This test is usually
very insensitive.

If resources are sufficient to allow the replication of confounded designs, it is generally better to use a slightly
different method of designing the blocks in each replicate. This approach consists of confounding a different effect in
each replicate so that some information on all effects is obtained. Such a procedure is called partial confounding and
is discussed in Section 7.8.

◾ F I GURE 7 . 3 Four
replicates of the 23 design with ABC
confounded
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◾ TABLE 7 . 5
Analysis of Variance for Four Replicates of a 23

Design with ABC Confounded

Source of Variation
Degrees of
Freedom

Replicates 3

Blocks (ABC) 1

Error for ABC (replicates × blocks) 3

A 1

B 1

C 1

AB 1

AC 1

BC 1

Error (or replicates × effects) 18

Total 31

If k is moderately large, say k ≥ 4, we can frequently afford only a single replicate. The experimenter usually
assumes higher order interactions to be negligible and combines their sums of squares as error. The normal probability
plot of factor effects can be very helpful in this regard.

EXAMPLE 7 . 2

Consider the situation described in Example 6.2. Recall that
four factors—temperature (A), pressure (B), concentration
of formaldehyde (C), and stirring rate (D)—are studied in a
pilot plant to determine their effect on product filtration rate.
Wewill use this experiment to illustrate the ideas of blocking
and confounding in an unreplicated design. We will make
two modifications to the original experiment. First, suppose
that the 24 = 16 treatment combinations cannot all be run
using one batch of raw material. The experimenter can run
eight treatment combinations from a single batch of mate-
rial, so a 24 design confounded in two blocks seems appro-
priate. It is logical to confound the highest order interaction
ABCD with blocks. The defining contrast is

L = x1 + x2 + x3 + x4

and it is easy to verify that the design is as shown in
Figure 7.4. Alternatively, one may examine Table 6.11 and
observe that the treatment combinations that are + in the
ABCD column are assigned to block 1 and those that are −
in ABCD column are in block 2.

The second modification that we will make is to intro-
duce a block effect so that the utility of blocking can be
demonstrated. Suppose that when we select the two batches

of raw material required to run the experiment, one of them
is of much poorer quality and, as a result, all responses will
be 20 units lower in this material batch than in the other.
The poor quality batch becomes block 1 and the good qual-
ity batch becomes block 2 (it doesn’t matter which batch
is called block 1 or which batch is called block 2). Now
all the tests in block 1 are performed first (the eight runs
in the block are, of course, performed in random order), but
the responses are 20 units lower than they would have been
if good quality material had been used. Figure 7.4b shows
the resulting responses—note that these have been found
by subtracting the block effect from the original observa-
tions given in Example 6.2. That is, the original response
for treatment combination (1) was 45, and in Figure 7.4b it
is reported as (1) = 25 (= 45 − 20). The other responses in
this block are obtained similarly. After the tests in block 1
are performed, the eight tests in block 2 follow. There is no
problem with the rawmaterial in this batch, so the responses
are exactly as they were originally in Example 6.2.

The effect estimates for this “modified” version of
Example 6.2 are shown in Table 7.6. Note that the esti-
mates of the four main effects, the six two-factor interac-
tions, and the four three-factor interactions are identical to
the effect estimates obtained in Example 6.2 where there
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D

C
B

A

– +

= Runs in block 1

= Runs in block 2

Block 1

= 25(1)

= 45ab

= 40ac

= 60bc

= 80ad

= 25bd

= 55cd

= 76abcd

= 71a

= 48b

= 68c

= 43d

= 65abc

= 70bcd

= 86acd

= 104abd

Block 2

(a) Geometric view

(b) Assignment of the 16 runs

to two blocks

◾ F I GURE 7 . 4 The 24 design in two blocks for Example 7.2

◾ TABLE 7 . 6
Effect Estimates for the Blocked 24 Design in Example 7.2

Model Term
Regression
Coefficient

Effect
Estimate

Sum of
Squares

Percent
Contribution

A 10.81 21.625 1870.5625 26.30
B 1.56 3.125 39.0625 0.55
C 4.94 9.875 390.0625 5.49
D 7.31 14.625 855.5625 12.03
AB 0.062 0.125 0.0625 <0.01
AC −9.06 −18.125 1314.0625 18.48
AD 8.31 16.625 1105.5625 15.55
BC 1.19 2.375 22.5625 0.32
BD −0.19 −0.375 0.5625 <0.01
CD −0.56 −1.125 5.0625 0.07
ABC 0.94 1.875 14.0625 0.20
ABD 2.06 4.125 68.0625 0.96
ACD −0.81 −1.625 10.5625 0.15
BCD −1.31 −2.625 27.5625 0.39
Block (ABCD) −18.625 1387.5625 19.51

was no block effect. When a normal probability of these
effect estimates is constructed, factors A,C,D, and the AC
and AD interactions emerge as the important effects, just as
in the original experiment. (The reader should verify this.)

What about the ABCD interaction effect? The estimate
of this effect in the original experiment (Example 6.2) was
ABCD = 1.375. In this example, the estimate of the ABCD
interaction effect is ABCD = −18.625. Because ABCD is
confounded with blocks, the ABCD interaction estimates
the original interaction effect (1.375) plus the block effect
(−20), so ABCD = 1.375 + (−20) = −18.625. (Do you see
why the block effect is −20?) The block effect may also

be calculated directly as the difference in average response
between the two blocks, or

Block effect = yBlock 1 − yBlock 2

= 406
8

− 555
8

= −149
8

= −18.625

Of course, this effect really estimates Blocks + ABCD.
Table 7.7 summarizes the ANOVA for this experiment.

The effects with large estimates are included in the model,
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and the block sum of squares is

SSBlocks =
(406)2 + (555)2

8
− (961)2

16
= 1387.5625

The conclusions from this experiment exactly match those
from Example 6.2, where no block effect was present.

Notice that if the experiment had not been run in blocks,
and if an effect of magnitude −20 had affected the first
8 trials (which would have been selected in a random fash-
ion, because the 16 trials would be run in random order
in an unblocked design), the results could have been very
different.

◾ TABLE 7 . 7
Analysis of Variance for Example 7.2

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F0 P-Value

Blocks (ABCD) 1387.5625 1
A 1870.5625 1 1870.5625 89.76 < 0.0001
C 390.0625 1 390.0625 18.72 0.0019
D 855.5625 1 855.5625 41.05 0.0001
AC 1314.0625 1 1314.0625 63.05 < 0.0001
AD 1105.5625 1 1105.5625 53.05 < 0.0001
Error 187.5625 9 20.8403
Total 7110.9375 15

The display below shows the output from JMP assuming that blocks are random and using REML for the analysis.
The analysis only considers the main effects and the two-factor interactions, but it essentially agrees with the one pre-
sented in Example 7.2, identifying factors X1, X3, X4 and the two interactions X1X3 andX1X4 as significant. The con-
fidence interval on the variance component for blocks is extremely wide and includes zero. This is probably an artifact
of having only two blocks and only one degree of freedom to estimate the variance component associated with blocks.

Response Y
Effect Summary

Source LogWorth P-Value

04100.0558.21X
17200.0765.23X*1X
37300.0824.24X*1X
59500.0622.24X
27220.0446.13X
59713.0894.02X
81534.0163.03X*2X
75207.0351.04X*3X
18798.0740.04X*2X
28569.0510.02X*1X

Summary of Fit

RSquare 0.982998

RSquare Adj 0.948994

Root Mean Square Error 5.482928

Mean of Response 60.0625

Observations (or Sum Wgts) 16
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Parameter Estimates

Term Estimate Std Error DFDen t Ratio Prob > |t|

Intercept 60.0625 9.3125 1 6.45 0.0979

X1 10.8125 1.370732 4 7.89 0.0014*

X2 1.5625 1.370732 4 1.14 0.3180

X3 4.9375 1.370732 4 3.60 0.0227*

X4 7.3125 1.370732 4 5.33 0.0059*

X1*X2 0.0625 1.370732 4 0.05 0.9658

X1*X3 9.0625 1.370732 4 6.61 0.0027*

X1*X4 8.3125 1.370732 4 6.06 0.0037*

X2*X3 1.1875 1.370732 4 0.87 0.4352

X2*X4 0.1875 1.370732 4 0.14 0.8978

X3*X4 0.5625 1.370732 4 0.41 0.7026

REML Variance Component Estimates

Random Var
Effect Var Ratio Component Std Error 95% Lower 95% Upper Pct of Total

Block 5.6444906 169.6875 245.30311 311.0978 650.47275 84.950

Residual 30.0625 21.257398 10.791251 248.23574 15.050

Total 199.75 245.99293 45.07048 41373.205 100.000

2 Log Likelihood = 65.536279358
Note: Total is the sum of the positive variance components.
Total including negative estimates = 199.75

Fixed Effect Tests

Source Nparm DF DFDen F Ratio Prob > F

X1 1 1 4 62.2225 0.0014*

X2 1 1 4 1.2994 0.3180

X3 1 1 4 12.9751 0.0227*

X4 1 1 4 28.4595 0.0059*

X1*X2 1 1 4 0.0021 0.9658

X1*X3 1 1 4 43.7110 0.0027*

X1*X4 1 1 4 36.7755 0.0037*

X2*X3 1 1 4 0.7505 0.4352

X2*X4 1 1 4 0.0187 0.8978

X3*X4 1 1 4 0.1684 0.7026
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7.5 Another Illustration of Why Blocking Is Important

Blocking is a very useful and important design technique. In Chapter 4 we pointed out that blocking has such dramatic
potential to reduce the noise in an experiment that an experimenter should always consider the potential impact of
nuisance factors, and when in doubt, block.

To illustrate what can happen if an experimenter doesn’t block when he or she should have, consider a variation
of Example 7.2 from the previous section. In this example we utilized a 24 unreplicated factorial experiment originally
presented as Example 6.2. We constructed the design in two blocks of eight runs each, and we inserted a “block effect”
or nuisance factor effect of magnitude −20 that affects all of the observations in block 1 (refer to Figure 7.4). Now
suppose that we had not run this design in blocks and that the −20 nuisance factor effect impacted the first eight
observations that were taken (in random or run order). The modified data are shown in Table 7.8.

Figure 7.5 is a normal probability plot of the factor effects from this modified version of the experiment. Notice
that although the appearance of this plot is not too dissimilar from the one given with the original analysis of the
experiment in Chapter 6 (refer to Figure 6.11), one of the important interactions, AD, is not identified. Consequently,
we will not discover this important effect that turns out to be one of the keys to solving the original problem.
We remarked in Chapter 4 that blocking is a noise reduction technique. If we don’t block, then the added variability
from the nuisance variable effect ends up getting distributed across the other design factors.

Some of the nuisance variability also ends up in the error estimate. The residual mean square for the model based
on the data in Table 7.8 is about 109, which is several times larger than the residual mean square based on the original
data (see Table 6.13).

◾ TABLE 7 . 8
The Modified Data from Example 7.2

Run
Order

Std.
Order

Factor A:
Temperature

Factor B:
Pressure

Factor C:
Concentration

Factor D:
Stirring Rate

Response
Filtration Rate

8 1 −1 −1 −1 −1 25

11 2 1 −1 −1 −1 71

1 3 −1 1 −1 −1 28

3 4 1 1 −1 −1 45

9 5 −1 −1 1 −1 68

12 6 1 −1 1 −1 60

2 7 −1 1 1 −1 60

13 8 1 1 1 −1 65

7 9 −1 −1 −1 1 23

6 10 1 −1 −1 1 80

16 11 −1 1 −1 1 45

5 12 1 1 −1 1 84

14 13 −1 −1 1 1 75

15 14 1 −1 1 1 86

10 15 −1 1 1 1 70

4 16 1 1 1 1 76
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◾ F I GURE 7 . 5 Normal probability plot for the data in
Table 7.8
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7.6 Confounding the 2k Factorial Design in Four Blocks

It is possible to construct 2k factorial designs confounded in four blocks of 2k−2 observations each. These designs
are particularly useful in situations where the number of factors is moderately large, say k ≥ 4, and block sizes are
relatively small.

As an example, consider the 25 design. If each block will hold only eight runs, then four blocks must be used.
The construction of this design is relatively straightforward. Select two effects to be confounded with blocks, say ADE
and BCE. These effects have the two defining contrasts

L1 = x1 + x4 + x5
L2 = x2 + x3 + x5

associated with them. Now every treatment combination will yield a particular pair of values of L1 (mod 2) and L2
(mod 2), that is, either (L1,L2) = (0, 0), (0, 1), (1, 0), or (1, 1). Treatment combinations yielding the same values of
(L1,L2) are assigned to the same block. In our example we find

L1 = 0, L2 = 0 for (1), ad, bc, abcd, abe, ace, cde, bde
L1 = 1, L2 = 0 for a, d, abc, bcd, be, abde, ce, acde

L1 = 0, L2 = 1 for b, abd, c, acd, ae, de abce, bcde

L1 = 1, L2 = 1 for e, ade, bce, abcde, ab, bd, ac, cd

These treatment combinations would be assigned to different blocks. The complete design is as shown in Figure 7.6.
With a little reflection we realize that another effect in addition to ADE and BCE must be confounded with

blocks. Because there are four blocks with three degrees of freedom between them, and because ADE and BCE
have only one degree of freedom each, clearly an additional effect with one degree of freedom must be confounded.
This effect is the generalized interaction of ADE and BCE, which is defined as the product of ADE and BCE
modulus 2. Thus, in our example the generalized interaction (ADE)(BCE) = ABCDE2 = ABCD is also confounded
with blocks. It is easy to verify this by referring to a table of plus and minus signs for the 25 design, such as
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◾ F I GURE 7 . 6 The 25 design in four blocks with ADE, BCE,
and ABCD confounded

in Davies (1956). Inspection of such a table reveals that the treatment combinations are assigned to the blocks
as follows:

Treatment Combinations in Sign on ADE Sign on BCE Sign on ABCD

Block 1 − − +
Block 2 + − −
Block 3 − + −
Block 4 + + +

Notice that the product of signs of any two effects for a particular block (e.g., ADE and BCE) yields the
sign of the other effect for that block (in this case, ABCD). Thus, ADE, BCE, and ABCD are all confounded
with blocks.

The group-theoretic properties of the principal block mentioned in Section 7.4 still hold. For example, we see
that the product of two treatment combinations in the principal block yields another element of the principal block.
That is,

ad ⋅ bc = abcd and abe ⋅ bde = ab2de2 = ad

and so forth. To construct another block, select a treatment combination that is not in the principal block (e.g., b) and
multiply b by all the treatment combinations in the principal block. This yields

b ⋅ (1) = b b ⋅ ad = abd b ⋅ bc = b2c = c b ⋅ abcd = ab2cd = acd

and so forth, which will produce the eight treatment combinations in block 3. In practice, the principal block can be
obtained from the defining contrasts and the group-theoretic property, and the remaining blocks can be determined
from these treatment combinations by the method shown above.

The general procedure for constructing a 2k design confounded in four blocks is to choose two effects to generate
the blocks, automatically confounding a third effect that is the generalized interaction of the first two. Then, the design
is constructed by using the two defining contrasts (L1,L2) and the group-theoretic properties of the principal block.
In selecting effects to be confounded with blocks, care must be exercised to obtain a design that does not confound
effects that may be of interest. For example, in a 25 design we might choose to confound ABCDE and ABD, which
automatically confounds CE, an effect that is probably of interest. A better choice is to confound ADE and BCE, which
automatically confounds ABCD. It is preferable to sacrifice information on the three-factor interactions ADE and BCE
instead of the two-factor interaction CE.
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7.7 Confounding the 2k Factorial Design in 2p Blocks

The methods described above may be extended to the construction of a 2k factorial design confounded in 2p blocks
(p < k), where each block contains exactly 2k−p runs. We select p independent effects to be confounded, where by
“independent” we mean that no effect chosen is the generalized interaction of the others. The blocks may be generated
by use of the p defining contrasts L1,L2, . . . ,Lp associated with these effects. In addition, exactly 2p − p − 1 other
effects will be confounded with blocks, these being the generalized interactions of those p independent effects initially
chosen. Care should be exercised in selecting effects to be confounded so that information on effects that may be of
potential interest is not sacrificed.

The statistical analysis of these designs is straightforward. Sums of squares for all the effects are computed as
if no blocking had occurred. Then, the block sum of squares is found by adding the sums of squares for all the effects
confounded with blocks.

Obviously, the choice of the p effects used to generate the block is critical because the confounding structure
of the design directly depends on them. Table 7.9 presents a list of useful designs. To illustrate the use of this

◾ TABLE 7 . 9
Suggested Blocking Arrangements for the 2k Factorial Design

Number of
Factors, k

Number of
Blocks, 2p

Block
Size, 2k−p

Effects Chosen to
Generate the Blocks Interactions Confounded with Blocks

3 2 4 ABC ABC

4 2 AB,AC AB,AC,BC

4 2 8 ABCD ABCD

4 4 ABC,ACD ABC,ACD,BD

8 2 AB,BC,CD AB,BC,CD,AC,BD,AD,ABCD

5 2 16 ABCDE ABCDE

4 8 ABC,CDE ABC,CDE,ABDE

8 4 ABE,BCE,CDE ABE,BCE,CDE,AC,ABCD,BD,ADE

16 2 AB,AC,CD,DE All two- and four-factor interactions (15 effects)

6 2 32 ABCDEF ABCDEF

4 16 ABCF,CDEF ABCF,CDEF,ABDE

8 8 ABEF,ABCD,ACE ABEF,ABCD,ACE,BCF,BDE,CDEF,ADF

16 4 ABF,ACF,BDF,DEF ABF,ACF,BDF,DEF,BC,ABCD,ABDE,AD,
ACDE,CE,CDF,BCDEF,ABCEF,AEF,BE

32 2 AB,BC,CD,DE,EF All two-, four-, and six-factor interactions (31 effects)

7 2 64 ABCDEFG ABCDEFG

4 32 ABCFG,CDEFG ABCFG,CDEFG,ABDE

8 16 ABCD,CDEF,ADFG ABC,DEF,AFG,ABCDEF,BCFG,ADEG,BCDEG

16 8 ABCD,EFG,CDE,ADG ABCD,EFG,CDE,ADG,ABCDEFG,ABE,BCG,
CDFG,ADEF,ACEG,ABFG,BCEF,BDEG,ACF,
BDF

32 4 ABG,BCG,CDG,
DEG,EFG

ABG,BCG,CDG,DEG,EFG,AC,BD,CE,DF,AE,
BF,ABCD,ABDE,ABEF,BCDE,BCEF,CDEF,
ABCDEFG,ADG,ACDEG,ACEFG,ABDFG,
ABCEG,BEG,BDEFG,CFG,ADEF,ACDF,ABCF,
AFG,BCDFG

64 2 AB,BC,CD,DE,EF,FG All two-, four-, and six-factor interactions (63 effects)
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table, suppose we wish to construct a 26 design confounded in 23 = 8 blocks of 23 = 8 runs each. Table 7.9
indicates that we would choose ABEF, ABCD, and ACE as the p = 3 independent effects to generate the blocks.
The remaining 2p − p − 1 = 23 − 3 − 1 = 4 effects that are confounded are the generalized interactions of these
three; that is,

(ABEF)(ABCD) = A2B2CDEF = CDEF

(ABEF)(ACE) = A2BCE2F = BCF

(ABCD)(ACE) = A2BC2ED = BDE

(ABEF)(ABCD)(ACE) = A3B2C2DE2F = ADF

The reader is asked to generate the eight blocks for this design in Problem 7.11.

7.8 Partial Confounding

We remarked in Section 7.4 that, unless experimenters have a prior estimate of error or are willing to assume certain
interactions to be negligible, they must replicate the design to obtain an estimate of error. Figure 7.3 shows a 23 factorial
in two blocks with ABC confounded, replicated four times. From the analysis of variance for this design, shown in
Table 7.5, we note that information on the ABC interaction cannot be retrieved because ABC is confounded with blocks
in each replicate. This design is said to be completely confounded.

Consider the alternative shown in Figure 7.7. Once again, there are four replicates of the 23 design, but a different
interaction has been confounded in each replicate. That is, ABC is confounded in replicate I, AB is confounded in
replicate II, BC is confounded in replicate III, and AC is confounded in replicate IV. As a result, information on ABC
can be obtained from the data in replicates II, III, and IV; information on AB can be obtained from replicates I, III,
and IV; information on AC can be obtained from replicates I, II, and III; and information on BC can be obtained from
replicates I, II, and IV. We say that three-quarters information can be obtained on the interactions because they are
unconfounded in only three replicates. Yates (1937) calls the ratio 3/4 the relative information for the confounded
effects. This design is said to be partially confounded.

The analysis of variance for this design is shown in Table 7.10. In calculating the interaction sums of squares,
only data from the replicates in which an interaction is unconfounded are used. The error sum of squares consists
of replicates ×main effect sums of squares plus replicates × interaction sums of squares for each replicate in which
that interaction is unconfounded (e.g., replicates × ABC for replicates II, III, and IV). Furthermore, there are seven
degrees of freedom among the eight blocks. This is usually partitioned into three degrees of freedom for replicates and
four degrees of freedom for blocks within replicates. The composition of the sum of squares for blocks is shown in
Table 7.10 and follows directly from the choice of the effect confounded in each replicate.

◾ F I GURE 7 . 7 Partial confounding in the 23 design
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◾ TABLE 7 . 10
Analysis of Variance for a Partially Confounded 23 Design

Source of Variation
Degrees of
Freedom

Replicates 3

Blocks within replicates [or ABC (rep. I) +
AB (rep. II) + BC (rep. III) + AC (rep. IV)] 4

A 1

B 1

C 1

AB (from replicates I, III, and IV) 1

AC (from replicates I, II, and III) 1

BC (from replicates I, II, and IV) 1

ABC (from replicates II, III, and IV) 1

Error 17

Total 31

EXAMPLE 7 . 3 A 23 Design with Partial Confounding

Consider Example 6.1, in which an experiment was con-
ducted to develop a plasma etching process. There were
three factors,A = gap,B = gas flow, andC = RF power, and
the response variable was the etch rate. Suppose that only
four treatment combinations can be tested during a shift, and
because there could be shift-to-shift differences in etching

tool performance, the experimenters decide to use shifts as
a blocking factor. Thus, each replicate of the 23 design must
be run in two blocks. Two replicates are run, with ABC con-
founded in replicate I and AB confounded in replicate II.
The data are as follows:

Replicate I Replicate II
ABC Confounded AB Confounded

(1) = 550

ab = 642

ac = 749

bc = 1075

a = 669

b = 633

c = 1037

abc = 729

(1) = 604

c = 1052

ab = 635

abc = 860

a = 650

b = 601

ac = 868

bc = 1063

The sums of squares for A,B,C,AC, and BC may be
calculated in the usual manner, using all 16 observations.

However, wemust find SSABC using only the data in replicate
II and SSAB using only the data in replicate I as follows:

SSABC = [a + b + c + abc − ab − ac − bc − (1)]2

n2k

= [650 + 601 + 1052 + 860 − 635 − 868 − 1063 − 604]2

(1)(8)
= 6.1250

SSAB = [(1) + abc − ac + c − a − b + ab − bc]2

n2k

= [550 + 729 − 749 + 1037 − 669 − 633 + 642 − 1075]2

(1)(8)
= 3528.0
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The sum of squares for the replicates is, in general,

SSRep =
n∑

h=1

R2
h

2k
−

y2
...

N

= (6084)2 + (6333)2

8
− (12,417)2

16
= 3875.0625

where Rh is the total of the observations in the hth replicate.
The block sum of squares is the sum of SSABC from replicate
I and SSAB from replicate II, or SSBlocks = 458.1250.

The analysis of variance is summarized in Table 7.11.
The main effects of A and C and the AC interaction are
important.

◾ TABLE 7 . 11
Analysis of Variance for Example 7.3

Source of Variation
Sum of
Squares

Degrees of
Freedom

Mean
Square F0 P-Value

Replicates 3875.0625 1 3875.0625 —

Blocks within replicates 458.1250 2 229.0625 —

A 41,310.5625 1 41,310.5625 16.20 0.01

B 217.5625 1 217.5625 0.08 0.78

C 374,850.5625 1 374,850.5625 146.97 <0.001

AB (rep. I only) 3528.0000 1 3528.0000 1.38 0.29

AC 94,404.5625 1 94,404.5625 37.01 <0.001

BC 18.0625 1 18.0625 0.007 0.94

ABC (rep. II only) 6.1250 1 6.1250 0.002 0.96

Error 12,752.3125 5 2550.4625

Total 531,420.9375 15

7.9 Problems

7.1 Consider the experiment described in Problem 6.5.
Analyze this experiment assuming that each replicate repre-
sents a block of a single production shift.

7.2 Consider the experiment described in Problem 6.9.
Analyze this experiment assuming that each one of the four
replicates represents a block.

7.3 Consider the alloy cracking experiment described in
Problem 6.19. Suppose that only 16 runs could be made on
a single day, so each replicate was treated as a block. Analyze
the experiment and draw conclusions.

7.4 Consider the data from the first replicate of Problem
6.5. Suppose that these observations could not all be run using
the same bar stock. Set up a design to run these observations
in two blocks of four observations each with ABC confounded.
Analyze the data.

7.5 Consider the data from the first replicate of Problem
6.11. Construct a design with two blocks of eight observations
each with ABCD confounded. Analyze the data.

7.6 Repeat Problem 7.5 assuming that four blocks are
required. Confound ABD and ABC (and consequently CD)
with blocks.

7.7 Using the data from the 25 design in Problem 6.30,
construct and analyze a design in two blocks with ABCDE
confounded with blocks.

7.8 Repeat Problem 7.7 assuming that four blocks are
necessary. Suggest a reasonable confounding scheme.

7.9 Consider the data from the 25 design in Problem 6.30.
Suppose that it was necessary to run this design in four blocks
with ACDE and BCD (and consequently ABE) confounded.
Analyze the data from this design.
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7.10 Consider the fill height deviation experiment in
Problem 6.24. Suppose that each replicate was run on a sepa-
rate day. Analyze the data assuming that days are blocks.

7.11 Consider the fill height deviation experiment in Prob-
lem 6.24. Suppose that only four runs could be made on each
shift. Set up a design with ABC confounded in replicate I and
AC confounded in replicate II. Analyze the data and comment
on your findings.

7.12 Consider the putting experiment in Problem 6.25. Ana-
lyze the data considering each replicate as a block.

7.13 Using the data from the 24 design in Problem 6.26,
construct and analyze a design in two blocks with ABCD
confounded with blocks.

7.14 Consider the direct mail experiment in Problem 6.28.
Suppose that each group of customers is in a different
part of the country. Suggest an appropriate analysis for the
experiment.

7.15 Consider the isatin yield experiment in Problem 6.42.
Set up the 24 experiment in this problem in two blocks with
ABCD confounded. Analyze the data from this design. Is the
block effect large?

7.16 The experiment in Problem 6.43 is a 25 factorial.
Suppose that this design had been run in four blocks of eight
runs each.

(a) Recommend a blocking scheme and set up the design.

(b) Analyze the data from this blocked design. Is blocking
important?

7.17 Repeat Problem 7.16 using a design in two blocks.

7.18 The design in Problem 6.44 is a 24 factorial. Set up this
experiment in two blocks with ABCD confounded. Analyze
the data from this design. Is the block effect large?

7.19 The design in Problem 6.46 is a 23 factorial replicated
twice. Suppose that each replicate was a block. Analyze all
of the responses from this blocked design. Are the results
comparable to those from Problem 6.46? Is the block effect
large?

7.20 Design an experiment for confounding a 26 factorial
in four blocks. Suggest an appropriate confounding scheme,
different from the one shown in Table 7.9.

7.21 Consider the 26 design in eight blocks of eight runs
each with ABCD, ACE, and ABEF as the independent effects
chosen to be confounded with blocks. Generate the design.
Find the other effects confounded with blocks.

7.22 Consider the 22 design in two blocks with AB
confounded. Prove algebraically that SSAB = SSBlocks.

7.23 Consider the data in Example 7.2. Suppose that all
the observations in block 2 are increased by 20. Analyze the
data that would result. Estimate the block effect. Can you

explain its magnitude? Do blocks now appear to be an impor-
tant factor? Are any other effect estimates impacted by the
change you made to the data?

7.24 Suppose that in Problem 6.5 we had confounded ABC
in replicate I, AB in replicate II, and BC in replicate III.
Calculate the factor effect estimates. Construct the analysis of
variance table.

7.25 Repeat the analysis of Problem 6.5 assuming that ABC
was confounded with blocks in each replicate.

7.26 Suppose that in Problem 6.11 ABCD was confounded
in replicate I and ABC was confounded in replicate II. Perform
the statistical analysis of this design.

7.27 Construct a 23 design with ABC confounded in the first
two replicates and BC confounded in the third. Outline the
analysis of variance and comment on the information obtained.

7.28 Suppose that a 22 design has been conducted. There
are four replicates and the experiment has been conducted in
four blocks. The error sum of squares is 500 and the block
sum of squares is 250. If the experiment had been conducted
as a completely randomized design, the estimate of the error
variance 𝜎2 would be

(a) 25.0 (b) 25.5 (c) 35.0

(d) 38.5 (e) none of the above

7.29 The block effect in a two-level design with two blocks
can be calculated directly as the difference in the average
response between the two blocks.

(a) True

(b) False

7.30 When constructing the 27 design confounded in eight
blocks, three independent effects are chosen to generate the
blocks, and there are a total of eight interactions confounded
with blocks.

(a) True

(b) False

7.31 Consider the 25 factorial design in two blocks.
If ABCDE is confounded with blocks, then which of the
following runs is in the same block as run acde?

(a) a (b) acd (c) bcd

(d) be (e) abe (f) None of the above

7.32 The information on the interaction confounded with
the block can always be separated from the block effect.

(a) True

(b) False

7.33 Consider the full 25 factorial design in Problem 6.51.
Suppose that this experiment had been run in two blocks
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with ABCDE confounded with the blocks. Set up the blocked
design and perform the analysis. Compare your results with
the results obtained for the completely randomized design in
Problem 6.51.

7.34 Suppose that you are designing an experiment for four
factors and that due tomaterial properties it is necessary to con-
duct the experiment in blocks. Material availability restricts
you to the use of two blocks; however, each batch of material
is only sufficient for six runs. So the standard 24 factorial in
two blocks of eight runs each with ABCD confounded will not
work. Recommend a design. Suggestion: this is a reasonable

application for aD-optimal design.What type of design do you
find in each block?

7.35 Suppose that you are designing an experiment for four
factors and that due tomaterial properties it is necessary to con-
duct the experiment in blocks. Material availability restricts
you to the use of two blocks but each batch of material is large
enough for up to 10 runs. You can afford to make four addi-
tional runs beyond the 16 required by the full 24. What runs
would you choose to make? How would you allocate these
additional four runs to the two blocks?
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8.1 Introduction

As the number of factors in a 2k factorial design increases, the number of runs required for a complete replicate of
the design rapidly outgrows the resources of most experimenters. For example, a complete replicate of the 26 design
requires 64 runs. In this design, only 6 of the 63 degrees of freedom correspond to main effects, and only 15 degrees
of freedom correspond to two-factor interactions. There are only 21 degrees of freedom associated with effects that
are likely to be of major interest. The remaining 42 degrees of freedom are associated with three-factor and higher
interactions.

If the experimenter can reasonably assume that certain high-order interactions are negligible, information on
the main effects and low-order interactions may be obtained by running only a fraction of the complete factorial
experiment. These fractional factorial designs are among the most widely used types of designs for product and
process design, process improvement, and industrial/business experimentation.

A major use of fractional factorials is in screening experiments—experiments in which many factors are
considered and the objective is to identify those factors (if any) that have large effects. Screening experiments are
usually performed in the early stages of a project when many of the factors initially considered likely have little or
no effect on the response. The factors identified as important are then investigated more thoroughly in subsequent
experiments.

The successful use of fractional factorial designs is based on three key ideas:

1. The sparsity of effects principle. When there are several variables, the system or process is likely to be
driven primarily by some of the main effects and low-order interactions. Sparsity of effects usually implies
that no more than about half the number of effects will be active. For example, if there are 4 factors, then
there are 15 effects, and effect sparsity suggests that no more than 6 or 7 of these will be active.

2. The projection property. Fractional factorial designs can be projected into stronger (larger) designs in the
subset of significant factors.

3. Sequential experimentation. It is possible to combine the runs of two (or more) fractional factorials to
construct sequentially a larger design to estimate the factor effects and interactions of interest.

We will focus on these principles in this chapter and illustrate them with several examples.

8.2 The One-Half Fraction of the 2k Design

8.2.1 Definitions and Basic Principles

Consider a situation in which three factors, each at two levels, are of interest, but the experimenters cannot afford to
run all 23 = 8 treatment combinations. They can, however, afford four runs. This suggests a one-half fraction of a
23 design. Because the design contains 23−1 = 4 treatment combinations, a one-half fraction of the 23 design is often
called a 𝟐𝟑−𝟏 design.

The table of plus and minus signs for the 23 design is shown in Table 8.1. Suppose we select the four treatment
combinations a, b, c, and abc as our one-half fraction. These runs are shown in the top half of Table 8.1 and in
Figure 8.1a.

Notice that the 23−1 design is formed by selecting only those treatment combinations that have a plus in the ABC
column. Thus, ABC is called the generator of this particular fraction. Usually we will refer to a generator such as ABC
as a word. Furthermore, the identity column I is also always plus, so we call

I = ABC

the defining relation for our design. In general, the defining relation for a fractional factorial will always be the set of
all columns that are equal to the identity column I.
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◾ TABLE 8 . 1
Plus and Minus Signs for the 23 Factorial Design

Factorial EffectTreatment
Combination I A B C AB AC BC ABC

a + + − − − − + +
b + − + − − + − +
c + − − + + − − +
abc + + + + + + + +
ab + + + − + − − −
ac + + − + − + − −
bc + − + + − − + −
(1) + − − − + + + −

◾ F I GURE 8 . 1 The two one-half
fractions of the 23 design

(a) The principal fraction, I = +ABC

(1) 

(b) The alternate fraction, I = –ABC

abc

c

b

a BC

A

ab

bc

ac

The treatment combinations in the 23−1 design yield three degrees of freedom that we may use to estimate the
main effects. Referring to Table 8.1, we note that the linear combinations of the observations used to estimate the main
effects of A, B, and C are

[A] = 1
2
(a − b − c + abc)

[B] = 1
2
(−a + b − c + abc)

[C] = 1
2
(−a − b + c + abc)

where the notation [A], [B], and [C] is used to indicate the linear combinations associated with the main effects. It is
also easy to verify that the linear combinations of the observations used to estimate the two-factor interactions are

[BC] = 1
2
(a − b − c + abc)

[AC] = 1
2
(−a + b − c + abc)

[AB] = 1
2
(−a − b + c + abc)

Thus, [A] = [BC], [B] = [AC], and [C] = [AB]; consequently, it is impossible to differentiate between A and BC, B and
AC, and C and AB. In fact, when we estimate A, B, and C we are really estimating A + BC,B + AC, and C + AB. Two
or more effects that have this property are called aliases. In our example, A and BC are aliases, B and AC are aliases,
and C and AB are aliases. We indicate this by the notation [A] → A + BC, [B] → B + AC, and [C] → C + AB.

The alias structure for this design may be easily determined by using the defining relation I = ABC. Multiplying
any column (or effect) by the defining relation yields the aliases for that column (or effect). In our example, this yields
as the alias of A

A ⋅ I = A ⋅ ABC = A2BC
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or, because the square of any column is just the identity I,

A = BC

Similarly, we find the aliases of B and C as

B ⋅ I = B ⋅ ABC

B = AB2C = AC
and

C ⋅ I = C ⋅ ABC

C = ABC2 = AB

This one-half fraction, with I = +ABC, is usually called the principal fraction.
Now suppose that we had chosen the other one-half fraction, that is, the treatment combinations in Table 8.1

associated with minus in the ABC column. This alternate, or complementary, one-half fraction (consisting of the
runs (1), ab, ac, and bc) is shown in Figure 8.1b. The defining relation for this design is

I = −ABC

The linear combination of the observations, say [A]′, [B]′, and [C]′, from the alternate fraction gives us

[A]′ → A − BC

[B]′ → B − AC

[C]′ → C − AB

Thus, when we estimate A, B, and C with this particular fraction, we are really estimating A − BC,B − AC, and
C − AB.

In practice, it does not matter which fraction is actually used. Both fractions belong to the same family; that is,
the two one-half fractions form a complete 23 design. This is easily seen by reference to parts a and b of Figure 8.1.

Suppose that after running one of the one-half fractions of the 23 design, the other fraction was also run. Thus,
all eight runs associated with the full 23 are now available. We may now obtain de-aliased estimates of all the effects
by analyzing the eight runs as a full 23 design in two blocks of four runs each. This could also be done by adding
and subtracting the linear combination of effects from the two individual fractions. For example, consider [A] → A +
BC and [A]′ → A − BC. This implies that

1
2
([A] + [A]′) = 1

2
(A + BC + A − BC) → A

and that
1
2
([A] − [A]′) = 1

2
(A + BC − A + BC) → BC

Thus, for all three pairs of linear combinations, we would obtain the following:

i From 1
2
([i] + [i]′) From 1

2
([i] − [i]′)

A A BC

B B AC

C C AB

Furthermore, by assembling the full 23 in this fashion with I = +ABC in the first group of runs and I = −ABC in the
second, the 23 confounds ABC with blocks.

More About Effect Sparsity. As noted earlier, effect sparsity is one of the reasons that fractional facto-
rial designs are so successful. This phenomenon has been observed empirically by experimenters in many fields for
decades. However, a recent paper by Li, Sudarsanam, and Frey(2006) provides more objective evidence of effect
sparsity.
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Li, Sudarsanam, and Frey (2006) re-examined 133 response variables from published full factorial experiments
with from 3 to 7 factors. They re-analyzed all of the responses. They found that in the experiments that they studied
41% of the main effects were active. Generally, the size of an active main effect was twice the size of an active
two-factor interaction. The percent of active two-factor interactions overall was 11%. Interactions beyond order two
were extremely rare. They also reported some “conditional” percentages regarding active two-factor interactions:

• A two-factor interaction was active and both main effects involved in that interaction were active occurred
33% of the time.

• A two-factor interaction was active but only one of the main effects involved in that interaction was active
occurred 4.5% of the time.

• A two-factor interaction was active and neither of the main effects involved in that interaction was active
occurred only 0.5% of the time.

These results strongly support the sparsity of effects assumption. They also support the usual assumptions of
model hierarchy and effect heredity. However, the results are strongly dependent on the types of experiments analyzed.
If more experiments involving chemical processes and systems and biological systems were included, two-factor inter-
actions would probably be more likely to occur. Three-factor interactions can be encountered in some of these systems.
For example, consider a three-factor chemical process experiment involving two continuous factor, time and temper-
ature, and a categorical factor, catalyst type. If the two-factor interaction involving time and temperature is different
for each catalyst type, then there is a three-factor interaction.

8.2.2 Design Resolution

The preceding 23−1 design is called a resolution III design. In such a design, main effects are aliased with two-factor
interactions. A design is of resolution R if no p-factor effect is aliased with another effect containing less than R − p
factors. We usually employ a Roman numeral subscript to denote design resolution; thus, the one-half fraction of the
23 design with the defining relation I = ABC (or I = −ABC) is a 23−1III design.

Designs of resolution III, IV, and V are particularly important. The definitions of these designs and an example
of each follow:

1. Resolution III designs. These are designs in which no main effects are aliased with any other main effect,
but main effects are aliased with two-factor interactions and some two-factor interactions may be aliased
with each other. The 23−1 design in Table 8.1 is of resolution III (23−1III ).

2. Resolution IV designs. These are designs in which no main effect is aliased with any other main effect or
with any two-factor interaction, but two-factor interactions are aliased with each other. A 24−1 design with
I = ABCD is a resolution IV design (24−1IV ).

3. Resolution V designs. These are designs in which no main effect or two-factor interaction is aliased with
any other main effect or two-factor interaction, but two-factor interactions are aliased with three-factor inter-
actions. A 25−1 design with I = ABCDE is a resolution V design (25−1V ).

In general, the resolution of a two-level fractional factorial design is equal to the number of letters in the shortest
word in the defining relation. Consequently, we could call the preceding design types three-, four-, and five-letter
designs, respectively. We usually like to employ fractional designs that have the highest possible resolution consistent
with the degree of fractionation required. The higher the resolution, the less restrictive the assumptions that are required
regarding which interactions are negligible to obtain a unique interpretation of the results.

8.2.3 Construction and Analysis of the One-Half Fraction

A one-half fraction of the 2k design of the highest resolution may be constructed by writing down a basic design
consisting of the runs for a full 2k−1 factorial and then adding the kth factor by identifying its plus and minus levels
with the plus and minus signs of the highest order interaction ABC · · · (K − 1). Therefore, the 23−1III fractional factorial
is obtained by writing down the full 22 factorial as the basic design and then equating factor C to the AB interaction.
The alternate fraction would be obtained by equating factor C to the −AB interaction. This approach is illustrated
in Table 8.2. Notice that the basic design always has the right number of runs (rows), but it is missing one column.
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◾ TABLE 8 . 2
The Two One-Half Fractions of the 23 Design

Full 22

Factorial
(Basic Design) 23−1

III
, I = ABC 23−1

III
, I = −ABC

Run A B A B C = AB A B C = −AB

1 − − − − + − − −
2 + − + − − + − +
3 − + − + − − + +
4 + + + + + + + −

C

A

b

c

a

B

abc

◾ F I GURE 8 . 2 Projection of a 23−1
III

design into three 22 designs

The generator I = ABC · · ·K is then solved for themissing column (K) so thatK = ABC · · · (K − 1) defines the product
of plus and minus signs to use in each row to produce the levels for the kth factor.

Note that any interaction effect could be used to generate the column for the kth factor. However, using any effect
other than ABC · · · (K − 1) will not produce a design of the highest possible resolution.

Another way to view the construction of a one-half fraction is to partition the runs into two blocks with the highest
order interaction ABC · · ·K confounded. Each block is a 2k−1 fractional factorial design of the highest resolution.

Projection of Fractions into Factorials. Any fractional factorial design of resolution R contains complete facto-
rial designs (possibly replicated factorials) in any subset of R − 1 factors. This is an important and useful concept. For
example, if an experimenter has several factors of potential interest but believes that only R − 1 of them have important
effects, then a fractional factorial design of resolution R is the appropriate choice of design. If the experimenter is cor-
rect, the fractional factorial design of resolution R will project into a full factorial in the R − 1 significant factors. This
property is illustrated in Figure 8.2 for the 23−1III design, which projects into a 22 design in every subset of two factors.

Because the maximum possible resolution of a one-half fraction of the 2k design is R = k, every 2k−1 design will
project into a full factorial in any (k − 1) of the original k factors. Furthermore, a 2k−1 design may be projected into
two replicates of a full factorial in any subset of k − 2 factors, four replicates of a full factorial in any subset of k − 3
factors, and so on.

EXAMPLE 8 . 1

Consider the filtration rate experiment in Example 6.2. The
original design, shown in Table 6.10, is a single repli-
cate of the 24 design. In that example, we found that the
main effects A, C, and D and the interactions AC and
AD were different from zero. We will now return to this
experiment and simulate what would have happened if a

half-fraction of the 24 design had been run instead of the full
factorial.

We will use the 24−1 design with I = ABCD, because this
choice of generator will result in a design of the highest pos-
sible resolution (IV). To construct the design, we first write
down the basic design, which is a 23 design, as shown in
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◾ TABLE 8 . 3
The 24−1IV Design with the Defining Relation I = ABCD

Basic Design

Run A B C D = ABC Treatment Combination Filtration Rate

1 − − − − (1) 45

2 + − − + ad 100

3 − + − + bd 45

4 + + − − ab 65

5 − − + + cd 75

6 + − + − ac 60

7 − + + − bc 80

8 + + + + abcd 96

the first three columns of Table 8.3. This basic design has
the necessary number of runs (eight) but only three columns
(factors). To find the fourth factor levels, solve I = ABCD
for D, or D = ABC. Thus, the level of D in each run is the
product of the plus and minus signs in columns A, B, and C.
The process is illustrated in Table 8.3. Because the generator
ABCD is positive, this 24−1IV design is the principal fraction.
The design is shown graphically in Figure 8.3.

Using the defining relation, we note that each main
effect is aliased with a three-factor interaction; that is,
A = A2BCD = BCD,B = AB2CD = ACD,C = ABC2D =
ABD, and D = ABCD2 = ABC. Furthermore, every
two-factor interaction is aliased with another two-factor
interaction. These alias relationships are AB = CD,
AC = BD, and BC = AD. The four main effects plus the
three two-factor interaction alias pairs account for the seven
degrees of freedom for the design.

At this point, we would normally randomize the eight
runs and perform the experiment. Because we have already
run the full 24 design, we will simply select the eight

observed filtration rates from Example 6.2 that correspond
to the runs in the 24−1IV design. These observations are shown
in the last column of Table 8.3 as well as in Figure 8.3.

The estimates of the effects obtained from this 24−1IV

design are shown in Table 8.4. To illustrate the calculations,
the linear combination of observations associated with the
A effect is

[A] = 1

4
(−45 + 100 − 45 + 65 − 75

+60 − 80 + 96) = 19.00 → A + BCD

whereas for the AB effect, we would obtain

[AB] = 1

4
(45 − 100 − 45 + 65 + 75 − 60 − 80 + 96)

= −1.00 → AB + CD

From inspection of the information in Table 8.4, it is not
unreasonable to conclude that the main effects A, C, and
D are large. The AB + CD alias chain has a small estimate,
so the simplest interpretation is that both the AB and CD

(1) = 45 

abcd = 96

BC

A

ab = 65

bc = 80

– +D

ac = 60
cd = 75

ad = 100

bd = 45

◾ F I GURE 8 . 3 The 24−1IV design for the filtration rate experiment
of Example 8.1
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◾ TABLE 8 . 4
Estimates of Effects and Aliases from Example 8.1a

Estimate Alias Structure

[A] = 19.00 [A] → A + BCD

[B] = 1.50 [B] → B + ACD

[C] = 14.00 [C] → C + ABD

[D] = 16.50 [D] → D + ABC

[AB] = −1.00 [AB] → AB + CD

[AC] = −18.50 [AC] → AC + BD

[AD] = 19.00 [AD] → AD + BC

aSignificant effects are shown in boldface type.

interactions are negligible (otherwise, both AB and CD are
large, but they have nearly identical magnitudes and oppo-
site signs—this is fairly unlikely). Furthermore, if A, C, and
D are the important main effects, then it is logical to con-
clude that the two interaction alias chains AC + BD and
AD + BC have large effects because the AC and AD inter-
actions are also significant. In other words, if A, C, and
D are significant, then the significant interactions are most
likelyAC andAD. This is an application ofOckham’s razor
(after William of Ockham), a scientific principle that when
one is confronted with several different possible interpreta-
tions of a phenomena, the simplest interpretation is usually
the correct one. Note that this interpretation agrees with the
conclusions from the analysis of the complete 24 design in
Example 6.2.

Another way to view this interpretation is from the stand-
point of effect heredity. Suppose that AB is significant and
that both main effects A and B are significant. This is called
strong heredity, and it is the usual situation (if an inter-
action is significant and only one of the main effects is
significant this is called weak heredity; and this is rela-
tively less common). So in this example, with A significant
and B not significant this support the assumption that AB is
not significant.

Because factor B is not significant, we may drop it
from consideration. Consequently, we may project this 24−1IV

design into a single replicate of the 23 design in factors A,
C, andD, as shown in Figure 8.4. Visual examination of this
cube plot makes us more comfortable with the conclusions
reached above. Notice that if the temperature (A) is at the

low level, the concentration (C) has a large positive effect,
whereas if the temperature is at the high level, the concen-
tration has a very small effect. This is probably due to an
AC interaction. Furthermore, if the temperature is at the low
level, the effect of the stirring rate (D) is negligible, whereas
if the temperature is at the high level, the stirring rate has a
large positive effect. This is probably due to the AD interac-
tion tentatively identified previously.

75 96

80

45 65

10045
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Low

Low
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◾ F I GURE 8 . 4 Projection of the 24−1IV design into
a 23 design in A, C, and D for Example 8.1

Based on the above analysis, we can now obtain a model
to predict filtration rate over the experimental region. This
model is

ŷ = 𝛽0 + 𝛽1x1 + 𝛽3x3 + 𝛽4x4 + 𝛽13x1x3 + 𝛽14x1x4

where x1, x3, and x4 are coded variables (−1 ≤ xi ≤ +1) that
represent A, C, andD, and the 𝛽’s are regression coefficients
that can be obtained from the effect estimates as we did pre-
viously. Therefore, the prediction equation is

ŷ = 70.75 +
(19.00

2

)
x1 +

(14.00
2

)
x3 +

(16.50
2

)
x4

+
(−18.50

2

)
x1x3 +

(19.00
2

)
x1x4

Remember that the intercept 𝛽0 is the average of all
responses at the eight runs in the design. This model is very
similar to the one that resulted from the full 2k factorial
design in Example 6.2.

The JMP screening analysis for Example 8.1 is shown in the boxed display below. Because there are only eight
runs and seven degrees of freedom, we only included the intercept, the four main effects, and three of the six two-factor
interactions (and their aliases) in the model. All of the P-values from Lenth’s procedure are large. Eight runs with five
active effects are not adequate to produce a reliable error estimate from Lenth’s method. Also, notice that the R2

statistic is 1, and no values are reported for the adjusted R2 and the square root of the mean square error because the
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model is saturated. However, the largest effects are the three main effects and the two two-factor interactions identified
previously in Example 8.1. The prediction profiler portion of the output has been set to the levels of the active factors
that maximize the filtration rate.

Response Y

Summary of Fit
RSquare 1
RSquare Adj .
Root Mean Square Error .
Mean of Response 70.75
Observations (or Sum Wgts) 8

Sorted Parameter Estimates
Term Estimate Relative Std 

Error
Pseudo
t-Ratio

Pseudo
p-Value

X1 9.5 0.353553 0.77 0.5128

X1*X4 9.5 0.353553 0.77 0.5128

X1*X3 –9.25 0.353553 –0.75 0.5228

X4 8.25 0.353553 0.67 0.5649

X3 7 0.353553 0.57 0.6213

X2 0.75 0.353553 0.06 0.9565

X1*X2 –0.5 0.353553 –0.04 0.9710

No error degrees of freedom, so ordinary tests uncomputable. Relative Std Error corresponds to residual
standard error of 1. Pseudo t-Ratio and p-Value calculated using Lenth PSE = 12.375 and DFE = 2.3333

Prediction Profiler

Effect Screening
The parameter estimates have equal variances.
The parameter estimates are not correlated.

Lenth PSE
12.375

Parameter Estimate Population
Term Estimate Pseudo

t-Ratio
Pseudo
p-Value

Intercept 70.7500 5.7172 0.0203*
X1 9.5000 0.7677 0.5128
X2 0.7500 0.0606 0.9565
X3 7.0000 0.5657 0.6213
X4 8.2500 0.6667 0.5649
X1*X2 –0.5000 –0.0404 0.9710
X1*X3 –9.2500 –0.7475 0.5228
X1*X4 9.5000 0.7677 0.5128

Orthog t-Test used Pseudo Standard Error

100.25Y
D
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EXAMPLE 8 . 2 A 25−1 Design Used for Process Improvement

Five factors in a manufacturing process for an integrated cir-
cuit were investigated in a 25−1 design with the objective
of improving the process yield. The five factors were A =
aperture setting (small, large), B = exposure time (20 per-
cent below nominal, 20 percent above nominal), C =
develop time (30 and 45 sec), D = mask dimension (small,
large), andE = etch time (14.5 and 15.5 min). The construc-
tion of the 25−1 design is shown in Table 8.5. Notice that the
design was constructed by writing down the basic design
having 16 runs (a 24 design in A, B, C, and D), selecting
ABCDE as the generator, and then setting the levels of the
fifth factor E = ABCD. Figure 8.5 gives a pictorial represen-
tation of the design.

The defining relation for the design is I = ABCDE. Con-
sequently, every main effect is aliased with a four-factor
interaction (for example, [A] → A + BCDE), and every

two-factor interaction is aliased with a three-factor
interaction (e.g., [AB] → AB + CDE). Thus, the design is
of resolution V. We would expect this 25−1 design to pro-
vide excellent information concerning the main effects and
two-factor interactions.

Table 8.6 contains the effect estimates, sums of squares,
and model regression coefficients for the 15 effects from
this experiment. Figure 8.6 presents a normal probability
plot of the effect estimates from this experiment. The main
effects of A, B, and C and the AB interaction are large.
Remember that, because of aliasing, these effects are really
A + BCDE,B + ACDE,C + ABDE, and AB + CDE. How-
ever, because it seems plausible that three-factor and higher
interactions are negligible, we feel safe in concluding that
only A, B, C, and AB are important effects.

◾ TABLE 8 . 5
A 25−1 Design for Example 8.2

Basic Design

Run A B C D E = ABCD Treatment Combination Yield

1 − − − − + e 8

2 + − − − − a 9

3 − + − − − b 34

4 + + − − + abe 52

5 − − + − − c 16

6 + − + − + ace 22

7 − + + − + bce 45

8 + + + − − abc 60

9 − − − + − d 6

10 + − − + + ade 10

11 − + − + + bde 30

12 + + − + − abd 50

13 − − + + + cde 15

14 + − + + − acd 21

15 − + + + − bcd 44

16 + + + + + abcde 63
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e = 8 

abcde = 63

abe = 52

abc = 60 bcb = 44

acd = 21

bce = 45

ace = 22

–

+

E

cde = 15

ade = 10

bde = 30

abd = 50

a = 9

c = 16

b = 34

d = 6

– +D

BC

A

◾ F I GURE 8 . 5 The 25−1V design for Example 8.2

◾ TABLE 8 . 6
Effects, Regression Coefficients, and Sums of Squares for Example 8.2

Variable Name −1 Level +1 Level

A Aperture Small Large

B Exposure time −20% +20%
C Develop time 30 sec 40 sec

D Mask dimension Small Large

E Etch time 14.5 min 15.5 min

Variable Regression Coefficient Estimated Effect Sum of Squares

Overall Average 30.3125

A 5.5625 11.1250 495.062

B 16.9375 33.8750 4590.062

C 5.4375 10.8750 473.062

D −0.4375 −0.8750 3.063

E 0.3125 0.6250 1.563

AB 3.4375 6.8750 189.063
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◾ TABLE 8 . 6 (Continued)

Variable Regression Coefficient Estimated Effect Sum of Squares

AC 0.1875 0.3750 0.563

AD 0.5625 1.1250 5.063

AE 0.5625 1.1250 5.063

BC 0.3125 0.6250 1.563

BD −0.0625 −0.1250 0.063

BE −0.0625 −0.1250 0.063

CD 0.4375 0.8750 3.063

CE 0.1875 0.3750 0.563

DE −0.6875 −1.3750 7.563

Effect estimates
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◾ F I GURE 8 . 6 Normal probability plot of effects
for Example 8.2

Table 8.7 summarizes the analysis of variance for this
experiment. The model sum of squares is SSModel = SSA +
SSB + SSC + SSAB = 5747.25, and this accounts for over
99 percent of the total variability in yield. Figure 8.7 presents
a normal probability plot of the residuals, and Figure 8.8 is a
plot of the residuals versus the predicted values. Both plots
are satisfactory.

The three factors A, B, and C have large positive effects.
The AB or aperture–exposure time interaction is plotted in
Figure 8.9. This plot confirms that the yields are higher when
both A and B are at the high level.

The 25−1 design will collapse into two replicates of a 23

design in any three of the original five factors. (Looking at
Figure 8.5 will help you visualize this.) Figure 8.10 is a cube
plot in the factors A, B, and C with the average yields super-
imposed on the eight corners. It is clear from inspection of
the cube plot that highest yields are achieved with A, B,

◾ TABLE 8 . 7
Analysis of Variance for Example 8.2

Source of Variation Sum of Squares Degrees of Freedom Mean Square F0 P-Value

A (Aperture) 495.0625 1 495.0625 193.20 <0.0001

B (Exposure time) 4590.0625 1 4590.0625 1791.24 <0.0001

C (Develop time) 473.0625 1 473.0625 184.61 <0.0001

AB 189.0625 1 189.0625 73.78 <0.0001

Error 28.1875 11 2.5625

Total 5775.4375 15
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and C all at the high level. Factors D and E have little effect
on average process yield and may be set to values that opti-
mize other objectives (such as cost).

Residuals
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◾ F I GURE 8 . 7 Normal probability plot
of the residuals for Example 8.2
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◾ F I GURE 8 . 8 Plot of residuals versus predicted
yield for Example 8.2
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◾ F I GURE 8 . 9 Aperture–exposure time
interaction for Example 8.2
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◾ F I GURE 8 . 10 Projection of the 25−1V design in
Example 8.2 into two replicates of a 23 design in the
factors A, B, and C

The output from the JMP screening analysis is shown in the following display. The JMP screening platform uses
Lenth’s method to determine the active effects. The results agree with the normal probability plot of effects method
used in Example 8.2. Because the design is saturated when all main effects and two-factor interactions are included in
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the model, there are no degrees of freedom available to estimate error. Consequently, R2 = 1, and the adjusted R2 and
square root of mean square error cannot be computed.

Response Y

Summary of Fit
RSquare 1
RSquare Adj .
Root Mean Square Error .
Mean of Response 30.3125
Observations (or Sum Wgts) 16

Sorted Parameter Estimates
Term Estimate Relative Std

Error
Pseudo
t-Ratio

Pseudo
p-Value

X2 16.9375 0.25 36.13 <.0001*

X1 5.5625 0.25 11.87 <.0001*

X3 5.4375 0.25 11.60 <.0001*

X1*X2 3.4375 0.25 7.33 0.0007*

X4*X5 –0.6875 0.25 –1.47 0.2024

X1*X4 0.5625 0.25 1.20 0.2839

X1*X5 0.5625 0.25 1.20 0.2839

X4 –0.4375 0.25 –0.93 0.3935

X3*X4 0.4375 0.25 0.93 0.3935

X5 0.3125 0.25 0.67 0.5345

X2*X3 0.3125 0.25 0.67 0.5345

X1*X3 0.1875 0.25 0.40 0.7057

X3*X5 0.1875 0.25 0.40 0.7057

X2*X4 –0.0625 0.25 –0.13 0.8991

X2*X5 –0.0625 0.25 –0.13 0.8991

No error degrees of freedom, so ordinary tests uncomputable. Relative Std Error corresponds to residual
standard error of 1. Pseudo t-Ratio and p-Value calculated using Lenth PSE = 0.46875 and DFE = 5

Sequences of Fractional Factorials. Using fractional factorial designs often leads to great economy and effi-
ciency in experimentation, particularly if the runs can be made sequentially. For example, suppose that we are inves-
tigating k = 4 factors (24 = 16 runs). It is almost always preferable to run a 24−1IV fractional design (eight runs), analyze
the results, and then decide on the best set of runs to perform next. If it is necessary to resolve ambiguities, we can
always run the alternate fraction and complete the 24 design. When this method is used to complete the design,
both one-half fractions represent blocks of the complete design with the highest order interaction confounded with
blocks (here ABCD would be confounded). Thus, sequential experimentation has the result of losing information
only on the highest order interaction. Its advantage is that in many cases we learn enough from the one-half frac-
tion to proceed to the next stage of experimentation, which might involve adding or removing factors, changing
responses, or varying some of the factors over new ranges. Some of these possibilities are illustrated graphically in
Figure 8.11.
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◾ F I GURE 8 . 11 Possibilities for follow-up
experimentation after an initial fractional
factorial experiment
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– +
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EXAMPLE 8 . 3

Reconsider the experiment in Example 8.1. We have used
a 24−1IV design and tentatively identified three large main
effects—A, C, and D. There are two large effects associ-
ated with two-factor interactions, AC + BD and AD + BC.
In Example 8.2, we used the fact that the main effect of
B was negligible to tentatively conclude that the important

interactions were AC and AD. Sometimes the experimenter
will have process knowledge that can assist in discriminat-
ing between interactions likely to be important. However, we
can always isolate the significant interaction by running the
alternate fraction, given by I = −ABCD. It is straightforward
to show that the design and the responses are as follows:

Basic Design

Run A B C D = −ABC Treatment Combination Filtration Rate

1 − − − + d 43

2 + − − − a 71
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Basic Design

Run A B C D = −ABC Treatment Combination Filtration Rate

3 − + − − b 48

4 + + − + abd 104

5 − − + − c 68

6 + − + + acd 86

7 − + + + bcd 70

8 + + + − abc 65

The effect estimates (and their aliases) obtained from this
alternate fraction are

[A]′ = 24.25 → A − BCD

[B]′ = 4.75 → B − ACD

[C]′ = 5.75 → C − ABD

[D]′ = 12.75 → D − ABC

[AB]′ = 1.25 → AB − CD

[AC]′ = −17.75 → AC − BD

[AD]′ = 14.25 → AD − BC

These estimates may be combined with those obtained from
the original one-half fraction to yield the following estimates
of the effects:

i From 1
2
([i] + [i]′) From 1

2
([i] − [i]′)

A 21.63 → A −2.63 → BCD

B 3.13 → B −1.63 → ACD

C 9.88 → C 4.13 → ABD

D 14.63 → D 1.88 → ABC

AB 10.13 → AB −1.13 → CD

AC −18.13 → AC −0.38 → BD

AD 16.63 → AD 2.38 → BC

These estimates agree exactly with those from the original
analysis of the data as a single replicate of a 24 factorial
design, as reported in Example 6.2. Clearly, it is the AC and
AD interactions that are large.

Confirmation Experiments. Adding the alternate fraction to the principal fraction may be thought of as a type of
confirmation experiment in that it provides information that will allow us to strengthen our initial conclusions about
the two-factor interaction effects. We will investigate some other aspects of combining fractional factorials to isolate
interactions in Sections 8.5 and 8.6.

A confirmation experiment need not be this elaborate. A very simple confirmation experiment is to use the
model equation to predict the response at a point of interest in the design space (this should not be one of the runs in
the current design) and then actually run that treatment combination (perhaps several times), comparing the predicted
and observed responses. Reasonably close agreement indicates that the interpretation of the fractional factorial was
correct, whereas serious discrepancies mean that the interpretation was problematic. This would be an indication that
additional experimentation is required to resolve ambiguities.

To illustrate, consider the 24−1 fractional factorial in Example 8.1. The experimenters are interested in finding
a set of conditions where the response variable filtration rate is high, but low concentrations of formaldehyde (factor
C) are desirable. This would suggest that factors A and D should be at the high level and factor C should be at the
low level. Examining Figure 8.3, we note that when B is at the low level, this treatment combination was run in the
fractional factorial, producing an observed response of 100. The treatment combination with B at the high level was
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not in the original fraction, so this would be a reasonable confirmation run. With A, B, and D at the high level and C at
the low level, we use the model equation from Example 8.1 to calculate the predicted response as follows:

ŷ = 70.75 +
(19.00

2

)
x1 +

(14.00
2

)
x3 +

(16.50
2

)
x4 +

(−18.50
2

)
x1x3 +

(19.00
2

)
x1x4

= 70.75 +
(19.00

2

)
(1) +

(14.00
2

)
(−1) +

(16.50
2

)
(1) +

(−18.50
2

)
(1)(−1)

+
(19.00

2

)
(1)(1)

= 100.25

The observed response at this treatment combination is 104 (refer to Figure 6.10 where the response data for the
complete 24 factorial design are presented). Since the observed and predicted values of filtration rate are very similar,
we have a successful confirmation run. This is additional evidence that our interpretation of the fractional factorial was
correct.

There will be situations where the predicted and observed values in a confirmation experiment will not be this
close together, and it will be necessary to answer the question of whether the two values are sufficiently close to
reasonably conclude that the interpretation of the fractional design was correct. One way to answer this question
is to construct a prediction interval on the future observation for the confirmation run and then see if the actual
observation falls inside the prediction interval. We show how to do this using this example in Section 10.6, where
prediction intervals for a regression model are introduced.

8.3 The One-Quarter Fraction of the 2k Design

For a moderately large number of factors, smaller fractions of the 2k design are frequently useful. Consider a
one-quarter fraction of the 2k design. This design contains 2k−2 runs and is usually called a 𝟐k−𝟐 fractional factorial.

The 2k−2 design may be constructed by first writing down a basic design consisting of the runs associated with
a full factorial in k − 2 factors and then associating the two additional columns with appropriately chosen interactions
involving the first k − 2 factors. Thus, a one-quarter fraction of the 2k design has two generators. If P and Q represent
the generators chosen, then I = P and I = Q are called the generating relations for the design. The signs of P and Q
(either + or −) determine which one of the one-quarter fractions is produced. All four fractions associated with the
choice of generators ± P and ± Q are members of the same family. The fraction for which both P and Q are positive
is the principal fraction.

The complete defining relation for the design consists of all the columns that are equal to the identity column
I. These will consist of P, Q, and their generalized interaction PQ; that is, the defining relation is I = P = Q = PQ.
We call the elements P, Q, and PQ in the defining relation words. The aliases of any effect are produced by the
multiplication of the column for that effect by each word in the defining relation. Clearly, each effect has three aliases.
The experimenter should be careful in choosing the generators so that potentially important effects are not aliased with
each other.

As an example, consider the 26−2 design. Suppose we choose I = ABCE and I = BCDF as the design generators.
Now the generalized interaction of the generators ABCE and BCDF is ADEF; therefore, the complete defining relation
for this design is

I = ABCE = BCDF = ADEF
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◾ TABLE 8 . 8
Alias Structure for the 26−2

IV
Design with I = ABCE = BCDF = ADEF

A = BCE = DEF = ABCDF AB = CE = ACDF = BDEF

B = ACE = CDF = ABDEF AC = BE = ABDF = CDEF

C = ABE = BDF = ACDEF AD = EF = BCDE = ABCF

D = BCF = AEF = ABCDE AE = BC = DF = ABCDEF

E = ABC = ADF = BCDEF AF = DE = BCEF = ABCD

F = BCD = ADE = ABCEF BD = CF = ACDE = ABEF

BF = CD = ACEF = ABDE

ABD = CDE = ACF = BEF

ACD = BDE = ABF = CEF

Consequently, this is a resolution IV design. To find the aliases of any effect (e.g., A), multiply that effect by each word
in the defining relation. For A, this produces

A = BCE = ABCDF = DEF

It is easy to verify that every main effect is aliased by three- and five-factor interactions, whereas two-factor interactions
are aliased with each other and with higher order interactions. Thus, when we estimate A, for example, we are really
estimating A + BCE + DEF + ABCDF. The complete alias structure of this design is shown in Table 8.8. If three-factor
and higher interactions are negligible, this design gives clear estimates of the main effects.

To construct the design, first write down the basic design, which consists of the 16 runs for a full 26−2 = 24

design in A, B, C, and D. Then the two factors E and F are added by associating their plus and minus lev-
els with the plus and minus signs of the interactions ABC and BCD, respectively. This procedure is shown in
Table 8.9.

Another way to construct this design is to derive the four blocks of the 26 design with ABCE and BCDF con-
founded and then choose the block with treatment combinations that are positive on ABCE and BCDF. This would be
a 26−2 fractional factorial with generating relations I = ABCE and I = BCDF, and because both generators ABCE and
BCDF are positive, this is the principal fraction.

There are, of course, three alternate fractions of this particular 26−2IV design. They are the fractions with gener-
ating relationships I = ABCE and I = −BCDF; I = −ABCE and I = BCDF; and I = −ABCE and I = −BCDF. These
fractions may be easily constructed by the method shown in Table 8.9. For example, if we wish to find the fraction for
which I = ABCE and I = −BCDF, then in the last column of Table 8.9 we set F = −BCD, and the column of levels
for factor F becomes

+ + − − − − + + − − + + + + −−

The complete defining relation for this alternate fraction is I = ABCE = −BCDF = −ADEF. Certain signs in the alias
structure in Table 8.9 are now changed; for instance, the aliases of A are A = BCE = −DEF = −ABCDF. Thus, the
linear combination of the observations [A] actually estimates A + BCE − DEF − ABCDF.

Finally, note that the 26−2IV fractional factorial will project into a single replicate of a 24 design in any subset of
four factors that is not a word in the defining relation. It also collapses to a replicated one-half fraction of a 24 in any
subset of four factors that is a word in the defining relation. Thus, the design in Table 8.9 becomes two replicates of a
24−1 in the factors ABCE, BCDF, and ADEF, because these are the words in the defining relation. There are 12 other
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◾ TABLE 8 . 9
Construction of the 26−2

IV
Design with the Generators I = ABCE and I = BCDF

Basic Design

Run A B C D E = ABC F = BCD

1 − − − − − −

2 + − − − + −

3 − + − − + +

4 + + − − − +

5 − − + − + +

6 + − + − − +

7 − + + − − −

8 + + + − + −

9 − − − + − +

10 + − − + + +

11 − + − + + −

12 + + − + − −

13 − − + + + −

14 + − + + − −

15 − + + + − +

16 + + + + + +

combinations of the six factors, such as ABCD, ABCF, for which the design projects to a single replicate of the 24.
This design also collapses to two replicates of a 23 in any subset of three of the six factors or four replicates of a 22 in
any subset of two factors.

In general, any 2k−2 fractional factorial design can be collapsed into either a full factorial or a fractional factorial
in some subset of r ≤ k − 2 of the original factors. Those subsets of variables that form full factorials are not words in
the complete defining relation.

EXAMPLE 8 . 4

Parts manufactured in an injection molding process are
showing excessive shrinkage. This is causing problems
in assembly operations downstream from the injection
molding area. A quality improvement team has decided
to use a designed experiment to study the injection mold-
ing process so that shrinkage can be reduced. The team
decides to investigate six factors—mold temperature (A),
screw speed (B), holding time (C), cycle time (D), gate
size (E), and holding pressure (F)—each at two levels,

with the objective of learning how each factor affects
shrinkage and also something about how the factors
interact.

The team decides to use the 16-run two-level fractional
factorial design in Table 8.9. The design is shown again
in Table 8.10, along with the observed shrinkage (×10) for
the test part produced at each of the 16 runs in the design.
Table 8.11 shows the effect estimates, sums of squares, and
the regression coefficients for this experiment.
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◾ TABLE 8 . 10
A 26−2

IV
Design for the Injection Molding Experiment in Example 8.4

Basic Design

Run A B C D E = ABC F = BCD Observed Shrinkage (× 10)

1 − − − − − − 6 (1)

2 + − − − + − 10 ae

3 − + − − + + 32 bef

4 + + − − − + 60 abf

5 − − + − + + 4 cef

6 + − + − − + 15 acf

7 − + + − − − 26 bc

8 + + + − + − 60 abce

9 − − − + − + 8 df

10 + − − + + + 12 adef

11 − + − + + − 34 bde

12 + + − + − − 60 abd

13 − − + + + − 16 cde

14 + − + + − − 5 acd

15 − + + + − + 37 bcdf

16 + + + + + + 52 abcdef

◾ TABLE 8 . 11
Effects, Sums of Squares, and Regression Coefficients for Example 8.4

Variable Name −1 Level +1 Level

A Mold temperature −1.000 1.000

B Screw speed −1.000 1.000

C Holding time −1.000 1.000

D Cycle time −1.000 1.000

E Gate size −1.000 1.000

F Hold pressure −1.000 1.000

Variablea Regression Coefficient Estimated Effect Sum of Squares

Overall average 27.3125

A 6.9375 13.8750 770.062

B 17.8125 35.6250 5076.562

C −0.4375 −0.8750 3.063

D 0.6875 1.3750 7.563

E 0.1875 0.3750 0.563

F 0.1875 0.3750 0.563
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◾ TABLE 8 . 11 (Continued)

Variablea Regression Coefficient Estimated Effect Sum of Squares

AB + CE 5.9375 11.8750 564.063

AC + BE −0.8125 −1.6250 10.562

AD + EF −2.6875 −5.3750 115.562

AE + BC + DF −0.9375 −1.8750 14.063

AF + DE 0.3125 0.6250 1.563

BD + CF −0.0625 −0.1250 0.063

BF + CD −0.0625 −0.1250 0.063

ABD 0.0625 0.1250 0.063

ABF −2.4375 −4.8750 95.063

aOnly main effects and two-factor interactions.

A normal probability plot of the effect estimates from this
experiment is shown in Figure 8.12. The only large effects
are A (mold temperature), B (screw speed), and the AB inter-
action. In light of the alias relationships in Table 8.8, it seems
reasonable to adopt these conclusions tentatively. The plot
of the AB interaction in Figure 8.13 shows that the process
is very insensitive to temperature if the screw speed is at the
low level but very sensitive to temperature if the screw speed
is at the high level. With the screw speed at the low level, the
process should produce an average shrinkage of around 10
percent regardless of the temperature level chosen.

Effect estimates
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◾ F I GURE 8 . 12 Normal probability plot of
effects for Example 8.4
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◾ F I GURE 8 . 13 Plot of AB (mold
temperature-screw speed) interaction for Example 8.4

Based on this initial analysis, the team decides to set
both the mold temperature and the screw speed at the low
level. This set of conditions will reduce the mean shrink-
age of parts to around 10 percent. However, the variability
in shrinkage from part to part is still a potential problem.
In effect, the mean shrinkage can be adequately reduced
by the above modifications; however, the part-to-part vari-
ability in shrinkage over a production run could still cause
problems in assembly. One way to address this issue is to
see if any of the process factors affect the variability in parts
shrinkage.
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Residuals
–6 –3 0 3 6

1

5

10

20
30

50

70

90

95

99

80

N
o

rm
a

l 
p

ro
b

a
b

il
it

y,
 (

1
 –

 P
j)

 ×
 1

0
0

 P
j 

×
 
10

0

1

5

10

20
30

50

70
80

90

95

99

◾ F I GURE 8 . 14 Normal probability plot
of residuals for Example 8.4

Figure 8.14 presents the normal probability plot of the
residuals. This plot appears satisfactory. The plots of resid-
uals versus each factor were then constructed. One of these
plots, that for residuals versus factor C (holding time), is
shown in Figure 8.15. The plot reveals that there is much
less scatter in the residuals at the low holding time than at
the high holding time. These residuals were obtained in the
usual way from a model for predicted shrinkage:

ŷ = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2
= 27.3125 + 6.9375x1 + 17.8125x2 + 5.9375x1x2

where x1, x2, and x1x2 are coded variables that correspond to
the factors A and B and the AB interaction. The residuals are
then

e = y − ŷ

The regression model used to produce the residuals essen-
tially removes the location effects of A, B, and AB from
the data; the residuals therefore contain information about
unexplained variability. Figure 8.15 indicates that there is
a pattern in the variability and that the variability in the
shrinkage of parts may be smaller when the holding time is
at the low level. (Please recall that we observed in Chapter
6 that residuals only convey information about dispersion
effects when the location or mean model is correct.)

This is further amplified by the analysis of residuals
shown in Table 8.12. In this table, the residuals are arranged
at the low (−) and high (+) levels of each factor, and the
standard deviations of the residuals at the low and high
levels of each factor have been calculated. Note that the
standard deviation of the residuals with C at the low level
[S(C−) = 1.63] is considerably smaller than the standard
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◾ F I GURE 8 . 15 Residuals versus holding time
(C) for Example 8.4

deviation of the residuals with C at the high level [S(C+) =
5.70].

The bottom line of Table 8.12 presents the statistic

F∗
i = ln

S2(i+)
S2(i−)

Recall that if the variances of the residuals at the high (+)
and low (−) levels of factor i are equal, then this ratio is
approximately normally distributed with mean zero, and it
can be used to judge the difference in the response variability
at the two levels of factor i. Because the ratio F∗

C is rela-
tively large, wewould conclude that the apparent dispersion
or variability effect observed in Figure 8.15 is real. Thus,
setting the holding time at its low level would contribute to
reducing the variability in shrinkage from part to part during
a production run. Figure 8.16 presents a normal probability
plot of the F∗

i values in Table 8.12; this also indicates that
factor C has a large dispersion effect.

Figure 8.17 shows the data from this experiment pro-
jected onto a cube in the factors A, B, and C. The average
observed shrinkage and the range of observed shrinkage are
shown at each corner of the cube. From inspection of this
figure, we see that running the process with the screw speed
(B) at the low level is the key to reducing average parts
shrinkage. If B is low, virtually any combination of tem-
perature (A) and holding time (C) will result in low values
of average parts shrinkage. However, from examining the
ranges of the shrinkage values at each corner of the cube,
it is immediately clear that setting the holding time (C) at
the low level is the only reasonable choice if we wish to
keep the part-to-part variability in shrinkage low during a
production run.
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8.4 The General 2k−p Fractional Factorial Design

8.4.1 Choosing a Design

A 2k fractional factorial design containing 2k−p runs is called a 1∕2p fraction of the 2k design or, more simply, a 𝟐k−p
fractional factorial design. These designs require the selection of p independent generators. The defining relation for
the design consists of the p generators initially chosen and their 2p − p − 1 generalized interactions. In this section, we
discuss the construction and analysis of these designs.

The alias structure may be found by multiplying each effect column by the defining relation. Care should be
exercised in choosing the generators so that effects of potential interest are not aliased with each other. Each effect has
2p − 1 aliases. For moderately large values of k, we usually assume higher order interactions (say, third- or fourth-order
and higher) to be negligible, and this greatly simplifies the alias structure.

It is important to select the p generators for a 2k−p fractional factorial design in such a way that we obtain
the best possible alias relationships. A reasonable criterion is to select the generators such that the resulting
2k−p design has the highest possible resolution. To illustrate, consider the 26−2IV design in Table 8.9, where we
used the generators E = ABC and F = BCD, thereby producing a design of resolution IV. This is the maximum
resolution design. If we had selected E = ABC and F = ABCD, the complete defining relation would have been
I = ABCE = ABCDF = DEF, and the design would be of resolution III. Clearly, this is an inferior choice because it
needlessly sacrifices information about interactions.

Sometimes resolution alone is insufficient to distinguish between designs. For example, consider the three
27−2IV designs in Table 8.13. All of these designs are of resolution IV, but they have rather different alias structures
(we have assumed that three-factor and higher interactions are negligible) with respect to the two-factor interac-
tions. Clearly, design A has more extensive aliasing and design C the least, so design C would be the best choice
for a 27−2IV .

The three word lengths in design A are all 4; that is, the word length pattern is {4, 4, 4}. For design B it is {4,
4, 6}, and for design C it is {4, 5, 5}. Notice that the defining relation for design C has only one four-letter word,
whereas the other designs have two or three. Thus, design C minimizes the number of words in the defining relation
that are of minimum length. We call such a design aminimum aberration design. Minimizing aberration in a design
of resolution R ensures that the design has the minimum number of main effects aliased with interactions of order
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◾ TABLE 8 . 13
Three Choices of Generators for the 27−2IV Design

Design A Generators:
F = ABC, G = BCD

I = ABCF = BCDG = ADFG

Design B Generators:
F = ABC, G = ADE

I = ABCF = ADEG = BCDEFG

Design C Generators:
F = ABCD, G = ABDE

I = ABCDF = ABDEG = CEFG

Aliases (two-factor interactions) Aliases (two-factor interactions) Aliases (two-factor interactions)

AB = CF AB = CF CE = FG

AC = BF AC = BF CF = EG

AD = FG AD = EG CG = EF

AG = DF AE = DG

BD = CG AF = BC

BG = CD AG = DE

AF = BC = DG

R − 1, the minimum number of two-factor interactions aliased with interactions of order R − 2, and so forth. Refer to
Fries and Hunter (1980) for more details.

Table 8.14 presents a selection of 2k−p fractional factorial designs for k ≤ 15 factors and up to n ≤ 128 runs. The
suggested generators in this table will result in a design of the highest possible resolution. These are also the minimum
aberration designs.

The alias relationships for all of the designs in Table 8.14 for which n ≤ 64 are given in Appendix Table
VIII(a–w). The alias relationships presented in this table focus on main effects and two- and three-factor interac-
tions. The complete defining relation is given for each design. This appendix table makes it very easy to select a design
of sufficient resolution to ensure that any interactions of potential interest can be estimated.

EXAMPLE 8 . 5

To illustrate the use of Table 8.14, suppose that we have
seven factors and that we are interested in estimating
the seven main effects and getting some insight regard-
ing the two-factor interactions. We are willing to assume
that three-factor and higher interactions are negligible. This
information suggests that a resolution IV design would be
appropriate.

Table 8.14 shows that there are two resolution IV frac-
tions available: the 27−2IV with 32 runs and the 27−3IV with
16 runs. Appendix Table VIII contains the complete alias
relationships for these two designs. The aliases for the
27−3IV 16-run design are in Appendix Table VIII(i). Notice
that all seven main effects are aliased with three-factor
interactions. The two-factor interactions are all aliased in
groups of three. Therefore, this design will satisfy our
objectives; that is, it will allow the estimation of the main

effects, and it will give some insight regarding two-factor
interactions. It is not necessary to run the 27−2IV design,
which would require 32 runs. Appendix Table VIII(j) shows
that this design would allow the estimation of all seven
main effects and that 15 of the 21 two-factor interactions
could also be uniquely estimated. (Recall that three-factor
and higher interactions are negligible.) This is proba-
bly more information about interactions than is neces-
sary. The complete 27−3IV design is shown in Table 8.15.
Notice that it was constructed by starting with the 16-run
24 design in A, B, C, and D as the basic design and
then adding the three columns E = ABC, F = BCD, and
G = ACD. The generators are I = ABCE, I = BCDF, and
I = ACDG (Table 8.14). The complete defining rela-
tion is I = ABCE = BCDF = ADEF = ACDG = BDEG =
CEFG = ABFG.

(Continued on p. 354)
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◾ TABLE 8 . 15
A 27−3

IV
Fractional Factorial Design

Basic Design

Run A B C D E = ABC F = BCD G = ACD

1 − − − − − − −
2 + − − − + − +
3 − + − − + + −
4 + + − − − + +
5 − − + − + + +
6 + − + − − + −
7 − + + − − − +
8 + + + − + − −
9 − − − + − + +
10 + − − + + + −
11 − + − + + − +
12 + + − + − − −
13 − − + + + − −
14 + − + + − − +
15 − + + + − + −
16 + + + + + + +

8.4.2 Analysis of 2k−p Fractional Factorials

There are many computer programs that can be used to analyze the 2k−p fractional factorial design. For example,
Design-Expert, JMP, and Minitab all have this capability.

The design may also be analyzed by resorting to first principles; the ith effect is estimated by

Effecti =
2(Contrasti)

N
=

Contrasti
(N∕2)

where the Contrasti is found using the plus and minus signs in column i and N = 2k−p is the total number of observa-
tions. The 2k−p design allows only 2k−p − 1 effects (and their aliases) to be estimated. Normal probability plots of the
effect estimates and Lenth’s method are very useful analysis tools.

Projection of the 2k− p Fractional Factorial. The 2k−p design collapses into either a full factorial or a fractional
factorial in any subset of r ≤ k − p of the original factors. Those subsets of factors providing fractional factorials are
subsets appearing as words in the complete defining relation. This is particularly useful in screening experiments when
we suspect at the outset of the experiment that most of the original factors will have small effects. The original 2k−p

fractional factorial can then be projected into a full factorial, say, in the most interesting factors. Conclusions drawn
from designs of this type should be considered tentative and subject to further analysis. It is usually possible to find
alternative explanations of the data involving higher order interactions.

As an example, consider the 27−3IV design from Example 8.5. This is a 16-run design involving seven factors. It
will project into a full factorial in any four of the original seven factors that is not a word in the defining relation. There
are 35 subsets of four factors, seven of which appear in the complete defining relation (see Table 8.15). Thus, there are
28 subsets of four factors that would form 24 designs. One combination that is obvious upon inspecting Table 8.15 is
A, B, C, and D.
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To illustrate the usefulness of this projection properly, suppose that we are conducting an experiment to improve
the efficiency of a ball mill and the seven factors are as follows:

1. Motor speed

2. Gain
3. Feed mode

4. Feed sizing

5. Material type

6. Screen angle

7. Screen vibration level

We are fairly certain that motor speed, feed mode, feed sizing, and material type will affect efficiency and that these
factors may interact. The role of the other three factors is less well known, but it is likely that they are negligible. A
reasonable strategy would be to assign motor speed, feed mode, feed sizing, and material type to columns A, B, C, and
D, respectively, in Table 8.15. Gain, screen angle, and screen vibration level would be assigned to columns E, F, and
G, respectively. If we are correct and the “minor variables” E, F, and G are negligible, we will be left with a full 24

design in the key process variables.

8.4.3 Blocking Fractional Factorials

Occasionally, a fractional factorial design requires so many runs that all of them cannot be made under homogeneous
conditions. In these situations, fractional factorials may be confounded in blocks. Appendix Table VIII contains rec-
ommended blocking arrangements for many of the fractional factorial designs in Table 8.14. The minimum block size
for these designs is eight runs.

To illustrate the general procedure, consider the 26−2IV fractional factorial design with the defining relation I =
ABCE = BCDF = ADEF shown in Table 8.10. This fractional design contains 16 treatment combinations. Suppose
we wish to run the design in two blocks of eight treatment combinations each. In selecting an interaction to confound
with blocks, we note from examining the alias structure in Appendix Table VIII(f) that there are two alias sets involving
only three-factor interactions. The table suggests selecting ABD (and its aliases) to be confounded with blocks. This
would give the two blocks shown in Figure 8.18. Notice that the principal block contains those treatment combinations
that have an even number of letters in common with ABD. These are also the treatment combinations for which L =
x1 + x2 + x4 = 0 (mod 2).

◾ F I GURE 8 . 18 The 26−2
IV

design in two blocks with ABD confounded
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EXAMPLE 8 . 6

A five-axis CNC machine is used to produce an impeller
for a jet turbine engine. The blade profiles are an important
quality characteristic. Specifically, the deviation of the blade
profile from the profile specified on the engineering draw-
ing is of interest. An experiment is run to determine which
machine parameters affect profile deviation. The eight fac-
tors selected for the design are as follows:

Factor
Low

Level (−)
High

Level (+)

A = x-Axis shift (0.001 in.) 0 15

B = y-Axis shift (0.001 in.) 0 15

C = z-Axis shift (0.001 in.) 0 15

D = Tool supplier 1 2

E = a-Axis shift (0.001 deg) 0 30

F = Spindle speed (%) 90 110

G = Fixture height (0.001 in.) 0 15

H = Feed rate (%) 90 110

One test blade on each part is selected for inspection. The
profile deviation is measured using a coordinate measur-
ing machine, and the standard deviation of the difference
between the actual profile and the specified profile is used
as the response variable.

The machine has four spindles. Because there may be
differences in the spindles, the process engineers feel that
the spindles should be treated as blocks.

The engineers feel confident that three-factor and higher
interactions are not too important, but they are reluctant to
ignore the two-factor interactions. From Table 8.14, two
designs initially appear appropriate: the 28−4IV design with
16 runs and the 28−3IV design with 32 runs. Appendix Table
VIII(l) indicates that if the 16-run design is used, there will
be fairly extensive aliasing of two-factor interactions. Fur-
thermore, this design cannot be run in four blocks with-
out confounding four two-factor interactions with blocks.
Therefore, the experimenters decide to use the 28−3IV design
in four blocks. This confounds one three-factor interac-
tion alias chain and one two-factor interaction (EH) and its
three-factor interaction aliases with blocks. The EH interac-
tion is the interaction between the a-axis shift and the feed

rate, and the engineers consider an interaction between these
two variables to be fairly unlikely.

Table 8.16 contains the design and the resulting
responses as standard deviation × 103 in.. Because the
response variable is a standard deviation, it is often best
to perform the analysis following a log transformation.
The effect estimates are shown in Table 8.17. Figure 8.19
is a normal probability plot of the effect estimates, using
ln (standard deviation × 103) as the response variable.
The only large effects are A = x-axis shift, B = y-axis shift,
and the alias chain involving AD + BG. Now AD is the
x-axis shift-tool supplier interaction, and BG is the y-axis
shift-fixture height interaction, and since these two inter-
actions are aliased it is impossible to separate them based
on the data from the current experiment. Since both interac-
tions involve one large main effect it is also difficult to apply
any “obvious” simplifying logic such as effect heredity to
the situation either. If there is some engineering knowledge
or process knowledge available that sheds light on the sit-
uation, then perhaps a choice could be made between the
two interactions; otherwise, more data will be required to
separate these two effects. (The problem of adding runs to
a fractional factorial to de-alias interactions is discussed in
Sections 8.6 and 8.7.)

Suppose that process knowledge suggests that the appro-
priate interaction is likely to be AD. Table 8.18 is the result-
ing analysis of variance for the model with factors A, B, D,
and AD (factor D was included to preserve the hierarchy
principle). Notice that the block effect is small, suggesting
that the machine spindles are not very different.

Figure 8.20 is a normal probability plot of the residu-
als from this experiment. This plot is suggestive of slightly
heavier than normal tails, so possibly other transforma-
tions should be considered. The AD interaction plot is in
Figure 8.21. Notice that tool supplier (D) and the magnitude
of the x-axis shift (A) have a profound impact on the variabil-
ity of the blade profile from design specifications. Running
A at the low level (0 offset) and buying tools from supplier
1 gives the best results. Figure 8.22 shows the projection of
this 28−3IV design into four replicates of a 23 design in factors
A, B, and D. The best combination of operating conditions
is A at the low level (0 offset), B at the high level (0.015 in
offset), and D at the low level (tool supplier 1).
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◾ TABLE 8 . 16
The 28−3 Design in Four Blocks for Example 8.6

Basic Design

Run A B C D E F = ABC G = ABD H = BCDE Block

Actual
Run
Order

Standard
Deviation
(× 103 in.)

1 − − − − − − − + 3 18 2.76

2 + − − − − + + + 2 16 6.18

3 − + − − − + + − 4 29 2.43

4 + + − − − − − − 1 4 4.01

5 − − + − − + − − 1 6 2.48

6 + − + − − − + − 4 26 5.91

7 − + + − − − + + 2 14 2.39

8 + + + − − + − + 3 22 3.35

9 − − − + − − + − 1 8 4.40

10 + − − + − + − − 4 32 4.10

11 − + − + − + − + 2 15 3.22

12 + + − + − − + + 3 19 3.78

13 − − + + − + + + 3 24 5.32

14 + − + + − − − + 2 11 3.87

15 − + + + − − − − 4 27 3.03

16 + + + + − + + − 1 3 2.95

17 − − − − + − − − 2 10 2.64

18 + − − − + + + − 3 21 5.50

19 − + − − + + + + 1 7 2.24

20 + + − − + − − + 4 28 4.28

21 − − + − + + − + 4 30 2.57

22 + − + − + − + + 1 2 5.37

23 − + + − + − + − 3 17 2.11

24 + + + − + + − − 2 13 4.18

25 − − − + + − + + 4 25 3.96

26 + − − + + + − + 1 1 3.27

27 − + − + + + − − 3 23 3.41

28 + + − + + − + − 2 12 4.30

29 − − + + + + + − 2 9 4.44

30 + − + + + − − − 3 20 3.65

31 − + + + + − − + 1 5 4.41

32 + + + + + + + + 4 31 3.40
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◾ TABLE 8 . 17
Effect Estimates, Regression Coefficients, and Sums of Squares for Example 8.6

Variable Name −1 Level +1 Level

A x-Axis shift 0 15
B y-Axis shift 0 15
C z-Axis shift 0 15
D Tool supplier 1 2
E a-Axis shift 0 30
F Spindle speed 90 110
G Fixture height 0 15
H Feed rate 90 110

Variable Regression Coefficient Estimated Effect Sum of Squares

Overall average 1.28007
A 0.14513 0.29026 0.674020
B −0.10027 −0.20054 0.321729
C −0.01288 −0.02576 0.005310
D 0.05407 0.10813 0.093540
E −2.531E-04 −5.063E-04 2.050E-06
F −0.01936 −0.03871 0.011988
G 0.05804 0.11608 0.107799
H 0.00708 0.01417 0.001606

AB + CF + DG −0.00294 −0.00588 2.767E-04
AC + BF −0.03103 −0.06206 0.030815
AD + BG −0.18706 −0.37412 1.119705

AE 0.00402 0.00804 5.170E-04
AF + BC −0.02251 −0.04502 0.016214
AG + BD 0.02644 0.05288 0.022370

AH −0.02521 −0.05042 0.020339
BE 0.04925 0.09851 0.077627
BH 0.00654 0.01309 0.001371

CD + FG 0.01726 0.03452 0.009535
CE 0.01991 0.03982 0.012685

CG + DF −0.00733 −0.01467 0.001721
CH 0.03040 0.06080 0.029568
DE 0.00854 0.01708 0.002334
DH 0.00784 0.01569 0.001969
EF −0.00904 −0.01808 0.002616
EG −0.02685 −0.05371 0.023078
EH −0.01767 −0.03534 0.009993
FH −0.01404 −0.02808 0.006308
GH 0.00245 0.00489 1.914E-04
ABE 0.01665 0.03331 0.008874
ABH −0.00631 −0.01261 0.001273
ACD −0.02717 −0.05433 0.023617
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Effect estimates
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◾ F I GURE 8 . 19 Normal probability plot
of the effect estimates for Example 8.6

◾ TABLE 8 . 18
Analysis of Variance for Example 8.6

Source of Variation Sum of Squares Degrees of Freedom Mean Square F0 P-Value

A 0.6740 1 0.6740 39.42 <0.0001

B 0.3217 1 0.3217 18.81 0.0002

D 0.0935 1 0.0935 5.47 0.0280

AD 1.1197 1 1.1197 65.48 <0.0001

Blocks 0.0201 3 0.0067

Error 0.4099 24 0.0171

Total 2.6389 31
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◾ F I GURE 8 . 20 Normal probability plot of the
residuals for Example 8.6
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◾ F I GURE 8 . 22 The 28−3
IV

design in Example 8.6
projected into four replicates of a 23 design in factors A,
B, and D
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8.5 Alias Structures in Fractional Factorials and Other Designs

In this chapter, we show how to find the alias relationships in a 2k−p fractional factorial design by use of the complete
defining relation. This method works well in simple designs, such as the regular fractions we use most frequently, but it
does not work as well in more complex settings, such as some of the nonregular fractions and partial fold-over designs
that we will discuss subsequently. Furthermore, there are some fractional factorials that do not have defining relations,
such as the Plackett–Burman designs in Section 8.6.3, so the defining relation method will not work for these types of
designs at all.

Fortunately, there is a general method available that works satisfactorily in many situations. The method uses
the polynomial or regression model representation of the model, say

y = X1𝜷1 + 𝝐

where y is an n × 1 vector of the responses, X1 is an n × p1 matrix containing the design matrix expanded to the form
of the model that the experimenter is fitting, 𝜷1 is a p1 × 1 vector of the model parameters, and 𝜖 is an n × 1 vector of
errors. The least squares estimate of 𝜷1 is

�̂�1 = (X′
1X1)−1X′

1y

Suppose that the true model is
y = X1𝜷1 + X2𝜷2 + 𝜖

where X2 is an n × p2 matrix containing additional variables that are not in the fitted model and 𝜷2 is a p2 × 1 vector
of the parameters associated with these variables. It can be shown that

E(�̂�1) = 𝜷1 + (X′
1X1)−1X′

1X2𝜷2

= 𝜷1 + A𝜷2 (8.1)

The matrix A = (X′
1X1)−1X′

1X2 is called the alias matrix. The elements of this matrix operating on 𝜷2 identify the
alias relationships for the parameters in the vector 𝜷1.

We illustrate the application of this procedure with a familiar example. Suppose that we have conducted
a 23−1 design with defining relation I = ABC or I = x1x2x3. The model that the experimenter plans to fit is the
main-effects-only model

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝜖
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In the notation defined above

𝜷1 =
⎡⎢⎢⎢⎣

𝛽0
𝛽1
𝛽2
𝛽3

⎤⎥⎥⎥⎦
and X1 =

⎡⎢⎢⎢⎣

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

⎤⎥⎥⎥⎦
Suppose that the true model contains all the two-factor interactions, so that

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽12x1x2 + 𝛽13x1x3 + 𝛽23x2x3 + 𝜖

and

𝜷2 =
⎡⎢⎢⎣
𝛽12
𝛽13
𝛽23

⎤⎥⎥⎦
, and X2 =

⎡⎢⎢⎢⎣

1 −1 −1
−1 −1 1
−1 1 −1
1 1 1

⎤⎥⎥⎥⎦
Now

X′
1X1 = 4 I4 and X′

1X2 =
⎡⎢⎢⎢⎣

0 0 0
0 0 4
0 4 0
4 0 0

⎤⎥⎥⎥⎦
Therefore,

(X′
1X1)−1 =

1
4
I4

and
E(�̂�1) = 𝜷1 + A𝜷2

E

⎡⎢⎢⎢⎣

𝛽0

𝛽1

𝛽2

𝛽3

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

𝛽0
𝛽1
𝛽2
𝛽3

⎤⎥⎥⎥⎦
+ 1

4
I4

⎡⎢⎢⎢⎣

0 0 0
0 0 4
0 4 0
4 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
𝛽12
𝛽13
𝛽23

⎤⎥⎥⎦

=
⎡⎢⎢⎢⎣

𝛽0
𝛽1
𝛽2
𝛽3

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣

0 0 0
0 0 1
0 1 0
1 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
𝛽12
𝛽13
𝛽23

⎤⎥⎥⎦

=
⎡⎢⎢⎢⎣

𝛽0
𝛽1
𝛽2
𝛽3

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣

0
𝛽23
𝛽13
𝛽12

⎤⎥⎥⎥⎦

=
⎡⎢⎢⎢⎣

𝛽0
𝛽1 + 𝛽23
𝛽2 + 𝛽13
𝛽3 + 𝛽12

⎤⎥⎥⎥⎦
The interpretation of this, of course, is that each of the main effects is aliased with one of the two-factor interactions,
which we know to be the case for this design. Notice that every row of the alias matrix represents one of the factors
in 𝜷1 and every column represents one of the factors in 𝜷2. While this is a very simple example, the method is very
general and can be applied to much more complex designs.
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8.6 Resolution III Designs

8.6.1 Constructing Resolution III Designs

As indicated earlier, the sequential use of fractional factorial designs is very useful, often leading to great economy
and efficiency in experimentation. This application of fractional factorials occurs frequently in situations of pure factor
screening; that is, there are relatively many factors but only a few of them are expected to be important. Resolution III
designs can be very useful in these situations.

It is possible to construct resolution III designs for investigating up to k = N − 1 factors in only N runs, where
N is a multiple of 4. These designs are frequently useful in industrial experimentation. Designs in which N is a power
of 2 can be constructed by the methods presented earlier in this chapter, and these are presented first. Of particular
importance are designs requiring 4 runs for up to 3 factors, 8 runs for up to 7 factors, and 16 runs for up to 15 factors.
If k = N − 1, the fractional factorial design is said to be saturated.

A design for analyzing up to three factors in four runs is the 23−1III design, presented in Section 8.2. Another very
useful saturated fractional factorial is a design for studying seven factors in eight runs, that is, the 27−4III design. This
design is a one-sixteenth fraction of the 27. It may be constructed by first writing down as the basic design the plus
and minus levels for a full 23 design in A, B, and C and then associating the levels of four additional factors with the
interactions of the original three as follows: D = AB,E = AC,F = BC, and G = ABC. Thus, the generators for this
design are I = ABD, I = ACE, I = BCF, and I = ABCG. The design is shown in Table 8.19.

The complete defining relation for this design is obtained by multiplying the four generators ABD, ACE, BCF,
and ABCG together two at a time, three at a time, and four at a time, yielding

I = ABD = ACE = BCF = ABCG = BCDE = ACDF = CDG

= ABEF = BEG = AFG = DEF = ADEG = CEFG = BDFG = ABCDEFG

To find the aliases of any effect, simply multiply the effect by each word in the defining relation. For example, the
aliases of B are

B = AD = ABCE = CF = ACG = CDE = ABCDF = BCDG = AEF = EG

= ABFG = BDEF = ABDEG = BCEFG = DFG = ACDEFG

This design is a one-sixteenth fraction, and because the signs chosen for the generators are positive, this is the
principal fraction. It is also a resolution III design because the smallest number of letters in any word of the defining
contrast is three. Any one of the 16 different 27−4III designs in this family could be constructed by using the generators
with one of the 16 possible arrangements of signs in I = ± ABD, I = ± ACE, I = ± BCF, I = ± ABCG.

◾ TABLE 8 . 19
The 27−4III Design with the Generators I = ABD, I = ACE, I = BCF, and I = ABCG

Basic Design

Run A B C D = AB E = AC F = BC G = ABC

1 − − − + + + − def

2 + − − − − + + afg

3 − + − − + − + beg

4 + + − + − − − abd

5 − − + + − − + cdg

6 + − + − + − − ace

7 − + + − − + − bcf

8 + + + + + + + abcdefg
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The seven degrees of freedom in this design may be used to estimate the seven main effects. Each of these
effects has 15 aliases; however, if we assume that three-factor and higher interactions are negligible, then considerable
simplification in the alias structure results. Making this assumption, each of the linear combinations associated with
the seven main effects in this design actually estimates the main effect and three two-factor interactions:

[A] → A + BD + CE + FG

[B] → B + AD + CF + EG

[C] → C + AE + BF + DG

[D] → D + AB + CG + EF

[E] → E + AC + BG + DF

[F] → F + BC + AG + DE

[G] → G + CD + BE + AF

(8.2)

These aliases are found in Appendix Table VIII(h), ignoring three-factor and higher interactions.
The saturated 27−4III design in Table 8.19 can be used to obtain resolution III designs for studying fewer than seven

factors in eight runs. For example, to generate a design for six factors in eight runs, simply drop any one column in
Table 8.19, for example, column G. This produces the design shown in Table 8.20.

It is easy to verify that this design is also of resolution III; in fact, it is a 26−3III , or a one-eighth fraction, of the 26

design. The defining relation for the 26−3III design is equal to the defining relation for the original 27−4III design with any
words containing the letter G deleted. Thus, the defining relation for our new design is

I = ABD = ACE = BCF = BCDE = ACDF = ABEF = DEF

In general, when d factors are dropped to produce a new design, the new defining relation is obtained as those
words in the original defining relation that do not contain any dropped letters. When constructing designs by
this method, care should be exercised to obtain the best arrangement possible. If we drop columns B, D, F,
and G from Table 8.19, we obtain a design for three factors in eight runs, yet the treatment combinations cor-
respond to two replicates of a 23−1 design. The experimenter would probably prefer to run a full 23 design in
A, C, and E.

It is also possible to obtain a resolution III design for studying up to 15 factors in 16 runs. This saturated 215−11III
design can be generated by first writing down the 16 treatment combinations associated with a 24 design in A, B, C,
and D and then equating 11 new factors with the two-, three-, and four-factor interactions of the original four. In this

◾ TABLE 8 . 20
A 26−3

III
Design with the Generators I = ABD, I = ACE, and I = BCF

Basic Design

Run A B C D = AB E = AC F = BC

1 − − − + + + def

2 + − − − − + af

3 − + − − + − be

4 + + − + − − abd

5 − − + + − − cd

6 + − + − + − ace

7 − + + − − + bcf

8 + + + + + + abcdef
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design, each of the 15 main effects is aliased with seven two-factor interactions. A similar procedure can be used for
the 231−26III design, which allows up to 31 factors to be studied in 32 runs.

8.6.2 Fold Over of Resolution III Fractions to Separate Aliased Effects

By combining fractional factorial designs in which certain signs are switched, we can systematically isolate effects of
potential interest. This type of sequential experiment is called a fold over of the original design. The alias structure for
any fraction with the signs for one or more factors reversed is obtained by making changes of sign on the appropriate
factors in the alias structure of the original fraction.

Consider the 27−4III design in Table 8.19. Suppose that along with this principal fraction a second fractional design
with the signs reversed in the column for factor D is also run. That is, the column for D in the second fraction is

− + + − − + +−

The effects that may be estimated from the first fraction are shown in Equation 8.2, and from the second fraction we
obtain

[A]′ → A − BD + CE + FG

[B]′ → B − AD + CF + EG

[C]′ → C + AE + BF − DG

[D]′ → D − AB − CG − EF

[−D]′ → −D + AB + CG + EF (8.3)

[E]′ → E + AC + BG − DF

[F]′ → F + BC + AG − DE

[G]′ → G − CD + BE + AF

assuming that three-factor and higher interactions are insignificant. Now from the two linear combinations of effects
1
2
([i] + [i]′) and 1

2
([i] − [i]′) we obtain

i From 1
2
([i] + [i]′) From 1

2
([i] − [i]′)

A A + CE + FG BD

B B + CF + EG AD

C C + AE + BF DG

D D AB + CG + EF

E E + AC + BG DF

F F + BC + AG DE

G G + BE + AF CD

Thus, we have isolated the main effect of D and all of its two-factor interactions. In general, if we add to a
fractional design of resolution III or higher a further fraction with the signs of a single factor reversed, then the
combined design will provide estimates of the main effect of that factor and its two-factor interactions. This is
sometimes called a single-factor fold over.

Now suppose we add to a resolution III fractional a second fraction in which the signs for all the factors are
reversed. This type of fold over (sometimes called a full fold over or a reflection) breaks the alias links between all
main effects and their two-factor interactions. That is, we may use the combined design to estimate all of the main
effects clear of any two-factor interactions. The following example illustrates the full fold-over technique.
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EXAMPLE 8 . 7

A human performance analyst is conducting an experiment
to study eye focus time and has built an apparatus in which
several factors can be controlled during the test. The factors
he initially regards as important are acuity or sharpness of
vision (A), distance from target to eye (B), target shape (C),
illumination level (D), target size (E), target density (F), and
subject (G). Two levels of each factor are considered. He
suspects that only a few of these seven factors are of major
importance and that high-order interactions between the fac-
tors can be neglected. On the basis of this assumption, the
analyst decides to run a screening experiment to identify the
most important factors and then to concentrate further study
on those. To screen these seven factors, he runs the treatment
combinations from the 27−4III design in Table 8.19 in random
order, obtaining the focus times in milliseconds, as shown
in Table 8.21.

Seven main effects and their aliases may be estimated
from these data. From Equation 8.2, we see that the effects
and their aliases are

[A] = 20.63 → A + BD + CE + FG

[B] = 38.38 → B + AD + CF + EG

[C] = −0.28 → C + AE + BF + DG

[D] = 28.88 → D + AB + CG + EF

[E] = −0.28 → E + AC + BG + DF

[F] = −0.63 → F + BC + AG + DE

[G] = −2.43 → G + CD + BE + AF

For example, the estimate of the main effect of A and its
aliases is

[A] = 1

4
(−85.5 + 75.1 − 93.2 + 145.4 − 83.7

+ 77.6 − 95.0 + 141.8) = 20.63

The three largest effects are [A], [B], and [D]. The simplest
interpretation of the results of this experiment is that the
main effects of A, B, and D are all significant. However, this
interpretation is not unique, because one could also logically
conclude that A, B, and the AB interaction, or perhaps B, D,
and the BD interaction, or perhaps A, D, and the AD inter-
action are the true effects.

Notice that ABD is a word in the defining relation for
this design. Therefore, this 27−4III design does not project into
a full 23 factorial in ABD; instead, it projects into two repli-
cates of a 23−1 design, as shown in Figure 8.23. Because the
23−1 design is a resolution III design, A will be aliased with
BD, B will be aliased with AD, and D will be aliased with
AB, so the interactions cannot be separated from the main
effects. The experimenter here may have been unlucky. If he
had assigned the factor illumination level to C instead of D,

A

2

2

2

2

–

+

D

–

–

+

+

B

◾ F I GURE 8 . 23 The 27−4III design projected into
two replicates of a 23−1

III
design in A, B, and D

◾ TABLE 8 . 21
A 27−4III Design for the Eye Focus Time Experiment

Basic Design

Run A B C D = AB E = AC F = BC G = ABC Time

1 − − − + + + − def 85.5

2 + − − − − + + afg 75.1

3 − + − − + − + beg 93.2

4 + + − + − − − abd 145.4

5 − − + + − − + cdg 83.7

6 + − + − + − − ace 77.6

7 − + + − − + − bcf 95.0

8 + + + + + + + abcdefg 141.8
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the design would have projected into a full 23 design, and
the interpretation could have been simpler.

To separate the main effects and the two-factor interac-
tions, the full fold-over technique is used, and a second frac-
tion is run with all the signs reversed. This fold-over design
is shown in Table 8.22 along with the observed responses.
Notice that when we construct a full fold over of a resolution
III design, we (in effect) change the signs on the generators
that have an odd number of letters. The effects estimated by
this fraction are

[A]′ = −17.68 → A − BD − CE − FG

[B]′ = 37.73 → B − AD − CF − EG

[C]′ = −3.33 → C − AE − BF − DG

[D]′ = 29.88 → D − AB − CG − EF

[E]′ = 0.53 → E − AC − BG − DF

[F]′ = 1.63 → F − BC − AG − DE

[G]′ = 2.68 → G − CD − BE − AF

By combining this second fraction with the original one, we
obtain the following estimates of the effects:

i From 1
2
([i] + [i]′) From 1

2
([i] − [i]′)

A A = 1.48 BD + CE + FG = 19.15

B B = 38.05 AD + CE + FG = 19.15

C C = −1.80 BD + CE + FG = 19.15

D D = 29.38 AB + CG + EF = −0.50
E E = 0.13 AC + BG + DF = −0.40
F F = 0.50 BC + AG + DE = −1.13
G G = 0.13 CD + BE + AF = −2.55

The two largest effects are B and D. Furthermore, the
third largest effect is BD + CE + FG, so it seems reason-
able to attribute this to the BD interaction. The experimenter
used the two factors distance (B) and illumination level (D)
in subsequent experiments with the other factorsA, C, E, and
F at standard settings and verified the results obtained here.
He decided to use subjects as blocks in these new experi-
ments rather than ignore a potential subject effect because
several different subjects had to be used to complete the
experiment.

◾ TABLE 8 . 22
A Fold-Over 27−4III Design for the Eye Focus Experiment

Basic Design

Run A B C D = −AB E = −AC F = −BC G = ABC Time

1 + + + − − − + abcg 91.3

2 − + + + + − − bcde 136.7

3 + − + + − + − acdf 82.4

4 − − + − + + + cefg 73.4

5 + + − − + + − abef 94.1

6 − + − + − + + bdfg 143.8

7 + − − + + − + adeg 87.3

8 − − − − − − − (1) 71.9

The Defining Relation for a Fold-Over Design. Combining fractional factorial designs via fold over as demon-
strated in Example 8.7 is a very useful technique. It is often of interest to know the defining relation for the combined
design. It can be easily determined. Each separate fraction will have L + U words used as generators: L words of like
sign and U words of unlike sign. The combined design will have L + U − 1 words used as generators. These will be
the L words of like sign and the U − 1 words consisting of independent even products of the words of unlike sign.
(Even products are words taken two at a time, four at a time, and so forth.)
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To illustrate this procedure, consider the design in Example 8.7. For the first fraction, the generators are

I = ABD, I = ACE, I = BCF, and I = ABCG

and for the second fraction, they are

I = −ABD, I = −ACE, I = −BCF, and I = ABCG

Notice that in the second fraction we have switched the signs on the generators with an odd number of letters. Also,
notice that L + U = 1 + 3 = 4. The combined design will have I = ABCG (the like sign word) as a generator and
two words that are independent even products of the words of unlike sign. For example, take I = ABD and I = ACE;
then I = (ABD)(ACE) = BCDE is a generator of the combined design. Also, take I = ABD and I = BCF; then I =
(ABD)(BCF) = ACDF is a generator of the combined design. The complete defining relation for the combined design
is

I = ABCG = BCDE = ACDF = ADEG = BDFG = ABEF = CEFG

Blocking in a Fold-Over Design.Usually a fold-over design is conducted in two distinct time periods. Following
the initial fraction, some time usually elapses while the data are analyzed and the fold-over runs are planned. Then
the second set of runs is made, often on a different day, or different shift, or using different operating personnel, or
perhapsmaterial from a different source. This leads to a situationwhere blocking to eliminate potential nuisance effects
between the two time periods is of interest. Fortunately, blocking in the combined experiment is easily accomplished.

To illustrate, consider the fold-over experiment in Example 8.7. In the initial group of eight runs shown in
Table 8.21, the generators are D = AB,E = AC,F = BC, and G = ABC. In the fold-over set of runs, Table 8.22, the
signs are changed on three of the generators so that D = −AB,E = −AC, and F = −BC. Thus, in the first group
of eight runs the signs on the effects ABD, ACE, and BCF are positive, and in the second group of eight runs the
signs on ABD, ACE, and BCF are negative; therefore, these effects are confounded with blocks. Actually, there is a
single-degree-of-freedom alias chain confounded with blocks (remember that there are two blocks, so there must be
one degree of freedom for blocks), and the effects in this alias chain may be found by multiplying any one of the effects
ABD, ACE, and BCF through the defining relation for the design. This yields

ABD = CDG = ACE = BCF = BEG = AFG = DEF = ABCDEFG

as the complete set of effects that are confounded with blocks. In general, a completed fold-over experiment will
always form two blocks with the effects whose signs are positive in one block and negative in the other (and their
aliases) confounded with blocks. These effects can always be determined from the generators whose signs have been
switched to form the fold over.

8.6.3 Plackett–Burman Designs

These are two-level fractional factorial designs developed by Plackett and Burman (1946) for studying up to k = N − 1
variables inN runs, whereN is a multiple of 4. IfN is a power of 2, these designs are identical to those presented earlier
in this section. However, for N = 12, 20, 24, 28, and 36, the Plackett–Burman designs are sometimes of interest.
Because these designs cannot be represented as cubes, they are sometimes called nongeometric designs.

The upper half of Table 8.23 presents rows of plus andminus signs that are used to construct the Plackett–Burman
designs for N = 12, 20, 24, and 36, whereas the lower half of the table presents blocks of plus and minus signs for
constructing the design for N = 28. The designs for N = 12, 20, 24, and 36 are obtained by writing the appropriate
row in Table 8.23 as a column (or row). A second column (or row) is then generated from this first one by moving the
elements of the column (or row) down (or to the right) one position and placing the last element in the first position.
A third column (or row) is produced from the second similarly, and the process is continued until column (or row) k
is generated. A row of minus signs is then added, completing the design. For N = 28, the three blocks X, Y , and Z are
written down in the order

X Y Z
Z X Y
Y Z X
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◾ TABLE 8 . 23
Plus and Minus Signs for the Plackett–Burman Designs

k = 11, N = 12 + + − + + + − − − +−

k = 19, N = 20 + + − − + + + + − + − + − − − − + +−

k = 23, N = 24 + + + + + − + − + + − − + + − − + − + − − −−

k = 35, N = 36 − + − + + + − − − + + + + + − + + + − − + − − − − + − + − + + − − +−

k=𝟐𝟕, N=𝟐𝟖

+ − + + + + − − − − + − − − + − − + + + − + − + + − +
+ + − + + + − − − − − + + − − + − − − + + + + − + + −
− + + + + + − − − + − − − + − − + − + − + − + + − + +
− − − + − + + + + − − + − + − − − + + − + + + − + − +
− − − + + − + + + + − − − − + + − − + + − − + + + + −
− − − − + + + + + − + − + − − − + − − + + + − + − + +
+ + + − − − + − + − − + − − + − + − + − + + − + + + −
+ + + − − − + + − + − − + − − − − + + + − + + − − + +
+ + + − − − − + + − + − − + − + − − − + + − + + + − +

and a row of minus signs is added to these 27 rows. The design for N = 12 runs and k = 11 factors is shown in
Table 8.24.

The nongeometric Plackett–Burman designs for N = 12, 20, 24, 28, and 36 have complex alias structures. For
example, in the 12-run design every main effect is partially aliased with every two-factor interaction not involving
itself. For example, the AB interaction is aliased with the nine main effects C,D, . . . ,K and the AC interaction is
aliased with the nine main effects B,D, . . . ,K. Furthermore, each main effect is partially aliased with 45 two-factor
interactions. As an example, consider the aliases of the main effect of factor A:

[A] = A − 1
3
BC − 1

3
BD − 1

3
BE + 1

3
BF + . . . − 1

3
KL

◾ TABLE 8 . 24
Plackett–Burman Design for N = 12, k = 11

Run A B C D E F G H I J K

1 + − + − − − + + + − +
2 + + − + − − − + + + −
3 − + + − + − − − + + +
4 + − + + − + − − − + +
5 + + − + + − + − − − +
6 + + + − + + − + − − −
7 − + + + − + + − + − −
8 − − + + + − + + − + −
9 − − − + + + − + + − +
10 + − − − + + + − + + −
11 − + − − − + + + − + +
12 − − − − − − − − − − −
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Each one of the 45 two-factor interactions in the alias chain in weighed by the constant ± 1
3
. This weighting

of the two-factor interactions occurs throughout the Plackett–Burman series of nongeometric designs. In other
Plackett–Burman designs, the constant will be different than ± 1

3
.

Plackett–Burman designs are examples of nonregular designs. This term appears frequently in the experimental
design literature. Basically, a regular design is one in which all effects can be estimated independently of the other
effects and in the case of a fractional factorial, the effects that cannot be estimated are completely aliased with the other
effects. Obviously, a full factorial such as the 2k is a regular design, and so are the 2k−p fractional factorials because
while all of the effects cannot be estimated the “constants” in the alias chains for these designs are always either zero
or plus or minus unity. That is, the effects that are not estimable because of the fractionation are completely aliased
(some say completely confounded) with the effects that can be estimated. In nonregular designs, because some of the
nonzero constants in the alias chains are not equal to ±1, there is always at least a chance that some information on
the aliased effects may be available.

The projection properties of the nongeometric Plackett–Burman designs are interesting, and in many cases, use-
ful. For example, consider the 12-run design in Table 8.24. This design will project into three replicates of a full 22

design in any two of the original 11 factors. In three factors, the projected design is a full 23 factorial plus a 23−1III
fractional factorial (see Figure 8.24a). All Plackett–Burman designs will project into a full factorial plus some addi-
tional runs in any three factors. Thus, the resolution III Plackett–Burman design has projectivity 3, meaning it will
collapse into a full factorial in any subset of three factors (actually, some of the larger Plackett–Burman designs, such
as those with 68, 72, 80, and 84 runs, have projectivity 4). In contrast, the 2k−pIII design only has projectivity 2. The
four-dimensional projections of the 12-run design are shown in Figure 8.24b. Notice that there are 11 distinct runs.
This design can fit all four of the main effects and all 6 two-factor interactions, assuming that all other main effects
and interactions are negligible. The design in Figure 8.24b needs 5 additional runs to form a complete 24 (with one
additional run) and only a single run to form a 24−1 (with 5 additional runs). Regression methods can be used to fit
models involving main effects and interactions using those projected designs.

(a) Projection into three factors

(b) Projection into four factors

– +

◾ F I GURE 8 . 24 Projection of the 12-run
Plackett–design into three- and four-factor designs
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EXAMPLE 8 . 8

We will illustrate the analysis of a Plackett–Burman design
with an example involving 12 factors. The smallest regu-
lar fractional factorial for 12 factors is a 16-run 212−8 frac-
tional factorial design. In this design, all 12 main effects are
aliased with four two-factor interactions and three chains of
two-factor interactions each containing six two-factor inter-
actions (refer to Appendix VIII, design w). If there are sig-
nificant two-factor interactions along with the main effects
it is very possible that additional runs will be required to
de-alias some of these effects.

Suppose that we decide to use a 20-run Plackett–Burman
design for this problem. Now this has more runs that the
smallest regular fraction, but it contains fewer runs than
would be required by either a full fold over or a partial
fold-over of the 16-run regular fraction. This design was
created in JMP and is shown in Table 8.25, along with the
observed response data obtained when the experiment was
conducted. The alias matrix for this design, also produced
from JMP, is in Table 8.26. Note that the coefficients of the
aliased two-factor interactions are not either 0, −1, or +1

because this is a nonregular design). Hopefully this will pro-
vide some flexibility with which to estimate interactions if
necessary.

Table 8.27 shows the JMP analysis of this design, using
a forward-stepwise regression procedure to fit the model.
In forward-stepwise regression, variables are entered into
the model one at a time, beginning with those that appear
most important, until no variables remain that are reasonable
candidates for entry. In this analysis, we consider all main
effects and two-factor interactions as possible variables of
interest for the model.

Considering the P-values for the variables in Table 8.27,
the most important factor is x2, so this factor is entered into
the model first. JMP then recalculates the P-values and the
next variable entered would be x4. Then the x1x4 interac-
tion is entered along with the main effect of x1 to preserve
the hierarchy of the model. This is followed by the x1x4
interactions. The JMP output for these steps is not shown
but is summarized at the bottom of Table 8.28. Finally,
the last variable entered is x5. Table 8.28 summarizes the
final model.

◾ TABLE 8 . 25
Plackett–Burman Design for Example 8.8

Run X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 y

1 1 1 1 1 1 1 1 1 1 1 1 1 221.5032

2 −1 1 −1 −1 1 1 1 1 −1 1 −1 1 213.8037

3 −1 −1 1 −1 −1 1 1 1 1 −1 1 −1 167.5424

4 1 −1 −1 1 −1 −1 1 1 1 1 −1 1 232.2071

5 1 1 −1 −1 1 −1 −1 1 1 1 1 −1 186.3883

6 −1 1 1 −1 −1 1 −1 −1 1 1 1 1 210.6819

7 −1 −1 1 1 −1 −1 1 −1 −1 1 1 1 168.4163

8 −1 −1 −1 1 1 −1 −1 1 −1 −1 1 1 180.9365

9 −1 −1 −1 −1 1 1 −1 −1 1 −1 −1 1 172.5698

10 1 −1 −1 −1 −1 1 1 −1 −1 1 −1 −1 181.8605

11 −1 1 −1 −1 −1 −1 1 1 −1 −1 1 −1 202.4022

12 1 −1 1 −1 −1 −1 −1 1 1 −1 −1 1 186.0079

13 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 −1 216.4375

14 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 192.4121

15 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 224.4362

16 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 190.3312

17 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 228.3411

18 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 223.6747

19 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 163.5351

20 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 236.5124
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◾ TABLE 8 . 27
JMP Stepwise Regression Analysis of Example 8.8, Initial Solution

Stepwise Fit
Response:
Y

Stepwise Regression Control
Prob to Enter 0.250
Prob to Leave 0.100

Current Estimates

SSE DFE MSE RSquare RSquare Adj Cp

10732 19 564.84211 0.0000 0.0000 12
Parameter Estimate nDF SS “F Ratio” “Prob>F”
Intercept 200 1 0 0.000 1.0000
X1 0 1 1280 2.438 0.1359
X2 0 1 2784.8 6.307 0.0218
X3 0 1 452.279 0.792 0.3853
X4 0 1 1843.2 3.733 0.0693
X5 0 1 67.21943 0.113 0.7401
X6 0 1 86.41367 0.146 0.7068
X7 0 1 292.6697 0.505 0.4866
X8 0 1 60.08353 0.101 0.7539
X9 0 1 572.9881 1.015 0.3270
X10 0 1 32.53443 0.055 0.8177
X11 0 1 15.37763 0.026 0.8741
X12 0 1 0.159759 0.000 0.9871
X1*X2 0 3 5908 6.532 0.0043
X1*X3 0 3 1736.782 1.030 0.4058
X1*X4 0 3 5543.2 5.698 0.0075
X1*X5 0 3 1358.09 0.773 0.5261
X1*X6 0 3 2795.154 1.878 0.1740
X1*X7 0 3 1581.316 0.922 0.4528
X1*X8 0 3 1767.483 1.052 0.3970
X1*X9 0 3 1866.724 1.123 0.3692
X1*X10 0 3 1609.033 0.941 0.4441
X1*X11 0 3 1821.162 1.090 0.3818
X1*X12 0 3 1437.829 0.825 0.4991
X2*X3 0 3 4473.249 3.812 0.0309
X2*X4 0 3 4671.721 4.111 0.0243
X2*X5 0 3 3011.798 2.081 0.1431
X2*X6 0 3 3561.431 2.649 0.0842
X2*X7 0 3 3635.536 2.732 0.0781
X2*X8 0 3 2848.428 1.927 0.1659
X2*X9 0 3 3944.319 3.099 0.0564
X2*X10 0 3 2828.937 1.909 0.1688
X2*X11 0 3 2867.948 1.945 0.1631
X2*X12 0 3 2786.331 1.870 0.1753
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◾ TABLE 8 . 27 (Continued)

Parameter Estimate nDF SS “F Ratio” “Prob>F”
X3*X4 0 3 2576.807 1.685 0.2102
X3*X5 0 3 995.7837 0.545 0.6582
X3*X6 0 3 558.5936 0.293 0.8300
X3*X7 0 3 1201.228 0.672 0.5815
X3*X8 0 3 512.677 0.268 0.8478
X3*X9 0 3 1058.287 0.583 0.6344
X3*X10 0 3 626.2659 0.331 0.8034
X3*X11 0 3 569.497 0.299 0.8257
X3*X12 0 3 452.4973 0.235 0.8708
X4*X5 0 3 2038.876 1.251 0.3244
X4*X6 0 3 2132.749 1.323 0.3017
X4*X7 0 3 2320.382 1.471 0.2599
X4*X8 0 3 2034.576 1.248 0.3255
X4*X9 0 3 4886.816 4.459 0.0185
X4*X10 0 3 3125.433 2.191 0.1288
X4*X11 0 3 1970.181 1.199 0.3418
X4*X12 0 3 2194.402 1.371 0.2875
X5*X6 0 3 189.5188 0.096 0.9612
X5*X7 0 3 4964.273 4.590 0.0168
X5*X8 0 3 332.1148 0.170 0.9149
X5*X9 0 3 1065.334 0.588 0.6318
X5*X10 0 3 136.8974 0.069 0.9757
X5*X11 0 3 866.5116 0.468 0.7084
X5*X12 0 3 185.205 0.094 0.9625
X6*X7 0 3 434.1661 0.225 0.8777
X6*X8 0 3 185.7122 0.094 0.9623
X6*X9 0 3 1302.2 0.737 0.5455
X6*X10 0 3 246.5934 0.125 0.9437
X6*X11 0 3 2492.598 1.613 0.2256
X6*X12 0 3 913.7187 0.496 0.6900
X7*X8 0 3 935.8699 0.510 0.6813
X7*X9 0 3 1876.723 1.130 0.3665
X7*X10 0 3 345.5343 0.177 0.9101
X7*X11 0 3 577.8999 0.304 0.8224
X7*X12 0 3 328.611 0.168 0.9161
X8*X9 0 3 1111.212 0.616 0.6146
X8*X10 0 3 936.6248 0.510 0.6811
X8*X11 0 3 710.6107 0.378 0.7700
X8*X12 0 3 1517.358 0.878 0.4731
X9*X10 0 3 2360.154 1.504 0.2517
X9*X11 0 3 588.4157 0.309 0.8183
X9*X12 0 3 587.527 0.309 0.8186
X10*X11 0 3 125.3218 0.063 0.9786
X10*X12 0 3 2241.266 1.408 0.2770
X11*X12 0 3 94.12651 0.047 0.9859
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◾ TABLE 8 . 28
JMP Final Stepwise Regression Solution, Example 8.8

Stepwise Fit
Response:
Y

Stepwise Regression Control
Prob to Enter 0.250
Prob to Leave 0.100
Direction:
Rules:

Current Estimates

SSE DFE MSE RSquare RSquare Adj Cp

381.79001 13 29.368462 0.9644 0.9480 72

Parameter Estimate nDF SS “F Ratio” “Prob>F”
Intercept 200 1 0 0.000 1.0000
X1 8 3 5654.991 64.184 0.0000
X2 9.89242251 2 4804.208 81.792 0.0000
X3 0 1 2.547056 0.081 0.7813
X4 12.1075775 2 4442.053 75.626 0.0000
X5 2.581897 1 122.21 4.161 0.0622
X6 0 1 44.86956 1.598 0.2302
X7 0 1 7.652516 0.245 0.6292
X8 0 1 28.02042 0.950 0.3488
X9 0 1 19.33012 0.640 0.4393
X10 0 1 76.73973 3.019 0.1079
X11 0 1 1.672382 0.053 0.8221
X12 0 1 10.36884 0.335 0.5734
X1*X2 −12.537887 1 2886.987 98.302 0.0000
X1*X3 0 2 6.20474 0.091 0.9138
X1*X4 9.53788744 1 1670.708 56.888 0.0000
X1*X5 0 1 1.889388 0.060 0.8111
X1*X6 0 2 45.6286 0.747 0.4966
X1*X7 0 2 10.10477 0.150 0.8628
X1*X8 0 2 41.24821 0.666 0.5332
X1*X9 0 2 90.27392 1.703 0.2268
X1*X10 0 2 76.84386 1.386 0.2905
X1*X11 0 2 27.15307 0.421 0.6665
X1*X12 0 2 37.51692 0.599 0.5662
X2*X3 0 2 54.47309 0.915 0.4288
X2*X4 0 1 3.403658 0.108 0.7482
X2*X5 0 1 0.216992 0.007 0.9355
X2*X6 0 2 46.47256 0.762 0.4897
X2*X7 0 2 37.44377 0.598 0.5668
X2*X8 0 2 65.97489 1.149 0.3522
X2*X9 0 2 69.32501 1.220 0.3322
X2*X10 0 2 98.35266 1.908 0.1943
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◾ TABLE 8 . 28 (Continued)

Parameter Estimate nDF SS “F Ratio” “Prob>F”
X2*X11 0 2 141.1503 3.226 0.0790
X2*X12 0 2 52.05325 0.868 0.4466
X3*X4 0 2 111.3687 2.265 0.1500
X3*X5 0 2 80.40096 1.467 0.2724
X3*X6 0 3 67.40344 0.715 0.5653
X3*X7 0 3 99.64513 1.177 0.3667
X3*X8 0 3 66.19013 0.699 0.5737
X3*X9 0 3 29.41242 0.278 0.8399
X3*X10 0 3 120.8801 1.544 0.2632
X3*X11 0 3 4.678496 0.041 0.9881
X3*X12 0 3 56.41798 0.578 0.6426
X4*X5 0 1 49.01055 1.767 0.2084
X4*X6 0 2 148.7678 3.511 0.0662
X4*X7 0 2 10.61344 0.157 0.8564
X4*X8 0 2 29.55318 0.461 0.6420
X4*X9 0 2 25.40367 0.392 0.6847
X4*X10 0 2 112.0974 2.286 0.1478
X4*X11 0 2 1.673771 0.024 0.9761
X4*X12 0 2 24.16136 0.372 0.6980
X5*X6 0 2 169.9083 4.410 0.0392
X5*X7 0 2 31.18914 0.489 0.6258
X5*X8 0 2 90.33176 1.705 0.2265
X5*X9 0 2 34.4118 0.545 0.5948
X5*X10 0 2 154.654 3.745 0.0575
X5*X11 0 2 10.09686 0.149 0.8629
X5*X12 0 2 12.34385 0.184 0.8346
X6*X7 0 3 59.7591 0.619 0.6187
X6*X8 0 3 94.11651 1.091 0.3974
X6*X9 0 3 57.73503 0.594 0.6331
X6*X10 0 3 165.7402 2.557 0.1139
X6*X11 0 3 77.11154 0.844 0.5007
X6*X12 0 3 58.58914 0.604 0.6270
X7*X8 0 3 44.58254 0.441 0.7290
X7*X9 0 3 29.92824 0.284 0.8362
X7*X10 0 3 86.08846 0.970 0.4445
X7*X11 0 3 63.54514 0.666 0.5920
X7*X12 0 3 31.78299 0.303 0.8229
X8*X9 0 3 60.30138 0.625 0.6148
X8*X10 0 3 104.4506 1.255 0.3414
X8*X11 0 3 33.70238 0.323 0.8089
X8*X12 0 3 51.03759 0.514 0.6816
X9*X10 0 3 110.8786 1.364 0.3092
X9*X11 0 3 50.35583 0.506 0.6865
X9*X12 0 3 119.2043 1.513 0.2706
X10*X11 0 3 93.00237 1.073 0.4037



�

� �

�

376 Chapter 8 Two-Level Fractional Factorial Designs

◾ TABLE 8 . 28 (Continued)

Parameter Estimate nDF SS “F Ratio” “Prob>F”
X10*X12 0 3 94.6634 1.099 0.3943
X11*X12 0 3 38.30184 0.372 0.7753

Step History
Step Parameter Action “Sig Prob” Seq SS RSquare Cp
1 X2 Entered 0.0218 2784.8 0.2595 .
2 X4 Entered 0.0368 1843.2 0.4312 .
3 X1*X2 Entered 0.0003 4044.8 0.8081 .
4 X1*X4 Entered 0.0000 1555.2 0.9530 .
5 X5 Entered 0.0622 122.21 0.9644 .

The final model for this experiment contains the main
effects of factors x1, x2, x4, and x5, plus the two-factor inter-
actions x1x2 and x1x4. Now, it turns out that the data for
this experiment were simulated from a model. The model
used was

y = 200 + 8x1 + 10x2 + 12x4 − 12x1x2 + 9x1x4 + 𝜖

where the random error termwas normal withmean zero and
standard deviation 5. The Plackett–Burman design was able
to correctly identify all of the significant main effects and
the two significant two-factor interactions. From Table 8.28
we observe that the model parameter estimates are actually
very close to the values chosen for the model.

The partial aliasing structure of the Plackett–Burman
design has been very helpful in identifying the significant
interactions. Another approach to the analysis would be to
realize that this design could be used to fit the main effects in
any four factors and all of their two factor interactions, then
use a normal probability plot to identify the four largest main

effects, and finally fit the four factorial model in those four
factors.

Notice that there is the main effect x5 is identified as
significant that was not in the simulation model used to
generate the data. A type I error has been committed with
respect to this factor. In screening experiments type I errors
are not as serious as type II errors. A type I error results
in a non-significant factor being identified as important and
retained for subsequent experimentation and analysis. Even-
tually, we will likely discover that this factor really isn’t
important. However, a type II error means that an impor-
tant factor has not been discovered. This variable will be
dropped from subsequent studies and if it really turns out
to be a critical factor, product or process performance can
be negatively impacted. It is highly likely that the effect of
this factor will never be discovered because it was discarded
early in the research. In our example, all important factors
were discovered, including the interactions, and that is the
key point.

8.7 Resolution IV and V Designs

8.7.1 Resolution IV Designs

A 2k−p fractional factorial design is of resolution IV if the main effects are clear of two-factor interactions and some
two-factor interactions are aliased with each other. Thus, if three-factor and higher interactions are suppressed, the
main effects may be estimated directly in a 2k−pIV design. An example is the 26−2IV design in Table 8.10. Furthermore,
the two combined fractions of the 27−4III design in Example 8.7 yield a 27−3IV design. Resolution IV designs are used
extensively as screening experiments. The 24−1 with eight runs and the 16-run fractions with 6, 7, and 8 factors are
very popular.

Any 2k−pIV design must contain at least 2k runs. Resolution IV designs that contain exactly 2k runs are called
minimal designs. Resolution IV designsmay be obtained from resolution III designs by the process of fold over. Recall
that to fold over a 2k−pIII design, simply add to the original fraction a second fraction with all the signs reversed. Then the
plus signs in the identity column I in the first fraction could be switched in the second fraction, and a (k + 1)st factor
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◾ TABLE 8 . 29
A 24−1IV Design Obtained by Fold Over

D

I A B C

Original 𝟐𝟑−𝟏III I = ABC

+ − − +
+ + − −
+ − + −
+ + + +

Second 𝟐𝟑−𝟏III with Signs Switched

− + + −
− − + +
− + − +
− − − −

could be associated with this column. The result is a 2k+1−pIV fractional factorial design. The process is demonstrated
in Table 8.29 for the 23−1III design. It is easy to verify that the resulting design is a 24−1IV design with defining relation
I = ABCD.

Table 8.30 provides a convenient summary of 2k−p fractional factorial designs with N = 4, 8, 16, and 32 runs.
Notice that although 16-run resolution IV designs are available for 6 ≤ k ≤ 8 factors, if there are nine or more factors
the smallest resolution IV design in the 29−p family is the 29−4, which requires 32 runs. Since this is a rather large
number of runs, many experimenters are interested in smaller designs. Recall that a resolution IV design must contain
at least 2k runs, so for example, a nine-factor resolution IV design must have at least 18 runs. A design with exactly
N = 18 runs can be created by using an algorithm for constructing “optimal” designs. This design is a nonregular
design, and it will be illustrated in Chapter 9 as part of a broader discussion of nonregular designs.

8.7.2 Sequential Experimentation with Resolution IV Designs

Because resolution IV designs are used as screening experiments, it is not unusual to find that upon conducting and
analyzing the original experiment, additional experimentation is necessary to completely resolve all of the effects.
We discussed this in Section 8.6.2 for the case of resolution III designs and introduced fold over as a sequential

◾ TABLE 8 . 30
Useful Factorial and Fractional Factorial Designs from the 2k−p System. The Numbers in
the Cells Are the Numbers of Factors in the Experiment

Number of Runs

Design Type 4 8 16 32

Full factorial 2 3 4 5

Half-fraction 3 4 5 6

Resolution IV fraction — 4 6–8 7–16

Resolution III fraction 3 5–7 9–15 17–31
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experimentation strategy. In the resolution III situation, main effects are aliased with two-factor interaction, so the
purpose of the fold over is to separate the main effects from the two-factor interactions. It is also possible to fold over
resolution IV designs to separate two-factor interactions that are aliased with each other.

Montgomery and Runger (1996) observe that an experimenter may have several objectives in folding over a
resolution IV design, such as

1. breaking as many two-factor interaction alias chains as possible;

2. breaking the two-factor interactions on a specific alias chain; or

3. breaking the two-factor interaction aliases involving a specific factor.

However, one has to be careful in folding over a resolution IV design. The full fold-over rule that we used for resolution
III designs, simply run another fraction with all of the signs reversed, will not work for the resolution IV case. If this
rule is applied to a resolution IV design, the result will be to produce exactly the same design with the runs in a different
order. Try it! Use the 26−2IV in Table 8.9 and see what happens when you reverse all of the signs in the test matrix.

The simplest way to fold over a resolution IV design is to switch the signs on a single variable of the original
design matrix. This single-factor fold over allows all the two-factor interactions involving the factor whose signs are
switched to be separated and accomplishes the third objective listed above.

To illustrate how a single-factor fold over is accomplished for a resolution IV design, consider the 26−2IV design
in Table 8.31 (the runs are in standard order, not run order). This experiment was conducted to study the effects of
six factors on the thickness of photoresist coating applied to a silicon wafer. The design factors are A = spin speed,

◾ TABLE 8 . 31
The Initial 26−2

IV
Design for the Spin Coater Experiment

A B C D E F

Speed
(RPM) Acceleration

Vol
(cc)

Time
(sec)

Resist
Viscosity

Exhaust
Rate

Thickness
(mil)

− − − − − − 4524

+ − − − + − 4657

− + − − + + 4293

+ + − − − + 4516

− − + − + + 4508

+ − + − − + 4432

− + + − − − 4197

+ + + − + − 4515

− − − + − + 4521

+ − − + + + 4610

− + − + + − 4295

+ + − + − − 4560

− − + + + − 4487

+ − + + − − 4485

− + + + − + 4195

+ + + + + + 4510
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◾ F I GURE 8 . 25 Half-normal plot of effects for the
initial spin coater experiment in Table 8.31

B = acceleration, C = volume of resist applied, D = spin time, E = resist viscosity, and F = exhaust rate. The alias
relationships for this design are given in Table 8.8. The half-normal probability plot of the effects is shown in
Figure 8.25. Notice that the largest main effects are A, B, C, and E, and since these effects are aliased with three-factor
or higher interactions, it is logical to assume that these are real effects. However, the effect estimate for the AB + CE
alias chain is also large. Unless other process knowledge or engineering information is available, we do not know
whether this is AB, CE, or both of the interaction effects.

The fold-over design is constructed by setting up a new 26−2IV fractional factorial design and changing the signs on
factor A. The complete design following the addition of the fold-over runs is shown (in standard order) in Table 8.32.
Notice that the runs have been assigned to two blocks; the runs from the initial 26−2IV design in Table 8.32 are in block
1, and the fold-over runs are in block 2. The effects that are estimated from the combined set of runs are (ignoring
interactions involving three or more factors)

[A] = A [AE] = AE

[B] = B [AF] = AF

[C] = C [BC] = BC + DF

[D] = D [BD] = BD + CF

[E] = E [BE] = BE

[F] = F [BF] = BF + CD

[AB] = AB [CE] = CE

[AC] = AC [DE] = DE

[AD] = AD [EF] = EF
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◾ TABLE 8 . 32
The Completed Fold Over for the Spin Coater Experiment

A B C D E F

Std.
Order Block

Speed
(RPM) Acceleration

Vol
(cc)

Time
(sec)

Resist
Viscosity

Exhaust
Rate

Thickness
(mil)

1 1 − − − − − − 4524

2 1 + − − − + − 4657

3 1 − + − − + + 4293

4 1 + + − − − + 4516

5 1 − − + − + + 4508

6 1 + − + − − + 4432

7 1 − + + − − − 4197

8 1 + + + − + − 4515

9 1 − − − + − + 4521

10 1 + − − + + + 4610

11 1 − + − + + − 4295

12 1 + + − + − − 4560

13 1 − − + + + − 4487

14 1 + − + + − − 4485

15 1 − + + + − + 4195

16 1 + + + + + + 4510

17 2 + − − − − − 4615

18 2 − − − − + − 4445

19 2 + + − − + + 4475

20 2 − + − − − + 4285

21 2 + − + − + + 4610

22 2 − − + − − + 4325

23 2 + + + − − − 4330

24 2 − + + − + − 4425

25 2 + − − + − + 4655

26 2 − − − + + + 4525

27 2 + + − + + − 4485

28 2 − + − + − − 4310

29 2 + − + + + − 4620

30 2 − − + + − − 4335

31 2 + + + + − + 4345

32 2 − + + + + + 4305

Notice that all of the two-factor interactions involving factor A are now clear of other two-factor interactions.
Also, AB is no longer aliased with CE. The half-normal probability plot of the effects from the combined design is
shown in Figure 8.26. Clearly it is the CE interaction that is significant.

It is easy to show that the completed fold-over design in Table 8.32 allows estimation of the 6 main effects
and 12 two-factor interaction alias chains shown previously, along with estimation of 12 other alias chains involving
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◾ F I GURE 8 . 26 Half-normal plot of effects for the spin
coater experiment in Table 8.32

higher order interactions and the block effect. The generators for the original fractions are E = ABC and F = BCD,
and because we changed the signs in column A to create the fold over, the generators for the second group of 16
runs are E = −ABC and F = BCD. Since there is only one word of like sign (L = 1,U = 1) and the combined design
has only one generator (it is a one-half fraction), the generator for the combined design is F = BCD. Furthermore,
since ABCE is positive in block 1 and ABCE is negative in block 2, ABCE plus its alias ADEF are confounded
with blocks.

Examination of the alias chains involving the two-factor interactions for the original 16-run design and the
completed fold over reveals some troubling information. In the original resolution IV fraction, every two-factor
interaction was aliased with another two-factor interaction in six alias chains, and in one alias chain there were three
two-factor interactions (refer to Table 8.8). Thus, seven degrees of freedom were available to estimate two-factor
interactions. In the completed fold over, there are nine two-factor interactions that are estimated free of other
two-factor interactions and three alias chains involving two two-factor interactions, resulting in 12 degrees of
freedom for estimating two-factor interactions. Put another way, we used 16 additional runs but only gained five
additional degrees of freedom for estimating two-factor interactions. This is not a terribly efficient use of experimental
resources.

Fortunately, there is another alternative to using a complete fold over. In a partial fold over (or semifold) we
make only half of the runs required for a complete fold over, which for the spin coater experiment would be eight runs.
The following steps will produce a partial fold-over design:

1. Construct a single-factor fold over from the original design in the usual way by changing the signs on a
factor that is involved in a two-factor interaction of interest.

2. Select only half of the fold-over runs by choosing those runs where the chosen factor is either at its high or
low level. Selecting the level that you believe will generate the most desirable response is usually a good
idea.
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◾ TABLE 8 . 33
The Partial Fold Over for the Spin Coater Experiment

A B C D E F

Std.
Order Block

Speed
(RPM) Acceleration

Vol
(cc)

Time
(sec)

Resist
Viscosity

Exhaust
Rate

Thickness
(mil)

1 1 − − − − − − 4524

2 1 + − − − + − 4657

3 1 − + − − + + 4293

4 1 + + − − − + 4516

5 1 − − + − + + 4508

6 1 + − + − − + 4432

7 1 − + + − − − 4197

8 1 + + + − + − 4515

9 1 − − − + − + 4521

10 1 + − − + + + 4610

11 1 − + − + + − 4295

12 1 + + − + − − 4560

13 1 − − + + + − 4487

14 1 + − + + − − 4485

15 1 − + + + − + 4195

16 1 + + + + + + 4510

17 2 − − − − + − 4445

18 2 − + − − − + 4285

19 2 − − + − − + 4325

20 2 − + + − + − 4425

21 2 − − − + + + 4525

22 2 − + − + − − 4310

23 2 − − + + − − 4335

24 2 − + + + + + 4305

Table 8.33 is the partial fold-over design for the spin coater experiment. Notice that we selected the runs where A
is at its low level because in the original set of 16 runs (Table 8.31), thinner coatings of photoresist (which are desirable
in this case) were obtained with A at the low level. (The estimate of the A effect is positive in the analysis of the original
16 runs, also suggesting that A at the low level produces the desired results.)

The alias relations from the partial fold over (ignoring interactions involving three or more factors) are

[A] = A [AE] = AE
[B] = B [AF] = AF
[C] = C [BC] = BC + DF
[D] = D [BD] = BD + CF
[E] = E [BE] = BE
[F] = F [BF] = BF + CD

[AB] = AB [CE] = CE
[AC] = AC [DE] = DE
[AD] = AD [EF] = EF
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◾ F I GURE 8 . 27 Half-normal plot of effects from the
partial fold over of the spin coater experiment in Table 8.33

Notice that there are 12 degrees of freedom available to estimate two-factor interactions, exactly as in the com-
plete fold over. Furthermore, AB is no longer aliased with CE. The half-normal plot of the effects from the par-
tial fold over is shown in Figure 8.27. As in the complete fold over, CE is identified as the significant two-factor
interaction.

The partial fold-over technique is very useful with resolution IV designs and usually leads to an efficient use
of experimental resources. Resolution IV designs always provide good estimates of main effects (assuming that
three-factor interactions are negligible), and usually the number of possible two-factor interaction that need to be
de-aliased is not large. A partial fold over of a resolution IV design will usually support estimation of as many
two-factor interactions as a full fold over. One disadvantage of the partial fold over is that it is not orthogonal. This
causes parameter estimates to be correlated and leads to inflation in the standard errors of the effects or regression
model coefficients. For example, in the partial fold over of the spin coater experiment, the standard errors of the
regression model coefficients range from 0.20𝜎 to 0.25𝜎, while in the complete fold over, which is orthogonal, the
standard errors of the model coefficients are 0.18𝜎. For more information on partial fold overs, see Mee and Peralta
(2000) and the supplemental material for this chapter.

8.7.3 Resolution V Designs

Resolution V designs are fractional factorials in which the main effects and the two-factor interactions do not have
other main effects and two-factor interactions as their aliases. Consequently, these are very powerful designs, allowing
unique estimation of all main effects and two-factor interactions, provided of course that all interactions involving
three or more factors are negligible. The shortest word in the defining relation of a resolution V design must have five
letters. The 25−1 design with I = ABCDE is perhaps the most widely used resolution V design, permitting study of five
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factors and estimation of all five main effects and all 10 two-factor interactions in only 16 runs. We illustrated the use
of this design in Example 8.2.

The smallest design of resolution at least V for k = 6 factors is the 26−1VI design with 32 runs, which is of resolution
VI. For k = 7 factors, it is the 64-run 27−1VII which is of resolution VII, and for k = 8 factors, it is the 64 run 28−2V design.
For k ≥ 9 or more factors, all these designs require at least 128 runs. These are very large designs, so statisticians
have long been interested in smaller alternatives that maintain the desired resolution. Mee (2004) gives a survey of this
topic. Nonregular fractions can be very useful. This will be discussed further in Chapter 9.

8.8 Supersaturated Designs

A saturated design is defined as a fractional factorial in which the number of factors or design variables k = N − 1,
where N is the number of runs. In recent years, considerable interest has been shown in developing and using
supersaturated designs for factor screening experiments. In a supersaturated design, the number of variables
k > N − 1, and usually these designs contain quite a few more variables than runs. The idea of using supersaturated
designs was first proposed by Satterthwaite (1959). He proposed generating these designs at random. In an extensive
discussion of this paper, some of the leading authorities in experimental design of the day, including Jack Youden,
George Box, J. Stuart Hunter, William Cochran, John Tukey, Oscar Kempthorne, and Frank Anscombe, criticized
random balanced designs. As a result, supersaturated designs received little attention for the next 30 years. A notable
exception is the systematic supersaturated design developed by Booth and Cox (1962). Their designs were not
randomly generated, which was a significant departure from Satterthwaite’s proposal. They generated their designs
with elementary computer search methods. They also developed the basic criteria by which supersaturated designs
are judged.

Lin (1993) revisited the supersaturated design concept and stimulated much additional research on the topic.
Many authors have proposed methods to construct supersaturated designs. A good survey is in Lin (2000). Most
design construction techniques are limited computer search procedures based on simple heuristics [see Lin (1995),
Li and Wu (1997), and Holcomb and Carlyle (2002), for example]. Others have proposed methods based on optimal
design construction techniques.

Another construction method for supersaturated designs is based on the structure of existing orthogonal
designs. These include using the half-fraction of Hadamard matrices [Lin (1993)] and enumerating the two-factor
interactions of certain Hadamard matrices. A Hadamard matrix is a square orthogonal matrix whose elements are
either −1 or +1. When the number of factors in the experiment exceeds the number of runs, the design matrix
cannot be orthogonal. Consequently, the factor effect estimates are not independent. An experiment with one
dominant factor may contaminate and obscure the contribution of another factor. Supersaturated designs are created
to minimize this amount of nonorthogonality between factors. Supersaturated designs can also be constructed
using the optimal design approach. The custom designer in JMP uses this approach to constructing supersaturated
designs.

The supersaturated designs that are based on the half fraction of a Hadamard matrix are very easy to construct.
Table 8.34 is the Plackett–Burman design for N = 12 runs and k = 11 factors. It is also a Hadamard matrix design.
In the table, the design has been sorted by the signs in the last column (Factor 11 or L). This is sometimes called the
branching column. Now retain only the runs that are positive (say) in column L from the design and delete column
L from this group of runs. The resulting design is a supersaturated design for k = 10 factors in N = 6 runs. We could
have used the runs that are negative in column L equally well. This procedure will always produce a supersaturated
design for k = N − 2 factors in N∕2 runs. If there are fewer than N − 2 factors of interest, additional columns can be
removed from the complete design.
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◾ TABLE 8 . 34
A Supersaturated Design Derived from a 12-Run Hadamard Matrix (Plackett-Burman) Design

Factor Factor Factor Factor Factor Factor Factor Factor Factor Factor Factor

Run I 1 (A) 2 (B) 3 (C) 4 (D) 5 (E) 6 (F) 7 (G) 8 (H) 9 (J) 10 (K) 11 (L)

1 + − + + + − + + − + − −
2 + − − − − − − − − − − −
3 + + − − − + + + − + + −
4 + − − + + + − + + − + −
5 + + + + − + + − + − − −
6 + + + − + − − − + + + −
7 + − + + − + − − − + + +
8 + + + − + + − + − − − +
9 + + − + − − − + + + − +
10 + + − + + − + − − − + +
11 + − − − + + + − + + − +
12 + − + − − − + + + − + +

Supersaturated designs are typically analyzed by regression model-fitting methods, such as the forward selection
method we have illustrated previously. In this procedure, variables are selected one at a time for inclusion in the model
until no other variables appear useful in explaining the response. Abraham, Chipman, andVijayan (1999) andHolcomb,
Montgomery, and Carlyle (2003) have studied analysis methods for supersaturated designs. Generally, these designs
can experience large type I and type II errors, but some analysis methods can be tuned to emphasize type I errors
so that the type II error rate will be moderate. In a factor screening situation, it is usually more important not to
exclude an active factor than it is to conclude that inactive factors are important, so type I errors are less critical than
type II errors. However, because both error rates can be large, the philosophy in using a supersaturated design should
be to eliminate a large portion of the inactive factors, and not to clearly identify the few important or active factors.
Holcomb, Montgomery, and Carlyle (2003) found that some types of supersaturated designs perform better than others
with respect to type I and type II errors. Generally, the designs produced by search algorithms were outperformed by
designs constructed from standard orthogonal designs. Supersaturated designs created using theD-optimality criterion
also usually work well.

Supersaturated designs have not had widespread use. However, they are an interesting and potentially useful
method for experimentation with systems where there are many variables and only a very few of these are expected to
produce large effects.

8.9 Summary

This chapter has introduced the 2k−p fractional factorial design. We have emphasized the use of these designs in screen-
ing experiments to quickly and efficiently identify the subset of factors that are active and to provide some information
on interaction. The projective property of these designs makes it possible in many cases to examine the active factors
in more detail. Sequential assembly of these designs via fold over is a very effective way to gain additional information
about interactions that an initial experiment may identify as possibly important.
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In practice, 2k−p fractional factorial designs with N = 4, 8, 16, and 32 runs are highly useful. Table 8.28 sum-
marizes these designs, identifying how many factors can be used with each design to obtain various types of screen-
ing experiments. For example, the 16-run design is a full factorial for 4 factors, a one-half fraction for 5 factors,
a resolution IV fraction for 6 to 8 factors, and a resolution III fraction for 9 to 15 factors. All of these designs
may be constructed using the methods discussed in this chapter, and many of their alias structures are shown in
Appendix Table VIII.

8.10 Problems

8.1 Suppose that in the chemical process development
experiment described in Problem 6.11, it was only possi-
ble to run a one-half fraction of the 24 design. Construct the
design and perform the statistical analysis, using the data from
replicate I.

8.2 Suppose that in Problem 6.19, only a one-half fraction
of the 24 design could be run. Construct the design and perform
the analysis, using the data from replicate I.

8.3 Consider the plasma etch experiment described in
Example 6.1. Suppose that only a one-half fraction of the
design could be run. Set up the design and analyze the data.

8.4 Problem 6.30 describes a process improvement study
in the manufacturing process of an integrated circuit. Suppose
that only eight runs could be made in this process. Set up
an appropriate 25−2 design and find the alias structure. Use
the appropriate observations from Problem 6.28 as the obser-
vations in this design and estimate the factor effects. What
conclusions can you draw?

8.5 Continuation of Problem 8.4. Suppose you have made
the eight runs in the 25−2 design in Problem 8.4. What addi-
tional runs would be required to identify the factor effects that
are of interest?What are the alias relationships in the combined
design?

8.6 In Example 6.10, a 24 factorial design was used to
improve the response rate to a credit card mail marketing
offer. Suppose that the researchers had used the 24−1 fractional
factorial design with I = ABCD instead. Set up the design
and select the responses for the runs from the full factorial
data in Example 6.6. Analyze the data and draw conclusions.
Compare your findings with those from the full factorial in
Example 6.6.

8.7 Continuation of Problem 8.6. In Problem 6.6, we
found that all four main effects and the two-factor AB inter-
action were significant. Show that if the alternate fraction
(I = −ABCD) is added to the 24−1 design in Problem 8.6 that
the analysis of the results from the combined design produce
results identical to those found in Problem 6.6.

8.8 Continuation of Problem 8.6. Reconsider the 24−1

fractional factorial design with I = ABCD from Problem 8.6.
Set a partial fold over of this fraction to isolate the AB inter-
action. Select the appropriate set of responses from the full
factorial data in Example 6.6 and analyze the resulting data.

8.9 R. D. Snee (“Experimenting with a Large Number of
Variables,” in Experiments in Industry: Design, Analysis and
Interpretation of Results, by R. D. Snee, L. B. Hare, and J. B.
Trout, Editors, ASQC, 1985) describes an experiment in which
a 25−1 design with I = ABCDE was used to investigate the
effects of five factors on the color of a chemical product.
The factors are A = solvent∕reactant, B = catalyst∕reactant,
C = temperature, D = reactant purity, and E = reactant pH.
The responses obtained are as follows:

e = −0.63 d = 6.79
a = 2.51 ade = 5.47
b = −2.68 bde = 3.45

abe = 1.66 abd = 5.68
c = 2.06 cde = 5.22

ace = 1.22 acd = 4.38
bce = −2.09 bcd = 4.30
abc = 1.93 abcde = 4.05

(a) Prepare a normal probability plot of the effects. Which
effects seem active?

(b) Calculate the residuals. Construct a normal probability
plot of the residuals and plot the residuals versus the fit-
ted values. Comment on the plots.

(c) If any factors are negligible, collapse the 25−1 design
into a full factorial in the active factors. Comment on
the resulting design, and interpret the results.

8.10 An article by J. J. Pignatiello Jr. and J. S. Ramberg
in the Journal of Quality Technology (Vol. 17, 1985,
pp. 198–206) describes the use of a replicated frac-
tional factorial to investigate the effect of five factors on
the free height of leaf springs used in an automotive
application. The factors are A = furnace temperature, B =
heating time, C = transfer time, D = hold down time, and
E = quench oil temperature. The data are shown in Table P8.1.
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◾ TABLE P8 . 1
Leaf Spring Experiment

A B C D E Free Height

− − − − − 7.78 7.78 7.81
+ − − + − 8.15 8.18 7.88
− + − + − 7.50 7.56 7.50
+ + − − − 7.59 7.56 7.75
− − + + − 7.54 8.00 7.88
+ − + − − 7.69 8.09 8.06
− + + − − 7.56 7.52 7.44
+ + + + − 7.56 7.81 7.69
− − − − + 7.50 7.25 7.12
+ − − + + 7.88 7.88 7.44
− + − + + 7.50 7.56 7.50
+ + − − + 7.63 7.75 7.56
− − + + + 7.32 7.44 7.44
+ − + − + 7.56 7.69 7.62
− + + − + 7.18 7.18 7.25
+ + + + + 7.81 7.50 7.59

(a) Write out the alias structure for this design. What is the
resolution of this design?

(b) Analyze the data. What factors influence the mean free
height?

(c) Calculate the range and standard deviation of the free
height for each run. Is there any indication that any of
these factors affects variability in the free height?

(d) Analyze the residuals from this experiment, and com-
ment on your findings.

(e) Is this the best possible design for five factors in 16 runs?
Specifically, can you find a fractional design for five fac-
tors in 16 runs with a higher resolution than this one?

8.11 An article in Industrial and Engineering Chemistry
(“More on Planning Experiments to Increase Research Effi-
ciency,” 1970, pp. 60–65) uses a 25−2 design to investigate the
effect of A = condensation temperature, B = amount of
material 1, C = solvent volume, D = condensation time, and
E = amount of material 2 on yield. The results obtained are as
follows:

e = 23.2 ad = 16.9 cd = 23.8 bde = 16.8
ab = 15.5 bc = 16.2 ace = 23.4 abcde = 18.1

(a) Verify that the design generators usedwere I = ACE and
I = BDE.

(b) Write down the complete defining relation and the
aliases for this design.

(c) Estimate the main effects.

(d) Prepare an analysis of variance table. Verify that the AB
and AD interactions are available to use as error.

(e) Plot the residuals versus the fitted values. Also construct
a normal probability plot of the residuals. Comment on
the results.

8.12 Consider the leaf spring experiment in Problem 8.10.
Suppose that factor E (quench oil temperature) is very diffi-
cult to control during manufacturing. Where would you set
factors A, B, C, and D to reduce variability in the free height
as much as possible regardless of the quench oil temperature
used?

8.13 Construct a 27−2 design by choosing two four-factor
interactions as the independent generators. Write down the
complete alias structure for this design. Outline the analysis
of variance table. What is the resolution of this design?

8.14 Consider the 25 design in Problem 6.30. Suppose that
only a one-half fraction could be run. Furthermore, two days
were required to take the 16 observations, and it was neces-
sary to confound the 25−1 design in two blocks. Construct the
design and analyze the data.

8.15 Analyze the data in Problem 6.32 as if it came from a
24−1IV design with I = ABCD. Project the design into a full fac-
torial in the subset of the original four factors that appear to be
significant.

8.16 Repeat Problem 8.15 using I = −ABCD. Does the
use of the alternate fraction change your interpretation of
the data?

8.17 Project the 24−1IV design in Example 8.1 into two repli-
cates of a 22 design in the factors A and B. Analyze the data
and draw conclusions.

8.18 Construct a 25−2III design. Determine the effects that may
be estimated if a full fold over of this design is performed.

8.19 Construct a 26−3III design. Determine the effects that may
be estimated if a full fold over of this design is performed.

8.20 Consider the 26−3III design in Problem 8.19. Determine
the effects that may be estimated if a single factor fold over of
this design is run with the signs for factor A reversed.

8.21 Fold over the 27−4III design in Table 8.19 to produce an
eight-factor design. Verify that the resulting design is a 28−4IV

design. Is this a minimal design?

8.22 Fold over a 25−2III design to produce a six-factor design.
Verify that the resulting design is a 26−2IV design. Compare this
design to the 26−2IV design in Table 8.10.

8.23 An industrial engineer is conducting an experiment
using a Monte Carlo simulation model of an inventory system.
The independent variables in her model are the order quantity
(A), the reorder point (B), the setup cost (C), the backorder
cost (D), and the carrying cost rate (E). The response vari-
able is average annual cost. To conserve computer time, she
decides to investigate these factors using a 25−2III design with
I = ABD and I = BCE. The results she obtains are de = 95,
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ae = 134, b = 158, abd = 190, cd = 92, ac = 187, bce = 155,
and abcde = 185.

(a) Verify that the treatment combinations given are correct.
Estimate the effects, assuming three-factor and higher
interactions are negligible.

(b) Suppose that a second fraction is added to the
first, for example, ade = 136, e = 93, ab = 187,
bd = 153, acd = 139, c = 99, abce = 191, and bcde =
150. How was this second fraction obtained? Add this
data to the original fraction, and estimate the effects.

(c) Suppose that the fraction abc = 189, ce = 96, bcd =
154, acde = 135, abe = 193, bde = 152, ad = 137, and
(1) = 98 was run. How was this fraction obtained? Add
this data to the original fraction and estimate the effects.

8.24 Construct a 25−1 design. Show how the design may be
run in two blocks of eight observations each. Are any main
effects or two-factor interactions confounded with blocks?

8.25 Construct a 27−2 design. Show how the design may be
run in four blocks of eight observations each. Are any main
effects or two-factor interactions confounded with blocks?

8.26 Nonregular fractions of the 2k [John (1971)].
Consider a 24 design. We must estimate the four main effects
and the six two-factor interactions, but the full 24 factorial can-
not be run. The largest possible block size contains 12 runs.
These 12 runs can be obtained from the four one-quarter repli-
cates defined by I = ±AB = ±ACD = ±BCD by omitting the
principal fraction. Show how the remaining three 24−2 fractions
can be combined to estimate the required effects, assuming
three-factor and higher interactions are negligible. This design
could be thought of as a three-quarter fraction.

8.27 Carbon anodes used in a smelting process are baked in
a ring furnace. An experiment is run in the furnace to deter-
mine which factors influence the weight of packing material
that is stuck to the anodes after baking. Six variables are of
interest, each at two levels: A = pitch∕fines ratio (0.45, 0.55),
B = packing material type (1, 2), C = packing material tem-
perature (ambient, 325∘C),D = flue location (inside, outside),
E = pit temperature(ambient, 195∘C), and F = delay time
before packing (zero, 24 hours). A 26−3 design is run, and three
replicates are obtained at each of the design points. The weight
of packing material stuck to the anodes is measured in grams.
The data in run order are as follows: abd = (984, 826, 936);
abcdef = (1275, 976, 1457); be = (1217, 1201, 890); af =
(1474, 1164, 1541); def = (1320, 1156, 913); cd = (765, 705,
821); ace= (1338, 1254, 1294); and bcf = (1325, 1299,
1253). We wish to minimize the amount of stuck packing
material.

(a) Verify that the eight runs correspond to a 26−3III design.
What is the alias structure?

(b) Use the average weight as a response. What factors
appear to be influential?

(c) Use the range of the weights as a response. What factors
appear to be influential?

(d) What recommendations would you make to the process
engineers?

8.28 A 16-run experiment was performed in a semiconduc-
tor manufacturing plant to study the effects of six factors on the
curvature or camber of the substrate devices produced. The six
variables and their levels are shown in Table P8.2.

(a) What type of design did the experimenters use?

(b) What are the alias relationships in this design?

(c) Do any of the process variables affect average camber?

(d) Do any of the process variables affect the variability in
camber measurements?

(e) If it is important to reduce camber as much as possible,
what recommendations would you make?

8.29 A spin coater is used to apply photoresist to a bare
silicon wafer. This operation usually occurs early in the semi-
conductor manufacturing process, and the average coating
thickness and the variability in the coating thickness have an
important impact on downstream manufacturing steps. Six
variables are used in the experiment. The variables and their
high and low levels are as follows:

Factor Low Level High Level

Final spin speed 7350 rpm 6650 rpm

Acceleration rate 5 20

Volume of resist applied 3 cc 5 cc

Time of spin 14 sec 6 sec

Resist batch variation Batch 1 Batch 2

Exhaust pressure Cover off Cover on

The experimenter decides to use a 26−1 design and to make
three readings on resist thickness on each test wafer. The data
are shown in Table P8.4.

(a) Verify that this is a 26−1 design. Discuss the alias rela-
tionships in this design.

(b) What factors appear to affect average resist thickness?

(c) Because the volume of resist applied has little effect on
average thickness, does this have any important practi-
cal implications for the process engineers?
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◾ TABLE P8 . 2
Factor Levels for the Experiment in Problem 8.28

Run

Lamination
Temperature

(∘C)

Lamination
Time
(sec)

Lamination
Pressure
(tn)

Firing
Temperature

(∘C)

Firing
Cycle
Time
(h)

Firing
Dew
Point
(∘C)

1 55 10 5 1580 17.5 20

2 75 10 5 1580 29 26

3 55 25 5 1580 29 20

4 75 25 5 1580 17.5 26

5 55 10 10 1580 29 26

6 75 10 10 1580 17.5 20

7 55 25 10 1580 17.5 26

8 75 25 10 1580 29 20

9 55 10 5 1620 17.5 26

10 75 10 5 1620 29 20

11 55 25 5 1620 29 26

12 75 25 5 1620 17.5 20

13 55 10 10 1620 29 20

14 75 10 10 1620 17.5 26

15 55 25 10 1620 17.5 20

16 75 25 10 1620 29 26

◾ TABLE P8 . 3
Data from the Experiment in Problem 8.28

Camber for Replicate (in./in.)

Run 1 2 3 4
Total

(10−4in.∕in.)
Mean

(10−4in.∕in.)
Standard
Deviation

1 0.0167 0.0128 0.0149 0.0185 629 157.25 24.418

2 0.0062 0.0066 0.0044 0.0020 192 48.00 20.976

3 0.0041 0.0043 0.0042 0.0050 176 44.00 4.083

4 0.0073 0.0081 0.0039 0.0030 223 55.75 25.025

5 0.0047 0.0047 0.0040 0.0089 223 55.75 22.410

6 0.0219 0.0258 0.0147 0.0296 920 230.00 63.639

7 0.0121 0.0090 0.0092 0.0086 389 97.25 16.029

8 0.0255 0.0250 0.0226 0.0169 900 225.00 39.42

9 0.0032 0.0023 0.0077 0.0069 201 50.25 26.725

10 0.0078 0.0158 0.0060 0.0045 341 85.25 50.341

11 0.0043 0.0027 0.0028 0.0028 126 31.50 7.681

12 0.0186 0.0137 0.0158 0.0159 640 160.00 20.083

13 0.0110 0.0086 0.0101 0.0158 455 113.75 31.12

14 0.0065 0.0109 0.0126 0.0071 371 92.75 29.51

15 0.0155 0.0158 0.0145 0.0145 603 150.75 6.75

16 0.0093 0.0124 0.0110 0.0133 460 115.00 17.45

Each run was replicated four times, and a camber measurement was taken on the substrate. The data are shown in Table P8.3.
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◾ TABLE P8 . 4
Data for Problem 8.29

A B C D E F Resist Thickness

Run Volume Batch Time (sec) Speed Acc. Cover Left Center Right Avg. Range

1 5 Batch 2 14 7350 5 Off 4531 4531 4515 4525.7 16

2 5 Batch 1 6 7350 5 Off 4446 4464 4428 4446 36

3 3 Batch 1 6 6650 5 Off 4452 4490 4452 4464.7 38

4 3 Batch 2 14 7350 20 Off 4316 4328 4308 4317.3 20

5 3 Batch 1 14 7350 5 Off 4307 4295 4289 4297 18

6 5 Batch 1 6 6650 20 Off 4470 4492 4495 4485.7 25

7 3 Batch 1 6 7350 5 On 4496 4502 4482 4493.3 20

8 5 Batch 2 14 6650 20 Off 4542 4547 4538 4542.3 9

9 5 Batch 1 14 6650 5 Off 4621 4643 4613 4625.7 30

10 3 Batch 1 14 6650 5 On 4653 4670 4645 4656 25

11 3 Batch 2 14 6650 20 On 4480 4486 4470 4478.7 16

12 3 Batch 1 6 7350 20 Off 4221 4233 4217 4223.7 16

13 5 Batch 1 6 6650 5 On 4620 4641 4619 4626.7 22

14 3 Batch 1 6 6650 20 On 4455 4480 4466 4467 25

15 5 Batch 2 14 7350 20 On 4255 4288 4243 4262 45

16 5 Batch 2 6 7350 5 On 4490 4534 4523 4515.7 44

17 3 Batch 2 14 7350 5 On 4514 4551 4540 4535 37

18 3 Batch 1 14 6650 20 Off 4494 4503 4496 4497.7 9

19 5 Batch 2 6 7350 20 Off 4293 4306 4302 4300.3 13

20 3 Batch 2 6 7350 5 Off 4534 4545 4512 4530.3 33

21 5 Batch 1 14 6650 20 On 4460 4457 4436 4451 24

22 3 Batch 2 6 6650 5 On 4650 4688 4656 4664.7 38

23 5 Batch 1 14 7350 20 Off 4231 4244 4230 4235 14

24 3 Batch 2 6 7350 20 On 4225 4228 4208 4220.3 20

25 5 Batch 1 14 7350 5 On 4381 4391 4376 4382.7 15

26 3 Batch 2 6 6650 20 Off 4533 4521 4511 4521.7 22

27 3 Batch 1 14 7350 20 On 4194 4230 4172 4198.7 58

28 5 Batch 2 6 6650 5 Off 4666 4695 4672 4677.7 29

29 5 Batch 1 6 7350 20 On 4180 4213 4197 4196.7 33

30 5 Batch 2 6 6650 20 On 4465 4496 4463 4474.7 33

31 5 Batch 2 14 6650 5 On 4653 4685 4665 4667.7 32

32 3 Batch 2 14 6650 5 Off 4683 4712 4677 4690.7 35

(d) Project this design into a smaller design involving only
the significant factors. Graphically display the results.
Does this aid in interpretation?

(e) Use the range of resist thickness as a response variable.
Is there any indication that any of these factors affect the
variability in resist thickness?

(f) Where would you recommend that the engineers run the
process?

8.30 Harry Peterson-Nedry (a friend of the author) owns a
vineyard and winery in Newberg, Oregon. He grows several
varieties of grapes and produces wine. Harry has used facto-
rial designs for process and product development in the wine-
making segment of the business. This problem describes the
experiment conducted for the 1985 Pinot Noir. Eight vari-
ables, shown in Table P8.5, were originally studied in this
experiment:
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◾ TABLE P8 . 5
Factors and Levels for the Winemaking Experiment

Variable Low Level (−) High Level (+)

A = Pinot Noir clone Pommard Wadenswil

B = Oak type Allier Troncais

C = Age of barrel Old New

D = Yeast∕skin contact Champagne Montrachet

E = Stems None All

F = Barrel toast Light Medium

G = Whole cluster None 10%

H = Fermentation temperature Low (75∘F max) High (92∘F max)

Harry decided to use a 28−4IV design with 16 runs. The wine
was taste-tested by a panel of experts on March 8, 1986. Each
expert ranked the 16 samples of wine tasted, with rank 1 being
the best. The design and the taste-test panel results are shown
in Table P8.6.

(a) What are the alias relationships in the design selected
by Harry?

(b) Use the average ranks (y) as a response variable. Ana-
lyze the data and draw conclusions. You will find it

◾ TABLE P8 . 6
Design and Results for Wine Tasting Experiment

Variable Panel Rankings Summary

Run A B C D E F G H HPN JPN CAL DCM RGB y s

1 − − − − − − − − 12 6 13 10 7 9.6 3.05

2 + − − − − + + + 10 7 14 14 9 10.8 3.11

3 − + − − + − + + 14 13 10 11 15 12.6 2.07

4 + + − − + + − − 9 9 7 9 12 9.2 1.79

5 − − + − + + + − 8 8 11 8 10 9.0 1.41

6 + − + − + − − + 16 12 15 16 16 15.0 1.73

7 − + + − − + − + 6 5 6 5 3 5.0 1.22

8 + + + − − − + − 15 16 16 15 14 15.2 0.84

9 − − − + + + − + 1 2 3 3 2 2.2 0.84

10 + − − + + − + − 7 11 4 7 6 7.0 2.55

11 − + − + − + + − 13 3 8 12 8 8.8 3.96

12 + + − + − − − + 3 1 5 1 4 2.8 1.79

13 − − + + − − + + 2 10 2 4 5 4.6 3.29

14 + − + + − + − − 4 4 1 2 1 2.4 1.52

15 − + + + + − − − 5 15 9 6 11 9.2 4.02

16 + + + + + + + + 11 14 12 13 13 12.6 1.14

helpful to examine a normal probability plot of the effect
estimates.

(c) Use the standard deviation of the ranks (or some appro-
priate transformation such as log s) as a response vari-
able. What conclusions can you draw about the effects
of the eight variables on variability in wine quality?

(d) After looking at the results, Harry decides that one of
the panel members (DCM) knows more about beer than
he does about wine, so they decide to delete his ranking.
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What effect would this have on the results and conclu-
sions from parts (b) and (c)?

(e) Suppose that just before the start of the experiment,
Harry and Judy discovered that the eight new barrels
they ordered from France for use in the experiment
would not arrive in time, and all 16 runs would have to
be made with old barrels. If Harry just drops column C
from their design, what does this do to the alias relation-
ships? Does he need to start over and construct a new
design?

(f) Harry knows from experience that some treatment com-
binations are unlikely to produce good results. For
example, the run with all eight variables at the high level
generally results in a poorly rated wine. This was con-
firmed in the March 8, 1986 taste test. He wants to set
up a new design for their 1986 Pinot Noir using these
same eight variables, but he does not want to make the
run with all eight factors at the high level. What design
would you suggest?

8.31 Consider the isatin yield data from the experiment
described in Problem 6.42. The original experiment was a 24

full factorial. Suppose that the original experimenters could
only afford eight runs. Set up the 24−1 fractional factorial
design with I = ABCD and select the responses for the runs
from the full factorial data in Problem 6.42. Analyze the data
and draw conclusions. Compare your findings with those from
the full factorial in Problem 6.42.

8.32 Consider the 25 factorial in Problem 6.43. Suppose
that the experimenters could only afford 16 runs. Set up the
25−1 fractional factorial design with I = ABCDE and select
the responses for the runs from the full factorial data in
Problem 6.43.

(a) Analyze the data and draw conclusions.

(b) Compare your findings with those from the full factorial
in Problem 6.43.

(c) Are there any potential interactions that need further
study? What additional runs do you recommend? Select
these runs from the full factorial design in Problem 6.43
and analyze the new design. Discuss your conclusions.

8.33 Consider the 24 factorial experiment for surfactin pro-
duction in Problem 6.44. Suppose that the experimenters could
only afford eight runs. Set up the 24−1 fractional factorial
design with I = ABCD and select the responses for the runs
from the full factorial data in Problem 6.44.

(a) Analyze the data and draw conclusions.

(b) Compare your findings with those from the full factorial
in Problem 6.44.

8.34 Consider the 24 factorial experiment in Problem 6.46.
Suppose that the experimenters could only afford eight runs.

Set up the 24−1 fractional factorial design with I = ABCD and
select the responses for the runs from the full factorial data in
Problem 6.46.

(a) Analyze the data for all of the responses and draw con-
clusions.

(b) Compare your findings with those from the full factorial
in Problem 6.46.

8.35 An article in the Journal of Chromatography A
(“Simultaneous Supercritical Fluid Derivatization and Extrac-
tion of Formaldehyde by the Hantzsch Reaction,” 2000,
Vol. 896, pp. 51–59) describes an experiment where the
Hantzsch reaction is used to produce the chemical derivati-
zation of formaldehyde in a supercritical medium. Pressure,
temperature, and other parameters such as static and dynamic
extraction time must be optimized to increase the yield of
this kinetically controlled reaction. A 25−1 fractional factorial
design with one center run was used to study the significant
parameters affecting the supercritical process in terms of res-
olution and sensitivity. Ultraviolet–visible spectrophotometry
was used as the detection technique. The experimental design
and the responses are shown in Table P8.7.

(a) Analyze the data from this experiment and draw
conclusions.

(b) Analyze the residuals. Are there any concerns about
model adequacy or violations of assumptions?

(c) Does the single center point cause any concerns about
curvature or the possible need for second-order terms?

(d) Do you think that running one center point was a good
choice in this design?

8.36 An article in Thin Solid Films (504, “A Study of
Si/SiGe Selective Epitaxial Growth by Experimental Design
Approach,” 2006, Vol. 504, pp. 95–100) describes the use
of a fractional factorial design to investigate the sensitivity
of low-temperature (740–760∘C) Si/SiGe selective epitaxial
growth to changes in five factors and their two-factor inter-
actions. The five factors are SiH2Cl2, GeH4, HCl, B2H6 and
temperature. The factor levels studied are as follows:

Levels

Factors (−) (+)

SiH2Cl2 (sccm) 8 12

GeH4 (sccm) 7.2 10.8

HCl (sccm) 3.2 4.8

B2H6 (sccm) 4.4 6.6

Temperature (∘C) 740 760

Table P8.8 contains the design matrix and the three mea-
sured responses. Bede RADS Mercury software based on the
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◾ TABLE P8 . 7
The 25−1 Fractional Factorial Design for Problem 8.35

Experiment
P

(MPa)
T

(∘C)
s

(min)
d

(min)
c

(𝝁l) Resolution Sensitivity

1 13.8 50 2 2 100 0.00025 0.057
2 55.1 50 2 2 10 0.33333 0.094
3 13.8 120 2 2 10 0.02857 0.017
4 55.1 120 2 2 100 0.20362 1.561
5 13.8 50 15 2 10 0.00027 0.010
6 55.1 50 15 2 100 0 52632 0.673
7 13.8 120 15 2 100 0.00026 0.028
8 55.1 120 15 2 10 0.52632 1.144
9 13.8 50 2 15 10 0 42568 0.142

10 55.1 50 2 15 100 0.60150 0.399
11 13.8 120 2 15 100 0.06098 0.767
12 55.1 120 2 15 10 0.74165 1.086
13 13.8 50 15 15 100 0.08780 0.252
14 55.1 50 15 15 10 0.40000 0.379
15 13.8 120 15 15 10 0.00026 0.028
16 55.1 120 15 15 100 0.28091 3.105
Central 34.5 85 8.5 8.5 55 0.75000 1.836

◾ TABLE P8 . 8
The Epitaxial Growth Experiment in Problem 8.36

Factors Si Cap SiGe Ge

Run
Order A B C D E

Thickness
(Å)

Thickness
(Å)

Concentration
(at.%)

7 − − − − + 371.18 475.05 8.53
17 − − − + − 152.36 325.21 9.74
6 − − + − − 91.69 258.60 9.78
10 − − + + + 234.48 392.27 9.14
16 − + − − − 151.36 440.37 12.13
2 − + − + + 324.49 623.60 10.68
15 − + + − + 215.91 518.50 11.42
4 − + + + − 97.91 356.67 12.96
9 + − − − − 186.07 320.95 7.87
13 + − − + + 388.69 487.16 7.14
18 + − + − + 277.39 422.35 6.40
5 + − + + − 131.25 241.51 8.54
14 + + − − + 378.41 630.90 9.17
3 + + − + − 192.65 437.53 10.35
1 + + + − − 128.99 346.22 10.95
12 + + + + + 298.40 526.69 9.73
8 0 0 0 0 0 215.70 416.44 9.78
11 0 0 0 0 0 212.21 419.24 9.80
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Takagi–Taupin dynamical scattering theory was used to extract
the Si cap thickness, SiGe thickness, and Ge concentration of
each sample.

(a) What design did the experimenters use? What is the
defining relation?

(b) Will the experimenters be able to estimate all main
effects and two-factor interactions with this experimen-
tal design?

(c) Analyze all three responses and draw conclusions.

(d) Is there any indication of curvature in the responses?

(e) Analyze the residuals and comment on model adequacy.

◾ TABLE P8 . 9
The Solder Paste Experiment

ParametersRun
Order A B C D E F G H PVM

NPU
(%)

4 − − − − − − − + 1.00 5
13 + − − − − + + + 1.04 13
6 − + − − − + + − 1.02 16
3 + + − − − − − − 0.99 12

19 − − + − − + − − 1.02 15
25 + − + − − − + − 1.01 9
21 − + + − − − + + 1.01 12
14 + + + − − + − + 1.03 17
10 − − − + − − + − 1.04 21
22 + − − + − + − − 1.14 20
1 − + − + − + − + 1.20 25
2 + + − + − − + + 1.13 21

30 − − + + − + + + 1.14 25
8 + − + + − − − + 1.07 13
9 − + + + − − − − 1.06 20

20 + + + + − + + − 1.13 26
17 − − − − + − − − 1.02 10
18 + − − − + + + − 1.10 13
5 − + − − + + + + 1.09 17

26 + + − − + − − + 0.96 13
31 − − + − + + − + 1.02 14
11 + − + − + − + + 1.07 11
29 − + + − + − + − 0.98 10
23 + + + − + + − − 0.95 14
32 − − − + + − + + 1.10 28
7 + − − + + + − + 1.12 24

15 − + − + + + − − 1.19 22
27 + + − + + − + − 1.13 15
12 − − + + + + + − 1.20 21
28 + − + + + − − − 1.07 19
24 − + + + + − − + 1.12 21
16 + + + + + + + + 1.21 27

8.37 An article in Soldering & Surface Mount Technology
(“Characterization of a Solder Paste Printing Process and Its
Optimization,” 1999, Vol. 11, No. 3, pp. 23–26) describes the
use of a 28−3 fractional factorial experiment to study the effect
of eight factors on two responses; percentage volume match-
ing (PVM) – the ratio of the actual printed solder paste vol-
ume to the designed volume; and nonconformities per unit
(NPU)—the number of solder paste printing defects deter-
mined by visual inspection (20′ magnification) after printing
according to an industry workmanship standard. The factor
levels are shown below and the test matrix and response data
are shown in Table P8.9.
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Levels

Parameters Low (−) High (+)

A. Squeegee pressure,MPa 0.1 0.3

B. Printing speed, mm/s 24 32

C. Squeegee angle, deg 45 65

D. Temperature, ∘C 20 28

E. Viscosity, kCps 1,100-1,150 1,250-1,300

F. Cleaning interval, stroke 8 15

G. Separation speed, mm/s 0.4 0.8

H. Relative humidity, % 30 70

(a) Verify that the generators are I = ABCF, I = ABDG,
and I = BCDEH for this design.

(b) What are the aliases for the main effects and two-factor
interactions? You can ignore all interactions of order
three and higher.

(c) Analyze both PVM and NPU responses.

(d) Analyze the residual for both responses. Are there any
problems with model adequacy?

(e) The ideal value of PVM is unity and the NPU response
should be as small as possible. Recommend suitable
operating conditions for the process based on the exper-
imental results.

8.38 An article in the International Journal of Research
in Marketing (“Experimental design on the front lines of
marketing: Testing new ideas to increase direct mail sales,”
2006, Vol. 23, pp. 309–319) describes the use of a 20-run
Plackett–Burman design to investigate the effects of 19 factors
to improve the response rate to a direct mail sales campaign to
attract new customers to a credit card. The 19 factors are as
follows:

Factor (−) Control (+) New Idea

A: Envelope teaser General offer Product-specific
offer

B: Return address Blind Add company
name

C: “Official”
ink-stamp on
envelope

Yes No

D: Postage Pre-printed Stamp

E: Additional graphic
on envelope

Yes No

F: Price graphic on
letter

Small Large

G: Sticker Yes No

H: Personalize letter
copy

No Yes

I: Copy message Targeted Generic

J: Letter headline Headline 1 Headline 2

K: List of benefits Standard layout Creative layout

L: Postscript on letter Control version New P.S.

M: Signature Manager Senior executive

N: Product selection Many Few

O: Value of free gift High Low

P: Reply envelope Control New style

Q: Information on
buckslip

Product info Free gift info

R: 2nd buckslip No Yes

S: Interest rate Low High

The 20-run Plackett–Burman design is shown in Table P8.10.
Each test combination in Table P8.17 was mailed to 5,000
potential customers, and the response rate is the percentage of
customers who responded positively to the offer.

(a) Verify that in this design each main effect is aliased with
all two-factor interactions except those that involve that
main effect. That is, in the 19-factor design, the main
effect for each factor is aliased with all two-factor inter-
actions involving the other 18 factors, or 153 two-factor
interactions (18!/2!16!).

(b) Show that for the 20-run Plackett–Burman design in
Table P8.17, the weights (or correlations) that multiple
the two-factor interactions in each alias chain are either
−0.2, +0.2, or −0.6. Of the 153 interactions that are
aliased with each main effect, 144 have weights of −0.2
or +0.2, while 9 interactions have weights of −0.6.

(c) Verify that the five largest main effects are S, G, R, I,
and J.

(d) Factors S (interest rate) andG (presence of a sticker) are
by far the largest main effects. The correlation between
the main effect of R (2nd buckslip) and the SG interac-
tion is−0.6. This means that a significant SG interaction
would bias the estimate of the main effect of R by −0.6
times the value of the interaction. This suggests that it
may not be the main effect of factor R that is important,
but the two-factor interaction between S and G.

(e) Since this design projects into a full factorial in any three
factors, obtain the projection in factors S, G, and R and
verify that it is a full factorial with some runs repli-
cated. Fit a full factorial model involving all three of
these factors and the interactions (you will need to use a
regression program to do this). Show that S, G, and the
SG interaction are significant.
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◾ TABLE P8 . 10
The Plackett-Burman Design for the Direct Mail Experiment in Problem 8.38

Envelope
Teaser

Return
Address

“Official”
Ink-stamp
on Envelope Postage

Additional
Graphic
on Envelope

Price
Graphic
on Letter Sticker

Personalize
Letter Copy

Copy
Message

Letter
Headline

Test Cell A B C D E F G H I J

1 + + − − + + + + − +
2 − + + − − + + + + −
3 + − + + − − + + + +
4 + + − + + − − + + +
5 − + + − + + − − + +
6 − − + + − + + − − +
7 − − − + + − + + − −
8 − − − − + + − + + −
9 + − − − − + + − + +

10 − + − − − − + + − +
11 + − + − − − − + + −
12 − + − + − − − − + +
13 + − + − + − − − − +
14 + + − + − + − − − −
15 + + + − + − + − − −
16 + + + + − + − + − −
17 − + + + + − + − + −
18 − − + + + + − + − +
19 + − − + + + + − + −
20 − − − − − − − − − −

List of
Benefits

Postscript
on Letter Signature

Product
Selection

Value of
Free gift

Reply
Envelope

Information
on Buckslip

2nd
Buckslip

Interest
Rate Orders

Response
Rate

K L M N O P Q R S

− + − − − − + + − 52 1.04%
+ − + − − − − + + 38 0.76%
− + − + − − − − + 42 0.84%
+ − + − + − − − − 134 2.68%
+ + − + − + − − − 104 2.08%
+ + + − + − + − − 60 1.20%
+ + + + − + − + − 61 1.22%
− + + + + − + − + 68 1.36%
− − + + + + − + − 57 1.14%
+ − − + + + + − + 30 0.60%
+ + − − + + + + − 108 2.16%
− + + − − + + + + 39 0.78%
+ − + + − − + + + 40 0.80%
+ + − + + − − + + 49 0.98%
− + + − + + − − + 37 0.74%
− − + + − + + − − 99 1.98%
− − − + + − + + − 86 1.72%
− − − − + + − + + 43 0.86%
+ − − − − + + − + 47 0.94%
− − − − − − − − − 104 2.08%
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8.39 Consider the following experiment:

Run Treatment Combination

1 d

2 ae

3 b

4 abde

5 cde

6 ac

7 bce

8 abcd

Answer the following questions about this experiment:

(a) How many factors did this experiment investigate?

(b) How many factors are in the basic design?

(c) Assume that the factors in the experiment are repre-
sented by the initial letters of the alphabet (i.e., A, B,
etc.), what are the design generators for the factors
beyond the basic design?

(d) Is this design a principal fraction?

(e) What is the complete defining relation?

(f) What is the resolution of this design?

8.40 Consider the following experiment:

Run Treatment Combination y

1 (1) 8

2 ad 10

3 bd 12

4 ab 7

5 cd 13

6 ac 6

7 bc 5

8 abcd 11

Answer the following questions about this experiment:

(a) How many factors did this experiment investigate?

(b) What is the resolution of this design?

(c) Calculate the estimates of the main effects.

(d) What is the complete defining relation for this design?

8.41 An unreplicated 25−1 fractional factorial experiment
with four center points has been run in a chemical process.

The response variable is molecular weight. The experimenter
has used the following factors:

Factor Natural Levels Coded Levels (x’s)

A - time 20, 40 (minutes) −1, 1
B - temperature 160, 180 (deg C) −1, 1
C - concentration 30, 60 (percent) −1, 1
D - stirring rate 100, 150 (RPM) −1, 1
E - catalyst type 1, 2 (Type) −1. 1

Suppose that the prediction equation that results from
this experiment is ŷ = 10 + 3x1 + 2x2 − 1x1x2. What is the
predicted response at A = 30, B = 165, C = 50, D = 135,
and E = 1?

8.42 An unreplicated 24−1 fractional factorial experiment
with four center points has been run. The experimenter has
used the following factors:

Factor Natural Levels Coded Levels (x’s)

A - time 10, 50 (minutes) −1, 1
B - temperature 200, 300 (deg C) −1, 1
C - concentration 70, 90 (percent) −1, 1
D - pressure 260, 300 (psi) −1, 1

(a) Suppose that the average of the 16 factorial design
points is 100 and the average of the center points is 120,
what is the sum of squares for pure quadratic curvature?

(b) Suppose that the prediction equation that results from
this experiment is ŷ = 50 + 5x1 + 2x2 − 2x1x2. Find the
predicted response at A = 20, B = 250, C = 80, and
D = 275.

8.43 An unreplicated 24−1 fractional factorial experiment
has been run. The experimenter has used the following
factors:

Factor Natural Levels Coded Levels (x’s)

A 20, 50 −1, 1
B 200, 280 −1, 1
C 50, 100 −1, 1
D 150, 200 −1, 1

(a) Suppose that this design has four center runs that aver-
age 100. The average of the 16 factorial design points
is 95. What is the sum of squares for pure quadratic
curvature?
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(b) Suppose that the prediction equation that results
from this experiment is ŷ = 100 + −2x1 + 10x2 − 4x1x2.
What is the predicted response at A = 41, B = 280,
C = 60, and D = 185?

8.44 A 26−2 factorial experiment with three replicates has
been run in a pharmaceutical drug manufacturing process. The
experimenter has used the following factors:

Factor Natural Levels Coded Levels (x’s)

A 50, 100 −1, 1
B 20, 60 −1, 1
C 10, 30 −1, 1
D 12, 18 −1, 1
E 15, 30 −1, 1
F 60, 100 −1, 1

(a) If two main effects and one two-factor interaction are
included in the final model, how many degrees of free-
dom for error will be available?

(b) Suppose that the significant factors are A, C, AB, and
AC. What other effects need to be included to obtain a
hierarchical model?

8.45 Consider the following design:

Run A B C D E y

1 −1 −1 −1 −1 −1 63

2 1 −1 −1 −1 1 21

3 −1 1 −1 −1 1 36

4 1 1 −1 −1 −1 99

5 −1 −1 1 −1 1 24

6 1 −1 1 −1 −1 66

7 −1 1 1 −1 −1 71

8 1 1 1 −1 1 54

9 −1 −1 −1 1 −1 23

10 1 −1 −1 1 1 74

11 −1 1 −1 1 1 80

12 1 1 −1 1 −1 33

13 −1 −1 1 1 1 63

14 1 −1 1 1 −1 21

15 −1 1 1 1 −1 44

16 1 1 1 1 1 96

(a) What is the generator for column E?

(b) If ABC is confounded with blocks, run 1 above goes in
the block. Answer either + or −.

(c) What is the resolution of this design?

(d) (8 pts) Find the estimates of the main effects and their
aliases.

8.46 Consider the following design:

Run A B C D E y

1 −1 −1 −1 −1 −1 65

2 1 −1 −1 −1 1 25

3 −1 1 −1 −1 1 30

4 1 1 −1 −1 −1 89

5 −1 −1 1 −1 1 25

6 1 −1 1 −1 −1 60

7 −1 1 1 −1 −1 70

8 1 1 1 −1 1 50

9 −1 −1 −1 1 1 20

10 1 −1 −1 1 −1 70

11 −1 1 −1 1 −1 80

12 1 1 −1 1 1 30

13 −1 −1 1 1 −1 60

14 1 −1 1 1 1 20

15 −1 1 1 1 1 40

16 1 1 1 1 −1 90

(a) What is the generator for column E?

(b) If ABE is confounded with blocks, run 16 goes in the
block. Answer either − or +.

(c) The resolution of this design is .

(d) Find the estimates of the main effects and their aliases.

8.47 Consider the following design:

Run A B C D E y

1 −1 −1 −1 1 −1 50

2 1 −1 −1 −1 −1 20

3 −1 1 −1 −1 1 40

4 1 1 −1 1 1 25

5 −1 −1 1 −1 1 45

6 1 −1 1 1 1 30

7 −1 1 1 1 −1 40

8 1 1 1 −1 −1 30

(a) What is the generator for column D?

(b) What is the generator for column E?
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(c) If this design were run in two blocks with the AB inter-
action confounded with blocks, the run d would be in
the block where the sign on AB is . Answer either
− or +.

8.48 Consider the following design:

Std A B C D E y

1 −1 −1 −1 1 1 40

2 1 −1 −1 −1 1 10

3 −1 1 −1 −1 −1 30

4 1 1 −1 1 −1 20

5 −1 −1 1 −1 −1 40

6 1 −1 1 1 −1 30

7 −1 1 1 1 1 20

8 1 1 1 −1 1 30

(a) What is the generator for column D?

(b) What is the generator for column E?

(c) If this design were folded over, what is the resolution of
the combined design?

8.49 In an article in Quality Engineering (“An Application
of Fractional Factorial Experimental Designs,” 1988, Vol. 1,
pp. 19–23), M. B. Kilgo describes an experiment to determine
the effect of CO2 pressure (A), CO2 temperature (B), peanut
moisture (C), CO2 flow rate (D), and peanut particle size (E)
on the total yield of oil per batch of peanuts (y). The levels
that she used for these factors are shown in Table P8.11. She
conducted the 16-run fractional factorial experiment shown in
Table P8.12.

◾ TABLE P8 . 11
Factor Levels for the Experiment in Problem 8.49

Coded
Level

A,
Pressure
(bar)

B,
Temp,
(∘C)

C,
Moisture

(% by weight)

D, Flow
(liters/
min)

E, Part.
Size
(mm)

−1 415 25 5 40 1.28

1 550 95 15 60 4.05

(a) What type of design has been used? Identify the defining
relation and the alias relationships.

(b) Estimate the factor effects and use a normal probability
plot to tentatively identify the important factors.

(c) Perform an appropriate statistical analysis to test the
hypotheses that the factors identified in part (b) have a
significant effect on the yield of peanut oil.

◾ TABLE P8 . 12
The Peanut Oil Experiment

A B C D E y

415 25 5 40 1.28 63

550 25 5 40 4.05 21

415 95 5 40 4.05 36

550 95 5 40 1.28 99

415 25 15 40 4.05 24

550 25 15 40 1.28 66

415 95 15 40 1.28 71

550 95 15 40 4.05 54

415 25 5 60 4.05 23

550 25 5 60 1.28 74

415 95 5 60 1.28 80

550 95 5 60 4.05 33

415 25 15 60 1.28 63

550 25 15 60 4.05 21

415 95 15 60 4.05 44

550 95 15 60 1.28 96

(d) Fit a model that could be used to predict peanut oil
yield in terms of the factors that you have identified as
important.

(e) Analyze the residuals from this experiment and com-
ment on model adequacy.

8.50 A 16-run fractional factorial experiment in 10 factors
on sand-casting of engine manifolds was conducted by engi-
neers at the Essex Aluminum Plant of the Ford Motor Com-
pany and described in the article “Evaporative Cast Process
3.0 Liter IntakeManifold Poor Sandfill Study,” by D. Becknell
(Fourth Symposium on Taguchi Methods, American Supplier
Institute, Dearborn, MI, 1986, pp. 120–130). The purpose was
to determinewhich of 10 factors has an effect on the proportion
of defective castings. The design and the resulting proportion
of nondefective castings p̂ observed on each run are shown in
Table P8.13. This is a resolution III fraction with generators
E = CD, F = BD, G = BC, H = AC, J = AB, and K = ABC.
Assume that the number of castings made at each run in the
design is 1000.

(a) Find the defining relation and the alias relationships in
this design.

(b) Estimate the factor effects and use a normal probability
plot to tentatively identify the important factors.

(c) Fit an appropriate model using the factors identified in
part (b).
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◾ TABLE P8 . 13
The Sand-Casting Experiment

Run A B C D E F G H J K p̂ Arcsin
√
p̂

F&T’s
Modification

1 − − − − + + + + + − 0.958 1.364 1.363

2 + − − − + + + − − + 1.000 1.571 1.555

3 − + − − + − − + − + 0.977 1.419 1.417

4 + + − − + − − − + − 0.775 1.077 1.076

5 − − + − − + − − + + 0.958 1.364 1.363

6 + − + − − + − + − − 0.958 1.364 1.363

7 − + + − − − + − − − 0.813 1.124 1.123

8 + + + − − − + + + + 0.906 1.259 1.259

9 − − − + − − + + + − 0.679 0.969 0.968

10 + − − + − − + − − + 0.781 1.081 1.083

11 − + − + − + − + − + 1.000 1.571 1.556

12 + + − + − + − − + − 0.896 1.241 1.242

13 − − + + + − − − + + 0.958 1.364 1.363

14 + − + + + − − + − − 0.818 1.130 1.130

15 − + + + + + + − − − 0.841 1.161 1.160

16 + + + + + + + + + + 0.955 1.357 1.356

(d) Plot the residuals from this model versus the predicted
proportion of nondefective castings. Also prepare a nor-
mal probability plot of the residuals. Comment on the
adequacy of these plots.

(e) In part (d) you should have noticed an indication that
the variance of the response is not constant. (Consid-
ering that the response is a proportion, you should have
expected this.) The previous table also shows a transfor-
mation on p̂, the arcsin square root, that is a widely used
variance stabilizing transformation for proportion data
(refer to the discussion of variance stabilizing transfor-
mations in Chapter 3). Repeat parts (a) through (d) using
the transformed response and comment on your results.
Specifically, are the residual plots improved?

(f) There is a modification to the arcsin square root trans-
formation, proposed by Freeman and Tukey (“Trans-
formations Related to the Angular and the Square
Root,” Annals of Mathematical Statistics, Vol. 21, 1950,
pp. 607–611), that improves its performance in the tails.
F&T’s modification is

[arcsin
√
np̂∕(n + 1)

+ arcsin
√
(np̂ + 1)∕(n + 1)]∕2

Rework parts (a) through (d) using this transforma-
tion and comment on the results. (For an interesting
discussion and analysis of this experiment, refer to

“Analysis of Factorial Experiments with Defects or
Defectives as the Response,” by S. Bisgaard and
H. T. Fuller, Quality Engineering, Vol. 7, 1994–95,
pp. 429–443.)

8.51 A 16-run fractional factorial experiment in nine factors
was conducted by Chrysler Motors Engineering and described
in the article “Sheet Molded Compound Process Improve-
ment,” by P. I. Hsieh and D. E. Goodwin (Fourth Symposium
on Taguchi Methods, American Supplier Institute, Dearborn,
MI, 1986, pp. 13–21). The purpose was to reduce the number
of defects in the finish of sheet-molded grill opening panels.
The design, and the resulting number of defects, c, observed on
each run, is shown in Table P8.14. This is a resolution III frac-
tion with generators E = BD, F = BCD, G = AC, H = ACD,
and J = AB.

(a) Find the defining relation and the alias relationships in
this design.

(b) Estimate the factor effects and use a normal probability
plot to tentatively identify the important factors.

(c) Fit an appropriate model using the factors identified in
part (b).

(d) Plot the residuals from this model versus the predicted
number of defects. Also, prepare a normal probability
plot of the residuals. Comment on the adequacy of these
plots.
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◾ TABLE P8 . 14
The Grill Defects Experiment

Run A B C D E F G H J c
√
c

F&T’s
Modification

1 − − − − + − + − + 56 7.48 7.52

2 + − − − + − − + − 17 4.12 4.18

3 − + − − − + + − − 2 1.41 1.57

4 + + − − − + − + + 4 2.00 2.12

5 − − + − + + − + + 3 1.73 1.87

6 + − + − + + + − − 4 2.00 2.12

7 − + + − − − − + − 50 7.07 7.12

8 + + + − − − + − + 2 1.41 1.57

9 − − − + − + + + + 1 1.00 1.21

10 + − − + − + − − − 0 0.00 0.50

11 − + − + + − + + − 3 1.73 1.87

12 + + − + + − − − + 12 3.46 3.54

13 − − + + − − − − + 3 1.73 1.87

14 + − + + − − + + − 4 2.00 2.12

15 − + + + + + − − − 0 0.00 0.50

16 + + + + + + + + + 0 0.00 0.50

(e) In part (d) you should have noticed an indication that
the variance of the response is not constant. (Consid-
ering that the response is a count, you should have
expected this.) The previous table also shows a transfor-
mation on c, the square root, that is a widely used vari-
ance stabilizing transformation for count data. (Refer to
the discussion of variance stabilizing transformations in
Chapter 3.) Repeat parts (a) through (d) using the trans-
formed response and comment on your results. Specifi-
cally, are the residual plots improved?

(f) There is a modification to the square root transfor-
mation, proposed by Freeman and Tukey (“Trans-
formations Related to the Angular and the Square
Root,” Annals of Mathematical Statistics, Vol. 21, 1950,
pp. 607–611) that improves its performance. F&T’s
modification to the square root transformation is

[
√
c +

√
(c + 1)]∕2

Rework parts (a) through (d) using this transformation
and comment on the results. (For an interesting discus-
sion and analysis of this experiment, refer to “Analysis
of Factorial Experiments with Defects or Defectives as
the Response,” by S. Bisgaard and H. T. Fuller, Quality
Engineering, Vol. 7, 1994–95, pp. 429–443.)

8.52 An experiment is run in a semiconductor factory to
investigate the effect of six factors on transistor gain. The
design selected is the 26−2IV shown in Table P8.15.

◾ TABLE P8 . 15
The Transistor Gain Experiment

Standard
Order

Run
Order A B C D E F Gain

1 2 − − − − − − 1455

2 8 + − − − + − 1511

3 5 − + − − + + 1487

4 9 + + − − − + 1596

5 3 − − + − + + 1430

6 14 + − + − − + 1481

7 11 − + + − − − 1458

8 10 + + + − + − 1549

9 15 − − − + − + 1454

10 13 + − − + + + 1517

11 1 − + − + + − 1487

12 6 + + − + − − 1596

13 12 − − + + + − 1446

14 4 + − + + − − 1473

15 7 − + + + − + 1461

16 16 + + + + + + 1563
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(a) Use a normal plot of the effects to identify the significant
factors.

(b) Conduct appropriate statistical tests for the model iden-
tified in part (a).

(c) Analyze the residuals and comment on your findings.

(d) Can you find a set of operating conditions that produce
gain of 1500 ± 25?

8.53 Heat treating is often used to carbonize metal parts,
such as gears. The thickness of the carbonized layer is a
critical output variable from this process, and it is usually
measured by performing a carbon analysis on the gear pitch
(the top of the gear tooth). Six factors were studied in a
26−2IV design: A = furnace temperature, B = cycle time, C =
carbon concentration, D = duration of the carbonizing cycle,
E = carbon concentration of the diffuse cycle, and F =
duration of the diffuse cycle. The experiment is shown in
Table P8.16.

◾ TABLE P8 . 16
The Heat Treating Experiment

Standard
Order

Run
Order A B C D E F Pitch

1 5 − − − − − − 74

2 7 + − − − + − 190

3 8 − + − − + + 133

4 2 + + − − − + 127

5 10 − − + − + + 115

6 12 + − + − − + 101

7 16 − + + − − − 54

8 1 + + + − + − 144

9 6 − − − + − + 121

10 9 + − − + + + 188

11 14 − + − + + − 135

12 13 + + − + − − 170

13 11 − − + + + − 126

14 3 + − + + − − 175

15 15 − + + + − + 126

16 4 + + + + + + 193

(a) Estimate the factor effects and plot them on a normal
probability plot. Select a tentative model.

(b) Perform appropriate statistical tests on the model.

(c) Analyze the residuals and comment on model adequacy.

(d) Interpret the results of this experiment. Assume that a
layer thickness of between 140 and 160 is desirable.

8.54 An article by L. B. Hare (“In the Soup: A Case Study to
Identify Contributors to Filling Variability,” Journal of Quality
Technology, Vol. 20, pp. 36–43) describes a factorial exper-
iment used to study the filling variability of dry soup mix
packages. The factors are A = number of mixing ports through
which the vegetable oil was added (1,2), B = temperature sur-
rounding the mixer (cooled, ambient), C = mixing time (60,
80 sec),D = batch weight (1500, 2000 lb), and E = number of
days of delay between mixing and packaging (1, 7). Between
125 and 150 packages of soup were sampled over an 8-hour
period for each run in the design, and the standard deviation of
package weight was used as the response variable. The design
and resulting data are shown in Table P8.17.

◾ TABLE P8 . 17
The Soup Experiment

A B C D E y
Std.
Order

Mixer
Ports Temp. Time

Batch
Weight Delay

Std.
Dev

1 − − − − − 1.13

2 + − − − + 1.25

3 − + − − + 0.97

4 + + − − − 1.7

5 − − + − + 1.47

6 + − + − − 1.28

7 − + + − − 1.18

8 + + + − + 0.98

9 − − − + + 0.78

10 + − − + − 1.36

11 − + − + − 1.85

12 + + − + + 0.62

13 − − + + − 1.09

14 + − + + + 1.1

15 − + + + + 0.76

16 + + + + − 2.1

(a) What is the generator for this design?

(b) What is the resolution of this design?

(c) Estimate the factor effects. Which effects are large?

(d) Does a residual analysis indicate any problems with the
underlying assumptions?

(e) Draw conclusions about this filling process.

8.55 Consider the 26−2IV design.

(a) Suppose that the design had been folded over by chang-
ing the signs in column B instead of column A. What
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changes would have resulted in the effects that can be
estimated from the combined design?

(b) Suppose that the design had been folded over by chang-
ing the signs in column E instead of column A. What
changes would have resulted in the effects that can be
estimated from the combined design?

8.56 Consider the 27−3IV design. Suppose that a fold over of
this design is run by changing the signs in column A. Deter-
mine the alias relationships in the combined design.

8.57 Reconsider the 27−3IV design in Problem 8.56.

(a) Suppose that a fold over of this design is run by changing
the signs in column B. Determine the alias relationships
in the combined design.

(b) Compare the aliases from this combined design to those
from the combined design from Problem 8.35.What dif-
ferences resulted by changing the signs in a different
column?

8.58 Consider the 27−3IV design.

(a) Suppose that a partial fold over of this design is run
using column A (+ signs only). Determine the alias rela-
tionships in the combined design.

(b) Rework part (a) using the negative signs to define the
partial fold over. Does it make any difference which
signs are used to define the partial fold over?

8.59 Consider a partial fold over for the 26−2IV design. Sup-
pose that the signs are reversed in column A, but the eight
runs that are retained are the runs that have positive signs in
column C. Determine the alias relationships in the combined
design.

8.60 Consider a partial fold over for the 27−4III design. Sup-
pose that the partial fold over of this design is constructed using
column A (+ signs only). Determine the alias relationships in
the combined design.

8.61 Consider a partial fold over for the 25−2III design. Sup-
pose that the partial fold over of this design is constructed using
column A (+ signs only). Determine the alias relationships in
the combined design.

8.62 Reconsider the 24−1 design in Example 8.1. The sig-
nificant factors are A, C, D, AC + BD, and AD + BC. Find a
partial fold-over design that will allow the AC, BD, AD, and
BC interactions to be estimated.

8.63 Construct a supersaturated design for k = 8 factors in
P = 6 runs.

8.64 Consider the 28−3 design in Problem 8.37. Suppose that
the alias chain involving the AB interaction was large. Recom-
mend a partial fold-over design to resolve the ambiguity about
this interaction.

8.65 Construct a supersaturated design for h = 12 factors in
N = 10 runs.

8.66 How could an “optimal design” approach be used to
augment a fractional factorial design to de-alias effects of
potential interest?

8.67 Consider the full 25 factorial design in Problem 6.51.
Suppose that this experiment had been run as a 25−1 frac-
tional factorial. Set up the fractional design using the principal
fraction. Using the 16 runs associated with this design from
the original experiment, analyze the data and compare your
results with those obtained from the analysis of the original
full factorial.

8.68 Consider the full 25 factorial design in Problem 6.51.
Suppose that this experiment had been run as a 25−1 fractional
factorial. Set up the fractional design using the alternate frac-
tion. Using the 16 runs associated with this design from the
original experiment, analyze the data and compare your results
with those obtained from the analysis of the principal fraction
in Problem 8.67.

8.69 Consider the full 25 factorial design in Problem 6.51.
Suppose that this experiment had been run as a 25−2 fractional
factorial. Set up the fractional design using the principal frac-
tion. Using the eight runs associated with this design from the
original experiment, analyze the data and compare your results
with those obtained from the analysis of the original full facto-
rial. Then construct the fold-over design and analyze the data
from the combined design.

8.70 Consider the fold over of the 25−2 fractional factorial
constructed in Problem 8.69. Compare this design with the two
one-half fractions of the 25−1. Is the fold-over design the same
as either of the one-half fractions?

8.71 The resolution of a two-level fractional factorial design
is the number of words in the defining relation.

(a) True

(b) False

8.72 For a half fraction of a two-level factorial design
the maximum resolution possible is equal to the number of
factors.

(a) True

(b) False
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8.73 The 12-run Plackett-Burman for up to 11 factors design
is a regular fraction.

(a) True

(b) False

8.74 The design points of the 2k−p family are at the corners
of a cube in a k-dimensional space and they project into a full
factorial in any subset of the original k factors.

(a) True

(b) False

8.75 It is good practice to keep the number of factor levels
low and region of interest small in a screening experiment.

(a) True

(b) False

8.76 Consider a 24-1 fractional factorial design. If the prin-
cipal fraction is run first—first block (I = ABCD)—and
then later augmented with the alternate fraction—second

block—the four-factor interaction effect is confounded with
blocks.

(a) True

(b) False

8.77 In a 2k−2 design every effect has four aliases.

(a) True

(b) False

8.78 In a 2k−3 design, the complete defining relation has
15 words.

(a) True

(b) False

8.79 The aberration of a fractional factorial design is related
to the length of the longest word in the defining relation.

(a) True

(b) False
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