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L.ogic and Propositional Calculus

4.1 INTRODUCTION

Muny proofs in mathemaltics and mary aigorithms in cornputer science use logical expressions such
as

“IF p THEN ¢"  or  “iF p; AND p,, THEN ¢, OR ¢,"

It is therefore necessary to know the cases in which these expressions are either TRUE or FALSE: what
we refer to as the truth values of such expressions. We discuss these issues in this secticn.

We alsc investigate the truth value of quantified statements, which are statements which use the
logical quantifiers ““for every” and “there exists”.

4.2 PROPOSITIONS AND COMPOUND PROPOSITIONS

A proposition (or statement) is a declarative sentence which is true or false, but not both. Consider,
for example, the following eight sentences:
(1) Paris is in France. (v) 9 <.
i) 141 =2 (vi) v=2is

() 24+2=23. (vil)  Where are you going?

) - k]
s a solution of x~ = 4.

(iv) London is in Denmark. (viii) Do your homework.
e

All of them are propositions except (vii) and (viii). Moreover, (i), (ii), and (vi) are true, whereas (iii), (iv),
and (v) are false.

Compound Propositions b

Many propositions are composite, that is, composed of subpropositions and various connectives
discussed subsequently. Such composite propositions are called compound propositions. A proposition i
is said to be primirive if it cannot be broken down into simpler propositions, that is, if it is not composite.

EXAMPLE 4.1

(¢) “Roses are red and violets are blue™ is a2 compound proposition with subpropositions “Roses are red” and
“Violets are blue™.

(h) *John is intelligent or studies every night™ is a compound proposition with subpropositions **John is intelli-
gent” and ““John studies every night™.

(¢)  The above propositions (i) through (vi) are all primitive propositions; they cannot be broken down into simpler
propositions.

The fundamental property of a compound proposition is that its truth value is completely determined
by the truth values of its subpropositions together with the way in which they are connected to form
the compound propositions. The next section studies some of these connectives.
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4.3 BASIC LOGICAL OPERATIONS

This section discusses the three basic logical operations of conjunction, disjunction, and negation

which correspond, respectively, to the English words “and™, “or”, and “not”.

Conjunction, p A ¢

Any two propositions can be combined by the word “and”

to form a compound proposition called
the conjunction of the original propositicns. Symbolically,

PAY

read “p and ¢, denotes the conjunction of p and ¢. Since P Agqisaproposition it has a truth value, and
this truth value depends only or the truth values of p and ¢. Specifically:

Definition 4.1:  If p and g are true, then p A g is true; otherwise P Agis false.

The truth value ofpAg
] . then p A g is true. The second line says that if p is true

Observe that there are four lines corresponding to the four
0 subpropositions p and 4. Note that p A ¢ is true only when

and q is false, then p A ¢ is false. And so on.
possible combinations of T and F for the tw
both p and g are true.

EXAMPLE 4.2 Consider the following four statements:
(i} Paris is in France and 2 2=

(i) Paris is in France and 2 4 2 = 5

(i) Paris is in England and 2 + 2 = 4,

(iv) Paris is in England and 2 +2 =5,

Only the first statement is Lrue. Each of the other statements is false, since at least one of its subslatements s false.

P |7p
TI]F
F i T

(c) “not p”

Disjunction, p v ¢

Any two propositions can be combined by the word “or” to form a compound proposition called
the disjunction of the original propositions. Symbolically,

pPVy

read “p or ¢, denotes the disjunction of p and ¢. The truth value of p v g depends only on the truth
values of p and g as follows.

Definition 4.2: If p and q are false, then p v ¢ is false; otherwise pVqis true.

The truth value of p v ¢ may be defined equivalently by the table in Fig. 4-1(b). Observe that pVais
false only in the fourth case when both p and ¢ are false.
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EXAMPLE 4.3 Consider the following four statements:

() Paris is in France or 2 +2=4.
) Parisas o France or 2+2 =5
() Pars v England or 2+ 2 = 4
(v) Paris is m England or 2 +2 = 5.

Only the last statement (iv}is false. Each of the other statements is true since at least one of its substatements is irue.

Remark: The English word “or” is commonly used in two distinct ways. Sometimes it is used in the
sense of “p or ¢ or both”, i.c., at least one of the two alternatives occurs, as above, and sometimes it is
used in the sense of “p or ¢ but not both”, j.e., exactly one of the two alternatives occurs. For example,
the sentence *“He will go to Harvard or to Yale” uses “or” in the latter sense, called the exclusive
disjunction. Unless otherwise stated, “or” shall be used in the former sense This discussion points out
the precision we gain from our symbolic language: p V ¢ is defined by its truth table and always means “p
and/or ¢.

Negation, - p

Given any proposition p, another proposition, called the negation of p, can be formed by writing “It
is not the case that ...” or “It is false that ... before p or, if possible, by inserting in p the word “not”.
Symbolically,

—\I)

read “not p. denotes the negation ol p. The truth value of - p depends on the truth value of poas
follows.

Definition 4.3:  If p is true, then — p1s false; and if p is {alse, then - P IS true.
The truth value of - p may be defined equivalently by the table in Fig. 4-1(¢). Thus the truth value of

the negation of p is always the opposite of the truth value of p.

EXAMPLE 4.4 Consider the following six statements:

(ay) Paris is in France. (b)) 2+2=5.
(42) Itis not the case that Paris is in France. (h2) 1tis not the case that 2 +2 = 5,
{a3) Paris is not in France. (h3) 2+2#5.

Then (a,) and (a;) are each the negation of (@1); and (,) and (b3) are each the negation of (b;). Since (a,) is true,
(a2) and (ay) are false; and since (b1) is false, (b,) and (b5) are true.

Remark: The logical notation for the connectives “and”, “or”, and “not” is not completely stan-
dardized. For example, some texts use:
P&g,p-qorpg forpng
P+yq forpvyg
p.por ~p  for-p

44 PROPOSITIONS AND TRUTH TABLES

Let P(p,q,...) denote an expression constructed from logical variables P» 4, ..., which take on the
value TRUE (T) or FALSE (F), and the logical connectives A, V, and - (and others discussed subse-
quently). Such an expression P(p,g,.. .) will be called a proposition.
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The miin property of a proposition P(p, g, . ..) is that its truth value depends exclusively upon ihe r
truth vatues of its variables, that is, the truth value of a proposition is known once the truth value of each :
ol its variables is known. A simple concise way to show this relationship is through a truth table. We
describe a way to obtain such a truth table below.

Consider, for example, the proposition ~ {3 A~ ¢). Figure 4-2(a) indicates how the truth table of
= (pA-g) is constructed. Observe that the first columns of the table are for the variables p,g,... and
that there are enough rows in the table to allow for all possible combinations of T and F for these
variables. (For 2 variables, as above, 4 rows are necessary; for 3 variables, 8 rows are necessary; and, in
general, for n variables, 2" rows are required.) There is then a column for each “‘elementary” stage of the
construction of the proposition, the truth value at each step being determined from the previous stages
by the definitions of the connectives A, V, —. Finally we obtain the truth value of the proposition, which
appears in the last column.

The actual truth table of the proposition = (p A = ¢) is shown in Fig. 4-2(6). Tt consists precisely of
the columns in Fig. 4-2(a) which appear under the variables and under the proposition; the other
columns were merely used in the construction of the truth table.

pla|-alpr-g|l-wr-o pla|-trr-g
s{r|E!| ¥ T {7 ' T
vl e |0l 9 F T|F F
FlTlr| T & | T 1
FlelT) F T Pl T

(a) (WD)}

Fig. 4-2

Remark: In order to avoid an excessive number ol parentheses, we sometimes adopt an order of
precedence for the logical connectives. Specifically,

N S s bR AT

B

- has precedence over A which has precedence over V

For example, = p A ¢ means (= p) Ag and not =~ (p A g).

Alternative Method for Constructing a Truth Table

Another way to construct the truth table for -~ (p A - q) follows:

(a) First we construct the truth table shown in Fig. 4-3. That is, first we list all the variables and the
combinations of their truth values. Then the proposition is written on the top row to the right of its H
variables with sufficient space so that there is a column under each variable and each connective in
the proposition. Also there is a final row labeled “Step™”.

Mm-S
|

Step

Fig. 4-3




(h) Next, additional truth values are entered into the truth table in various steps as shown in Fig. 4-4.
That is, first the truth values of the variables are entered under the variables in the proposition, and
then there is & cofumn ol truth values entered under each logical operation. We also indicate the
step in which cach column of truth values is entered in the table.

The truth table of the proposition then consists of the original columns under the variables and the
last step, that s, the last column entered into the table.

Plagl -~ (p A ~ q) Py (p A q)
T|T T T T T T FIT
T|F T r T|F T T!F
F|T F T FIT F FIT
F|F F F F|F F ol 0
Step f 1 Step l 2 |
(a) (5)
plag| ™ (p A q) plgprs (B A q)
T | T TIF|FI|T TITeT 4T | FER T
r|F Tl lT |E FlRlPYT] TIT  E
F|T FlF|FIT F{F|T|F|F{F|T
F|F F|lF|T|F FIFITLF | FIT]|I
Step 1 a2 |1 Step 8 342 01

() ()

Fig. 4-4

4.5 TAUTOLOGIES AND CONTRADICTIONS

Some propositions P(p,q,...) contain only T in the last column of their truth tables or, in other
words, they are true for any truth values of their variables. Such propositions are called fautologies.
Analogously, a proposition P(p,q,...) is called a contradiction if it contains only F in the last column of
its truth table or, in other words, if it is false for any truth values of its variables. For example, the
proposition “p or not p”, that is, pV = p, is a tautology, and the proposition **p and not p”, that is,
p A p, is a contradiction. This is verified by looking at their truth tables in Fig. 4-5. (The truth tables
have only two rows since each proposition has only the one variable p.)

T|F F
F|T F
by pA-p

Fig. 45

Note that the negation of a tautology is a contradiction since it is always false, and the negation of a
contradiction is a tautology since it is always true.

Now let P(p,q,...) be a tautology, and let Py(p,q,...), P2(p,q;-- ), - .. be any propositions. Since
P(p,q,...) does not depend upon the particular truth values of its variables p, ¢, ..., we can substitute Py
for p, P, for g, ... in the tautology P(p,q,...) and still have a tautology. In other words:




Theorem 4.1 (Principle of Substitution): I P(p,q,...) is a tautology, then P(Py. Py, ...) is a tautology
for any propositions Py, P, ....

4.6 -LQGICAL EQUIVALENCE
Two propositions P(p,q,...) and Q(p,q,...) are said to be logically equivalent, or simply equivalent
or equal, denoted by

Plpg....)=Q(p,q....)

if they have identical truth tables. Censider, for example, the truth tables of = (pNng)and =pV g
appearing in Fig. 4-6. Observe that both truth tables are the same, that is, both propositions are false in
the first case and true in the other three cases. Accordingly, we can write

“(pAg)=-pV-yg

In other words, the propositions are logically equivalent.

Remark: Consider the stalement
“Itis not the case that roses are red and violets are blue™
This statement can be written in the form =~ (p V ¢) where:
p is “roses are red” and ¢ is *“‘violets are blue”
However, as noted above, = (p Ag) = - pV - ¢. Thus the statement

“Roses are not red, or violets are not Blue.”

has the same meaning as the given statement.

plalrrgi-tprg rla

|}l T F rlaile |F F

Tl E| E T el E [T T

Efx] oF T Fladl Tt l® T

El e 4E T t e b |7 T
(@) ~(pAgq) (6) ~pVv—g

Fig. 4-6

4.7 ALGEBRA OF PROPOSITIONS

Propositions satisfy various laws which are listed in Table 4-1. (In this table, T and F are restricted
to the truth values “‘true” and “‘false”, respectively.) We state this result formally.

Theorem 4.2: Propositions satisfy the laws of Table 4-I.
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Table 4-1

Laws of the algebra of propositions

(la) pvp=p

Idempotent laws

(0 pap=p

Qa) (pvag)Vr=pv(gvr)

Associative laws

(2h) (pAg)Ar=pA(gnr)

(Ba) pvg=gvp

Cominutative laws

(Bb) pAg=qnp

(da) pNvgAr)=(pVvg)A(pVr)

Distributive laws
(4b) pA(gvr)={pAqg)V(pAr)

220G

(Say pvF=p
6a) pvT=T

"l’&é;\;ity laws
Shy pAT=p
6b) pnF=F

(7a) pv=p=T
8¢) -T=F

Complement laws
by pA-p=F
(8h) -F=T

9) ~mp=p

Involution law

(10a) =(pVg)=-pA-yg

DeMorgan’s laws
(10b) —(pAg)=-=pv =g

4.8 CONDITIONAL AND BICONDITIONAL STATEMENTS

Many statements, particularly in mathematics, are of the form “If p then ¢”. Such statements are
called conditional statements and are denoted by

=g

The conditional p — ¢ is frequently read “p implies g” or “ponlyif 4.
Another common statement is of the form “p if and only if g”. Such statements are called bicondi-

tional statements and are denoted by

Peg
rlalroa r|alreq plal-p|-pve
T i T T TT T T|T|F T
tir| ¥ TIE] E T|F|F F
Flr] * Fltl F flTlT T
F|F T F|F T Fl1ET o

(@) p—gq ) perg ~pVy
Fig. 4-7 Fig. 48
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The truth values of p — ¢ and P+ g are defined by the tables in Fig. 4-7. Observe that:

(@) The conditionul p - ¢ is false only when the first part p is true and the second part ¢ is false.
Accordingiy, when p s false, the conditional ; — ¢ is true regardless of the truth value of ¢.
Y l; f g 4 g9

(b) The biconditional P < g is true whenever p and ¢ have the same truth values and faise otherwise,

The truth table of the proposition PV g appears in Fig. 4-8. Observe that the truth tables of ~pvy
and p — ¢ are identical, that is, they are both false only in the second case.

Accordingly, p — g is
logically equivalent to “pVg; that is,

P—q=-pVy

In other words, the conditional statement “If p then ¢” is logically equivalent to the statement “Not por
¢" which only involves the connectives V and - and thus was already a part of our language. We may
regard p — ¢ as an abbreviation for an oft-recurring statement.

4.9 ARGUMENTS
An argument is an assertion that a given set of propositions Py, Ps,. .. » P, called premises, yields
(has a consequence) another proposition Q, called the conclusion. Such an argument is dénoted by
BlPray by @
The notion of a “logical argument” or “valid argument™ is formalized as follows:
Definition 4.4:  An argument P, Pa o Py E Qs said Lo be valid it Q is true whenever all the premises
PPy, P, are truc.,

An argument which is not valid is called a Jallacy.

EXAMPLE 4.5

(a) The following argument is valid:

PP—yqtyg (Law of Detachment)

The proof of this rule follows from the truth table in Fi

8. 4-9. Specifically, p and p — g are true simultaneously
only in Case (row) 1, and in this case q 1 true.

(b) The following argument is a fallacy:

P—q¢,qtp

For p — ¢ and g are both true in Case (row) 3 in the truth table in Fig. 4-9, but in this case p is false.

Fig. 4-9

Now the propositions Py, P,,..., P, are true simultaneously if and only if the proposition
PyAPyA ...\ P,is true. Thus the argument Py, Py, ..., P, - Qis valid if and only if Q is true whenever

PyAPyA...AP,is true or, equivalently, if the proposition (PyAPyA...AP,)— Qisa tautology. We
state this result formally.
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Theorem 4.3: The argument PPy, Py b Qs valid if and only if the proposition {?| A P, ...

tautology.

We apply this thecrem in the next example.

EXAMPLE 4.6 A (undamental principle of logical reasoning states:
“If p implies ¢ and ¢ implies r, then p implies r.”
That is, the following argument is valid:
P =4, g —rkp—r(Law of Syllogism)
This fact is verified by the truth table in Fig. 4-10 which shows that the following

= Alg—ni—(p—1)

AP)—Qisa

proposition is a tautology:

Equivalently, the argument is valid since the premiscs p — g and ¢ — r arc truc simultancously only in Cascs (rows)
= - - - k)
1,5, 7and 8, and in these cases the conclusion p — ris also true. (Observe that the truth table required 2" = 8 lines

since there are three variables P, g and r.)

Plelriie = @ A @ -~ Al = (p = r)
T T T T T T T T 41 b ] T P> T
TiTIEl T2 |IPlolelelecls|e]p
L B o o B I O O T R
T r F T F F F F 4H F T €T~ ¥ ¥
r T T r T T T T T T T F T T
F T F F & 2 F T r F T F T F
FIFIT{F|T(F|T|F|T|2|{T|PiT]|T
F F F F T F 4 F T F T F T F

Step 2 1 3 1 2 1 4 ) & 2 1

Fig. 4-10

We now apply the above theory to arguments involving specific statements. We emphasize that the
validity of an argument does not depend upon the truth values nor the content of the statements
appearing in the argument, but upon the particular form of the argument. This is illustrated in the

following example.

EXAMPLE 4.7 Consider the following argument:

Sy: If 2 man is a bachelor, he is unhappy.
$>: If a man is unhappy, he dies young.

S: Bachelors die young.

Here the statement S below the line denotes the conclusion of the argument, and the statements S,

and §, above the

line denote the premises. We claim that the argument S}, S, - § is valid. For the argument is of the form

P=gg—orkEp—r

where p is “He is a bachelor™, 4 is “He is unhappy" and r is “He dies young™; and by Example 4.6 this argument

(Law of Syllogism) is valid.
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410 LOGICAL IMPLICATION
A proposition P(p,q,...) s said to logically imply a proposition Q(p.q....), written
P(rg.- )= 0(pg,...)
i Q(p, 4--.) is true whenever P(p.g...) s true.
EXAMPLE 4.8 e claim that p logically implies PV . For consider the truth table in Fig. 4.1, Observe that p is
true in Cases (rews) 1 and 2, and in these cases Vg is also true. Thus P=pVa.
Fig. 4-11
Now if Q(piq,...) is true whenever P(p.g,..)is true, then the argument
P14, F Qp,q...)
is valid; and conversely. Furthermore, the argument p - Q is valid if and only if the conditional state-
ment P — Q js always true, ie., a tautology. We state this result formally.
Theorem 4.4: For any propositions P(p, q,-..) and Q(p.q,...), the following three Statements are
equivalent:
@) Blpgeen) logically implies Q(p.q,...).
(i) The argument P(p,g,..)F O(p,q,...) is valid.
(i) The proposition P(p, g:--.) = Q(p, Gywz) is tautology. 1
iy
We note that some logicians and Many texts use the word “implies” in the same sense as we use \
“logically implies™, and so they distinguish between “implies” and “if. . . then”. These two distinct
concepts are, of course, intimately related as seen n the above theorem. 8
?\\.
4.11 PROPOSITIONAL F UNCTIONS, QUANTIFIERS
Let 4 be a given set. A propositional Junction (or: an open sentence or condition) defined on 4 1s an
expression
p(x) 8
which has the property that p(a) is true or false for eacha € 4. That is, p(x) becomes a Statement (with a ;
truth value) whenever any elementa e 4 ig substituted for the variable x. The set A is called the domain
of p(x), and the set T, of all elements of 4 for which p(a) is true js called the truth set of P(x). In other
words, %
To={xxe4, p(x) is true} or T, ={x p(x)}
Frequently, when 4 js some set of numbers, the condition P(x) has the form of an equation or inequality
involving the variable X -
;
-
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1.1 INTRODUCTION

The concept of a ser appears an all mathematics. This chapter introduces the notation and terminol-
ogy of sct theory which is basic and used throughout the text.

Though logic is formally treated in Chapter 4. we introduce Venn diagram representation of sets
here, and we show how it can be applied to logical arguments. The relation between set theory and logic
will be further explored when we discuss Boolean aigebra in Chapter 15.

This chapter closes with the formal definition of mathematical induction. with cxamples.

2.2 SETS AND ELEMENTS

A set may be viewed as a collection of objects, the elements or members of the set. We ordinarily use
capital letters, A, B. X, Y, ... todenote sets, and lowercase letters, ¢, b, A, Y, ... to denote elements of
sets. The statement *p is an element of 47, or, equivalently, *p belongs to 4™, is written

pPeEA
The statement that P is not an element of A, that is, the negation of p € 4, is written
Pg A

The fact that a set is completely determined when its members are specified is formally stated as the
principle of extension.

Principle of Extension: Two sets 4 and B are equal if and only if they have the same members.

As usual, we write 4 = B if the sets 4 and B are equal, and we write 4 # B if the sets are not equal.

Specifying Sets

There are essentially two ways to specify a particular set. One way, if possible, is to list its members.
For example,

A= {a,e,i,ou}
denotes the set 4 whose elements are the letters a, e, 1, 0, u. Note that the elements are separated by
commas and enclosed in braces { }. The second way is to state those properties which characterized the
elements in the set. For example,
B = {x: x is an even integer, x > 0}

which reads “B is the set of x such that x is an even integer and x is greater than 0™, denotes the set B
whose elements are the positive integers. A letter, usually v, is used to denote a typical member of the set:
the colon is read as “‘such that™ and the comma as “and’".

EXAMPLE 21
(a) The set 4 above can also be written as
E A ={x: xis a letler in the English alphabel, v is a vowel}
Observe that b ¢ 4, e € A, and p¢g 4.
(h)  We could not iist all the clements of the above set 8 although frequently we specily the sct by writing

B={2,4,6, |



where we assume that everyone knows what we imesn Observe thatl Ko Bbw 7¢ B

(€) LetE={x:x—3y+2- 0}. In other words,  consists of those numbers which sre sobutions ol the cqualion
2 - - - .- - . .
X" = 3x + 2 = 0, sometimes called the sofution sei of the given equation. Since the solutions of the equation are
I and 2, we could also write E = {1, 2}.
(d) Let E={x:x*-3x+2= O} F=(2, 1} and G= {1,221, $}. Then E = F = . Observe that a set does
not depend on the way in which its elements are displayed. A set remains the same if its elements are repeated or
rearranged.

Some sets will occur very often in the text and so we use special symbols for them. Unless otherwise
specified, we will let .

It

the set of positive integers: 1, 2, 3. ...

= the set of integers: ..., -2, —1,0, I, 2, ...
= the set of rational numbers

the set of real numbers

= the set of complex numbers

ORONZ
|

Even if we can list the elements of a set. it may not be practical to do so. For example, we would not
list the members of the set of people born in the world during the year 1976 although theoretically it is
possible to compile such a list. That is, we describe a set by listing its elements only if the set contains a
few elements; otherwise we describe a set by the property which characterizes its elements.

The fact that we can describe a set in terms of a property is formally stated as the principle of
abstraction.

"Principle of Abstraction: Given any set U and any property P, there is a set A such that the elements of

A are exactly those members of U which have the property P.

1.3 UNIVERSAL SET AND EMPTY SET

In any application of the theory of sets, the members of all sets under investigation usually belong to
some fixed large set called the universal set. For example, in plane geometry, the universal set consists of
all the points in the plane, and in human population studies the universal sct consists of all the people in
the world. We will let the symbol

U
denote the universal set unless otherwise stated or implied.

For a given set U and a property P, there may not be any elements of U/ which have property P. For
example, the set

§ = {x: x is a positive integer, x? = 3}
has no elements since no positive integer has the required property.
The set with no elements is called the empty set or null set and is denoted by
%]

There is only one empty set. That is, if S and T are both empty, then § = T since they have exactly the
same elements, namely, none.

9.4 SUBSETS

If every element in a set A is also an element of a set B. then A is called a subset of B. We also say
that 4 is contained in B or that B contains A. This relationship is written

ACB or B2 A



IT 4 is not a subset of B.oic.ifat least one element of A does not belong to B, we write A & BorB p A.

EXAMPLE 1.2

(a) Consider the sets
A={1,3,4,5,8,9} B~ {1,2,3.5,7) C={1,5}
Then C C Aand € C Bsince | and 5. the elements of €', are also members of 4 and B. But B & A since some
of its elements, e.g.. 2 and 7. do not belong to 4. Furthermore, since the elements of 4. B. and C must also
belong to the universal set U/, we have that U must at least contam the set {1:2,3,4,5:.6, 7, 8,9}.
(h) Let N, Z, Q. and R be defined as in Section 1.2. Then
NCZCQcCR

(¢) The set E={2.4,6} is a subset of the set F={6,2,4}, since each number 2, 4, and 6 belonging to E also
belongs to F. In fact, E = F. In 4 similar manner it can be shown that every set is a subset of itself.

The following properties of sets should be noted:

(i) Every set 4 is a subset of the universal set U since, by definition. all the elements of A belong to U.
Also the empty set @F is a subset of 4.
(i) Every set A is a subset of itself since, trivially, the elements of 4 belong to A.
(i) If every elemenit of 4 belongs to a set B, and every element of B belongs to a set C, then clearly
every element of A belongs to C. In other words, if 4 C Band BC C, then A EC.
(iv) If AC Band BC A, then 4 and B have the same elements, ie., 4 = B. Conversely, if 4 = B then
A C Band B C A since every set is a subset of itself.

We state these results formally.

Theorem 4.1: (1) For any set 4, we have J C 4 C U,
(i) For any set 4, we have 4 C 4.
(i) IfACBand BC C, then 4 C C.
(ivy 4= Bifand only if 4 C Band B C A.

If A C B, then it is still possible that 4 = B. When A C Bbut 4 # B, we say A is a proper subset of B.
We will write 4 C B when A4 is a proper subset of B. For example, suppose

A={1,3} B={1,2,3}, C={1,3,2}

Then A4 and B are both subsets of C: but 4 is a proper subset of C, whereas B is not a proper subset of C
since B = C.

9.5 VENN DIAGRAMS

A Venn diagram is a pictoral representation of sets in which sets are represented by enclosed areas in
the plane.

The universal set U is represented by the interior of a rectangle, and the other sets are represented by
disks lying within the rectangle. If A C B, then the disk representing 4 will be entirely within the disk
representing B as in Fig. 1-1(a). If A and B are disjoint, i.e., if they have no elements in common, then the
disk representing 4 will be separated from the disk representing B as in Fig. 1-1().

However, if 4 and B are two arbitrary sets, it is possible that some objects are in A4 but not in B,
some are in B but not in A4, some are in both A and B, and some are in neither 4 nor B; hence in general

i "We represent A and B as in Fig. 1-1(c).

b s A0
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(e} ACRB (b) A and & are disjoint (e

Fig. 1-1

Arguments and Venn Diagrams

Many verbal statements are essentially statements about sets and can therefore be described by Venn

diagrams.
Hence Venn diagrams can sometimes be used to determine whether or not an argument is valid.

Consider the following example.

EXAMPLE 4.3 Show that the following argument (adapted from a book on logic by Lewis Carroll, the author of
Alice in Wonderland) is valid:

S1: My saucepans are the only things I have that are made of tin.
$3: 1 find all your presents very useful.
S3: None of my saucepans is of the slightest use

S Your presents to me are not made of tin.

(The statements S, S, and S3 above the horizontal linc denote the assumptions, and the statement S below the line
denotes the conclusion. The argument is valid if the conclusion S follows logically from the assumptions 8. Sy, and

S3.)

By ) the tin objects are contained in the set of saucepans and by S; the set of saucepans and the set of useful
things are disjoint: hence draw the Venn diagram of Fig. 1-2.

saucepans

Fig. J-2 « B

=
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By S, the set of “your presents™ iy subset of the set of useful things; hence draw Fig. |.3,

tin objects

Saucepans useful things

. Fig. 1-3

The conclusion s clearly valid by the above Venp diagram because (he set of “your presents” is disjoint from
the set of tip objects.

)6 SET OPERATIONS

Thissection introduces 3 number of important operations on sets.

Union and Intersection

AUB:{x:xererB}

Here “or” is used in the sense of and/or. Figure I-4(a) is a Venn diagram in whijch 4 U B is shaded.
The intersection of two sets 4 and B, denoted by AN B, is the set of elements which belong to both 4
and B; that is,

ANB={xxeAdandxe B}

Figure 1-4(p) is 4 Venn diagram in which 4N B is shaded.
IfAng = &, that is, if 4 and B do not have any elements in common, then 4 and B are said to be
disjoint or nonintersecting.

(a) 4 U Bis shaded (hHANBIs shaded
Fig. 14
EXAMPLEIA
(@ Let 4= {1,2,3,4}, B= (34,56, 7}, C = 2,35, 7}. Then
P AUB=(1,2,3,4,56,7) ANB = {3,4) k. aifs
AUC={1,2,3,4,57) ANC={2,3)

=

o\
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(b) Let M denote the set of male students in a university C, i let # denote the set of female students in C. Then
MUF = ¢
since each student in € befongs to either M or F. On the other hand,
MNF =~
since no studenlt belongs to both M and F.

The operation of set inclusion is closely related to the operations of union and intersection, as shown
by the following theorem.

Theorem 1.2: The following are equivalent: A C B, ANB=A and AUB=B.

Note: This theorem is proved in Problem 1.27. Other conditions cquivalent to A C Bare given in
Problem 1.37.

Complements
Recall that all sets under consideration at a particular time are subsets of a fixed universal set U. The
absolute complement or, simply, complement of a set 4, denoted by A, is the set of elements which belong

to U but which do not belong to 4; that is.
A'={xxe U, x¢ 4}
Some texts denote the complement of 4 by A’ or 4. Figure 1-5(a) is a Venn diagram in which A4 is

shaded.
The relative complement of a set B with respect tc a set A or, simply, the difference of A and B,

denoted by A4\B, is the set of elements which belong to 4 but which do not belong to B; that is
A\B={x:x€ A4, x¢ B}

The set A\ B is read “4 minus B”. Many texts denote 4\B by A — Bor A ~ B. Figure 1-5(b) is a Venn

diagram in which A\ B is shaded.

(a) A is shaded (b) A\B is shaded

Fig. 1-5

EXAMPLEz.S Suppose U =N = {1,2,3,...}, the positive integers, is the universal set. Let
A ={1.23.40) B=43.4,5.6,7}, C= {6.7,8,9})

and let E = {2,4.6,8,...}, the even integers. Then
A ={5,6.7.8,...}. B ={1.2,8.9,10....}, ¢ =1{1,2,3,4.510,11,...}

. *

and - .
A\B = {1,2}. B\C = {3,4,5}, B\A = {5,6,7}, .
B v AR

!

EXE= [9,9)

Also, £°= {1,3,5,...}, the odd integers.

~



Fundamental Products

Consider n distinct sets Ay, Ay...., A,. A fundumental product of the sets is a set of the form
AINAN---NA4,
where A7 is either 4; or A]. We note that (1) there are 2” such fundamental products, (2) any two such

fundamental products are disjoint, and (3) the universal set U is the union of all the fundamental
products (Problem 1.64). There is a geometrical description of these sets which is illustrated below.

EXAMPLE 1.6 Consider three sets 4, B, and C. The following lists the eight fundamental products of the three
sets:

P,=ANBNC, Py=ANB‘NC, Ps=A‘NnBNC, Pr=A4ANB‘NnC

Py =ANBNC" P, =ANB'NC". Pe=A'NBNC' Py 2 A OB NECS

These eight products correspond precisely to the eight disjoint regions in the Venn diagram of sets 4. 8. Cin Fig. 1-6
as indicated by the labeling ol the regions.

B

Fig. 1-6 Fig. 1-7

Symmetric Difference

The symmetric difference of sets 4 and B, denoted by 4 & B, consists of those elements which belong
to A or B but not to both; that is,

) AOB=(AUB)\(4N B)
One can also show (Problem 1.18) that
d A® B = (A\B)U (B\4)
For example, suppose 4 = {1,2,3,4,5,6} and B = {4.5,6.7, 8,9}. Then
A\B = {1,2,3}, B\A = {7,8,9} and so A®B=1{123,738,9}
Figure 1-7 is a Venn diagram in which 4 B is shaded.

9.7 ALGEBRA OF SETS AND DUALITY

Sets under the operations of union, intersection, and complement satisfy various laws or identities
which are listed in Table 1-1. In fact, we formally state this:

Theorem 4.3:  Sets satisfy the laws in Table I-1.

There are two methods of proving equations involving set operations. One way is to use what it
means for an object x to be an element of each side, and the other way is to use Venn diagrams. For
example, consider the first of DeMorgan’s laws. \

(AUB) =, 4N R

7



‘T'able l—l Laws of the algebra of sets

Idempotent laws
thyy Aud -4 (lh) AnNA=A4
Associative laws
() (AuBucC=A4U(BUC) (2h) (ANB)NC=AN(BNC)
Commutative laws
(Juy AUB=BUA (3b) ANB=BNA
Distributive laws
(da) AU(BNC)=(AUB)N(AUC) (4h) AN(BUC)=(ANB)u(4nC)
Identity laws
(Ga) AU =4 5hy ANU=A4
(ba) AVU=U 6h) AN =g
Involution laws
(7 (4) =4 e
Complement laws
Ba) AuA =U 8h) ANA =@
Va)y U= 9 g =U
DeMorgan’s laws
(10a) (AUB) = AN B¢ (10b) (ANB) =AU B’

Method 1:

Method 2:

We first show that (AUB)' C A“NB. If x€ (AU B), then x¢ 4U B.
Thus x¢ 4 and x¢ B, and so x € A° and x € B°. Hence x € AN B*.
Next we show that A°N B C (AU B) . Let x € A°N B°. Then x € A°
and x € B, so x¢ A and x¢ B. Hence x¢ AU B, so x € (4U B)".
We have proven that every element of (4 U B)“ belongs to A°N B*

- -and that every element of 4° N B° belongs to (4 U B)‘. Together, these
" inclusions prove that the sets have the same elements, i.e., that

(AU B) = A° N B“.

From the Venn diagram for 4 U B in Fig. 1-4, we see that (4U B)" is
represented by the shaded area in Fig. 1-8(a). To find A° N B¢, the area in
both A° and B¢, we shaded A4° with strokes in one direction and B with
strokes in another direction as in Fig. 1-8(b). Then A° N B¢ is represented
by the crosshatched area, which is shaded in Fig. 1-8(c). Since (4 U B)"
and A°N B¢ are represented by the same area, they are equal.

A B

N

(@) (A U B) is shaded

< S : ¢ «~f.'>" X ST Papint
(b) 4%s shaded with 4% (¢) A°N Bis shaded
B* is shaded with NN\

Fig. 48



Duality

Note that the identities in Table I=1 are arranged in pairs, as, for example, (2a) and (2b). We now
consider the principle behind this arrangement. Suppose £ is an cquation of set algebra. The dual E* of
E is the equation obtained by replacing cach oceurrence of U, 1), U, and & in E by N, U, & and U,
respectively. For example, the dual of

(UnAYLu(BNA)=A4 1s (BUAN(BUA)=A

Observe that the pairs of laws in Table -1 are duals of cach other. It is a fact of set algebra, called the
principle of duality, that, if any equation E is an identity. then its dual E” is also an identity.

1:8 FINITE SETS, COUNTING PRINCIPLE

A set is said to be finite if it contains exactly /n distinct elements where /m denotes some nonnegative
integer. Otherwise, a set is said to be infinite. For example, the empty set & and the set of letters of the
English alphabet are finite sets, whereas the set of even positive integers, {2,4.6,...}, is infinite.

The notation n(A) will denote the number of elements in a finite set 4. Some texts use #(4). |A| or
card(4) instead of n(4).

Lemma 9.4: If 4 and B are disjoint finite sets, then AU B is finite and
n(A U B) = n(A) + n(B)
Proof. In counting the elements of 4 U B, first count those that are in 4. There are n(A) of these. The

only other elements of 4 U B are those that are in 8 but not in 4. But since 4 and B are disjoint, no
element of B is in A, so there are n(B) elements that are in B but not in A. Therefore,

n(A U B) = n(A) + n(B).

We also have a formula for (4 U B) even when they are not disjoint. This is proved in Problem 1.28.
Theorem 1.5: If 4 and B are finite sets, then AU B and 4 N B are finite and

n(AU B) = n(A4) + n(B) —n(4AN B)
We can apply this result to obtain a similar formula for three sets:
Corollary 9.6: If A, B, and C are finite sets, then so is A U BU C, and
n(AUBUC) =n(A)+n(B) +n(C) —n(ANB) —n(4NC)—n(BNC)+n(ANBNC)

Mathematical induction (Section 1.10) may be used to further generalize this result to any finite

number of sets.

EXAMPLE4.7 Consider the following data for 120 mathematics students at a college concerning the languages
French, German, and Russian:
65 study French
45 study German

42 study Russian
20 study Freach and German ‘

25 study French and Russian
15 study German and Russian
8 study all three languages.

Let F, G, and R denote the sets of students studying French, German and

Russian, respectively. We wish to find the number of students who study at _l
least one of the three languages, and to fill in the correct number of students

in each of the eight regions of the Venn diagram shown in Fig. I-9. Fig.1-9
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By Corollary t(»,
(FUGUR) = u(F) +n(G) +n(R) — n(FNG) — m(FOR) ~n(GNRY+n(FNGNR)
=65+45+42—-20-25—-15+8 — 100

That is, n(FUGUR) = 100 students study at least one of the three
languages.
We now use this result to fill in the Venn diagram. Wc have:

8 study all three langl}ages,
20 — 8 = 12 study French and German but not Russian

25 -8 =17 study French and Russian but not German

15— 8 = 7 study German and Russian but not French 20
65-12-8—-17=28 study only French l_
45~ 12 -8 - 7= 18 study only German Fig. 1-10

42 - 17~ 8 - 7 = 10 study only Russian
120 — 100 = 20 do not study any of the languages

Accordingly, the complcted diagram appears in Fig. 1-10. Observe that 28 + 18 + 10 = 56 students study only onc of
the languages.

4.9 CLASSES OF SETS, POWER SETS, PARTITIONS

Given a set S, we might wish to talk about some of its subsets. Thus we would be considering a set of
sets. Whenever such a situation occurs, to avoid confusion we will speak of a class of sets or collection of
sets rather than a set of sets. If we wish to consider some of the sets in a given class of sets, then we speak
of a subclass or subcoliection.

EXAMPLE 1.8 Suppose § = {1,2,3.4}. Let A be the class of subsets of S which contain exactly three elements of
S. Then
A=[{1,2,3}, {1,2.4}, {1.3,4}, {2,3.4}]
The elements of A are the sets {1,2,3}, {1,2, 4} {1,3.4}, and {2,3,4}.
Lel B be the class of subsels of S which contain.2 and two other elements of S. Then
B=[{1.2,3}, {1,2,4}, {2,3,4}]

The elements of B are the sets {1,2,3}, {1,2,4}, and {2, 3,4}. Thus B is a subclass of A, since every element of B is
also an element of A. (To avoid confusion, we will sometimes enclose the sets of a class in brackets instead of braces.)

Power Sets

For a given set S, we may speak of the class of all subsets of S. This class is called the power set of S,
and will be denoted by Power(S). If S is finite, then so is Power(S). In fact, the number of elements in
Power(S) is 2 raised to the power of S; that is,

n(Power(S)) = 2"5)

(For this reason, the power set of S is sometimes denoted by 25))

EXAMPLE 3.9 Suppose S = {1,2,3}. Then

Power(S) = (@, {1}, {2}, {3}, {1,2}, {1.3}, {2.3}, §]
Note that the empty set @ bemngs~J %' 'wer(S) since & is a subset of S. Similarly, S belongs to Power(S). As
expected from the above remark. Power(S) has 2° = 8 elements.

lo
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Partitions

Let § be & nonempty set. A partition of S is a subdivision
of S into nonoverlapping, nonempty subsets. Precisely, a par-
tition of S is a collection {4;} of nonempty subsets of S such
that:

(i) Each «in S belongs to one of the A;.
(1) The sets of {A;} are mutually disjoint; that is, if
A # 4; then AiNA; =&
The subsets in a partition are called cells. Figure 1-11 is a Venn diagram of a partition of the rectangular
set S of points into five cells, 4;, 4,, A3, A4, and As.

Fig. 1-11

EXAMPLE 1.10 Consider the following collections of subsets of S=1{1,2,....8,9}:
M [{1.3,5}. {2,6}, {4.8,9}]
(i) [{1.3,5}. {2,4.6,8}. {5,7.9}]
(i) [{1.3,5}. {2.4.6,8}. {7,9}]

Then (i) is not a partition of S since 7 in S does not belong to any of the subsets. Furthermore, (i1) is not a partition
of § since {1,3,5} and {5,7,9} are not disjoint. On the other hand, (iii) is a partition of S.

Generalized Set Operations

The set operations of union and intersection were defined above for two sets. These operations can
be extended to any number of sets, finite or infinite, as follows.

Consider first a finite number of sets, say, Ay, Ay, .... A,,. The union and intersection of these sets
are denoted and defined, respectively, by

AyUA U---UA, =UL A4, = {x: x € 4, for some A;}
ANAN---NA, =N"4;={x:x€ A; for every A4;}
That is, the union consists of those elements which belong to at least one of the sets, and the intersection

consists of those elements which belong to all the sets.
Now let A be any collection of sets. The union and the intersection of the sets in the collection A is

denoted and defined, respectively, by

U(4: 4 € A)= {x: x € 4.for some 4 € A}
N(4: A € A)={x: x € A for every 4 € A}

That is, the union consists of those elements which belong to at least one of the sets in the collection A,
and the intersection consists of those elements which belong to every set in the collection A.

EXAMPLE 2.11 Consider the sets _
A4, ={1,2,3,...} =N, Ay ={2.3.4,...}, Ay ={3.4,5,...}, Ap={nn+1,n+2..}

Then the union and intersection of the sets are as follows:
U(A,:neN)=N and N(A,:neN)=g
DeMorgan’s laws also hold for the above generalized operations. That is:

Theorem 1.7:  Let A be a collection of sets. Then

() (U(4: A€ A) =N(4% 4 € A)
(i) (N(A: A€ A) =U(4 A€ A



EE o

1.“) MATHEMATICAL INDUCTION
An essential property of the set
N={1,23,...}
which is used in many proofs, follows: '

Principle of Mathematical Induction I: Let P be a proposition defined on the positive integers N, i.e.,
P(n) is either true or false for each n in N. Suppose P has the following two properties:

(i) P(1)1s true.
(i) P(n + 1) 1s true whenever P(n) is true.
Then P is true for every positive integer.

We shall not prove this principle. In fact, this principle is usually given as one of the axioms when N
is developed axiomatically.

EXAMPLE .12 Let P be the proposition that the sum of the first 7 odd numbers is n?; that is,
P(n): 1 +3+5+...+@n=1)=n
(The nth odd number is 2n — I, and the next odd number is 211+ 1). Observe that P(n) is true for n = I, that s,
P t=1
Assuming P(n) is true, we add 22 + 1 to both sides of P{n), obtaining
14345+ +(m-D+@+)=nt+@n+ )=+ 1?

which is P(n + 1). Thatis, P(n + 1) is true whenever P(n) is true. By the principle of mathematical induction, P is
true for all n.

There is a form of the principle of mathematical induction which is sometimes more convenient 1o
use. Although it appears different, it is really equivalent to the principle of induction.

Principle of Mathematical Induction II: Let P be a proposition defined on the positive integers N such
that:

(i) P(1) is true.
(ii) P(n) is true whenever P(k) is true for all 1 <k <n.
Then P is true for every positive integer.
Remark: Sometimes one wants to prove that a proposition P is true for the set of integers
{a,a+1,a+2,...}

where a is any integer, possibly zero. This can be done by simply replacing 1 by a in either of the above
Principles of Mathematical Induction.
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Relations

3. I INTRODUCTION

The reader is familiar with many rclations which are used in mathematics and computer science, ¢.g.,
“less than™, “is parallel 0™, “is a subset of ", and so on. In a certain sense, these relations consider the
existence or monexistence of a certain conncction between pairs of objects taken in 2 definite order
Formally, we define a relation in terms of these “ordered pairs™.

There are three kinds of relations which Play a major role in our theory: (1) equivalence relations, (11)
order relations, (iii) functions. Equivalence relations are mainly covered in this chapter. Order relations
are introduced here, but will also be discussed in Chapter 14. Functions are covered in the next chapter.

Relations, as noted above, will be defined in terms of ordered pairs (u, b) of elements, where « is
designated as the first element and A as the second element. In particular,

(a. ) = (¢, d)

if and only if ¢ =¢ and b — d. Thus (a,h) 5 (h.a) unless « = b. This contrasts with sets studied 1n
Chapter |, where the order of elements is irrelevant; for example, {3, 5F = 15,3}

Although matrices will be covered in Chapter 5, we have included their connection with relations
here for completeness. These sections, however, can be ignored at a first reading by those with no
previous knowledge of matrix theory.

_32 PRODUCT SETS
o

Consider two arbitrary sets 4 and B. The set of all ordered pairs (a.h) where a € 4 and b € Bis
called the product, or Cartesian producr. of 4 and 8 A short designation of this product is 4 x B. which
is read A cross B, By definiuon,

AxB={(a.b):ae Aand be B)

One frequently writes 47 instead of 4 x A.

EXAMPLE 2.1 B denotes the set of real numbers and so R® = R x R is the set of ordered pairs of real numbers.
The reader ts [amiliar with the geometrical representation of R? as points in the plane as in Fig. 2-1. Here euch point

P represents an ordered pair (a.h) of real numbers and vice versa: the vertical ine through £ meets the v axis at g,
. 5 L S
and the horizontal line thiough P meets the raxisath R s frequently called the Cartesian plune. . = 5

EXAMPL53.2 Let A ={1 2} and B = {a b,c}. Then
Ax B = {(l,u}.(I,b),(I,c).(2,a).(2,b).(2,()}
Bx A= {(a,1).(a,2).(h.1). (5,2), (e, 1),(c. 2)}

Also Ax A ={(1.1).(1.2).(2,1),(2,2)} i
P
There are two things worth noting in the above example. First of f

all A x B # B x A. The Cartesian product deals with ordered pairs, so ;

naturally the order in which the sets are considered is important. ‘

Secondly, using n(S) for the number of elements in a set S, we have 5 g S OF sal 4
e |

nAx By=6=23=n(4) n(B)

=2

In fact, n{A4 x B) = n(A4) - n(B) for any finite sets 4 and 8. This follows o

from the observation that, for an ordered pair (a,h) m A x B, there

are n(A) possibilities for a, and for each of these there are n(B)
possibilities for h. Fig. 21

“




The idea of a product of sets can he extended 1o any finite number of sets. For any sets
Ay, Az,.... A4, the set of al| ordered n-tuples (i 7 a,) where a; € 4,, @ € Ay,... a4, € A, s called
the product of the sets Ay, ... A, and is denoted by

A,xAzx-~—x,4,, or HA‘,
=1

Just as we write 42 instead of 4 x A, s0 we write 4" instead of Ax Ax-..x A, where there are factors
all equal to 4. For example, R' = R x R x R denotes the usual three-dimensional space.

33 RELATIONS
We begin with a definition.
Definition. Let 4 and B be Sets. A binary relation or, simply, relation from A to B is asubset of 4 x B.

Suppose R is a relation from 4 t0 B. Then R s a set of ordered pairs where each first element comes
from 4 and each second element comes from 8. That is, for each paira € Aand b € B, exactly one of the
following is true:

() (a.h) € R; we than say “a1s R-related to b”, writien aRb.

(i)  (a,b) ¢ R: we then say “a is not R-related to b”, written uRb.
If Ris a relation from a set A 1o itself, that is, if R is a subset of 4% = 4 x A, then we say that R is a
relation on A.

The domain of a relation R is the set of all first elements of the ordered pairs which belong to R, and
the range of R is the set of second elements.

Although n-ary relations, which involve ordered n-tuples, are introduced in Section 2,12, the term
relation shall mean binary relation unless otherwise stated or implied.

EXAMPL53.3

(@) LetA={(1,2, 3)and B = {x,, z}.and let R = {(L.y). (1,2), (3.2)}. Then R is a relation from A4 10 B since Ris
a subsct of 4 x B. With respect to this relation,

I1Rv. 1Rz, 3Ry, but IRx. 2Rx, 2Ry. 2Rz 3Rx. 3R:
The domain of R is {1,3} and the range is {y, z}.

(h) Let 4 = leggs, milk, corn} and B = [cows, goats. hens}. We can define a relation R from 4 to B by {a,h) € RIf
«is produced by h. In other words,

R = {(eggs, hens), (milk, cows), (milk, goats))

With respect to this relation,
eggs R hens, milk R cows, etc.

(c) Suppose we say that two countries are adjacent if they have some part of their boundaries in common. Then “'is
adjacent to is a relation R on the countries of the earth. Thus

(Ttaly, Switzerland) € R but (Canada, Mexico) &R
(d) Setinclusion Cis a relation on any collection of sets. For, given any pair of sets 4 and B, etther A C Bor 4 Z B.

(¢) A familiar relation on theset Z of integers is “*m divides . A common notation for this relation is to write mijn
when m divides ». Thus 6130 but 7/25.

(/) Consider the set L of lines in the plane. Perpendicularity, written L, isa relation on L. That 1S, given any pair of
lines a and b, either « i_b or « £h. Similarly, “is parallel to”, written ||, is a relation on Z since either « || b or
alf b »



.
() Let o be any set. An important relation on A i that of equaliy.
{Cerar): s y’”
which is usually denoted by “ =7 This relation s also ealted the identity or diagonal relation on 4 and it will

also be denoted by A, or sumply A

(h) Let A be any set. Then 4 x 4 and & arc subsets of 4 x 4 and hence are relations on A4 called the universal
relation and empry relation, respectively.

Inverse Relation e
Let R be any relation from a set 4 to a set B. The inverse of R, denoted by R~ is the relation from 8
to A which consists of those ordered pairs which. when reversed, belong to R; that is,
. R ={(ha): (a,b) € R}
For example, the inverse of the relation R = {(1,y). (1,2), (3,»)} from 4 = {1.2,3} to B={x,y,z}
follows: :
R ={(r1) (1), (1.3)}

Clearly, if R is any relation. then (R")'I = R. Also, the domain and range of R™! are equ'zli, respec-
tively, to the range and domain of R. Moreover, if R is a relation on A, then R7' is also a relation on A.

34 PICTORIAL REPRESENTATIONS OF RELATIONS

First we consider a relation S on the set R of real numbers; that is, S is a subset of R? =R x R.
Since R? can be represented by the set of points in the plane, we can picture S by emphasizing those
points in the plane which belong to S. The pictorial representation of the relation is sometimes called the
graph of the relation.
Frequently, the relation S consists of all ordered pairs of real numbers which satisfy some given
equation
E(x.y)=0

We usually identify the relation with the equation; that is, we speak of the relation E(x,y) = 0.

EXAMPLE3.4 Consider the relation S defined by the equation
Dz D
N =28

That is, S consists of all ordered pairs (. ») which satisly the given equation. The graph of the equation is a circle
having its center at the origin and radius 5. See Fig. 2-2.

V4

x4+ y? =25

Fig. 3~2

\



Representations of Relations on Finite Sets
Suppose A4 and B are finite sets. The following are two ways of picturing a relation R from A to B.

(i} Form a rectangular array whose rows are labeled by the elements of 4 and whose columns are
labeled by the elements of B. Put a | or 0 in cach position of the array according as « € A is or is
not related to h € B. This array is called the matrix of the relation.

(ii) Write down the elements of A and the elements of B in two disjoint disks, and then draw an arrow
from a € A to b € B whenever a is related to b. This picture will be called the arrow diagram of the
refation.

Figure 2-3 pictures the first relations in Example 2.3 by the above two ways.

1o 1 §
o <

(1) (D] s
R={(Ly). (1,2), 3,

~
(=1
o

Fig. 3-3

Directed Graphs of Relations on Sets x

There 1s another way of picturing a relation R when R is a relation from a finite set to itself. First we
write down the elements of the set, and then we drawn an arrow from each element x to each element y
whenever x is related to y. This diagram is called the directed graph of the relation. Figure 2-4, for
example, shows the directed graph of the following relation R on the set 4 = {1,2,3,4}:

R={(1,2), (2,2), (2,4), (3,2), 3,4), (4.1). (4,3)}

Observe that there is an arrow from 2 to itself, since 2 is related to 2 under R.
These directed graphs will be studied in detail as a separate subject in Chapter 8. We mention it here
mainly for completeness.

Fig.3-1



3.5 COMPOSITION OF RELATIONS

Let 4. B. and C be sets, and let R be a relation from A to Band let S be a relation from B to C. That
is, Ris a subset of 4 x Band S is a subset of Bx C. Then R and S give rise to a relation from A to C
denoted by Ro S and defined by

a(R o S)c if for some b€ B we have aRb and hSc
That is,
RoS = {(a,c): there exists b € B for which (a.5) € Rand (b,c) € S}
The relation Ro S is called the composition of R an-d S it is sometimes denoted simply by RS.
Suppose R is a relation on a set A, that is, Ris a relation from a set A to itself’ Then Ro R, the

composition ‘of R with itself is always defined, and Ro R is sometimes denoted by R’ Similarly,
R*=R'oR = RoRoR, and so on. Thus R” is defined for all positive ».

.
Warning: Many texts denote the composition of relations R and S by S o R rather than Ro S This
is done in order to conform with the usual use of g o f to denote the composition of / and g where / and
g arc functions. Thus the reader may have to adjust his notation when using this text as a supplement
with another text. However, when a relation R is composed with itself, then the meaning of Ro R is
unambiguous. 5
The arrow diagrams of relations give us a geometrical interpretation of the composition Ro § as
seen in the following example.

EXAMPLE;,S Let 4 ={1.2,3,4}, B = {a.b,c,d}. C = {x,0,2} and let
R ={(1.a). (2.d), (3.a) (3,5), (3.4)} and S = {(h,x), (h.2), (¢,5). {d.2)}

Consider the arrow diagrams of R and S as in Fig. 2-5. Observe that there is an arrow from 2 to d which is followed
by an arrow from d to z. We can view these two arrows as a “"path™ which “connects™ the element 2 € A to the

element z € C. Thus -
. 2(Ro S)z since 2Rd and dS=z

Similarly there is a path from 3 to x and path from 3 to z. Hence
3(Ro S)a and 3(Ro S)-
No other element of 4 is connected to an element of C. Accordingly,
RoS§S={(2,2), (3,x), (3.2)}

Composition of Relations and Matrices

There is another way of finding Ro S. Let Mp and My denote respectively the matrices of the
relations R and S. Then

5

\



a b ¢ d ¥ 9 £

1{1 0 0 O af{0 0 O

M= 210 0 0 1 i Mg = b1 0 1
3bd4 4 0 A c{0 1 O

4\0 0 0 O d\0 0 |1

Multiplying M, and Mg we obtain the matnix

Xy oz
if{o 00
M= MMy 2| 9 0=
3l 0 4
a\o 00

The nonzero entries in this matrix tell us which clements are related by Ro S. Thus M = MM and
M s have the same nonzero entries.
Our first theorem telis us that the composition of relations is associative.

Theorem 3.1: Let A, B, C and D be sets. Suppose R is a relation from 4 to B, S is a relation from B to
C, and T is a relation from C to D. Then

(RoS)oT =Ro(SoT)

We prove this theorem in Problem 3.! 1.

36 TYPES OF RELATIONS

Consider a given set 4. This section discusses a number of important types of relations which are
defined on A.

Reflexive Relations

A relation R on a set A is reflexive if aRa for every a € A, that is, if (a,a) € R for every a € A. Thus
R is not reflexive if there exists an a € A such that (a,ua) ¢ R

EXAMPLE 36 Consider the following five relations on the set A4 = {1.2,3.4}:
Ry = {(.1). (1.2), (2,3), (1.3), (4.4)}
Ry = {(1,1). (1,2). (2,1), (2.2), (3.3). (4.4)}
Ry ={(1,3), 2. 1)}
R, = &, the empty relation
Rs = A x A. the universal relation

Determine which of the relations are reflexive.
Since A contain the four clements |1, 2, 3, and 4, a rclation R on A is rcflexive if it contains the four pairs (I, 1),
(2, 2). (3, 3), and (4, 4). Thus only R, and the universal relation Rs = A x A are reflexive. Note that R,, Ry, and Ry

are not reflexive since, for example, (2, 2) does not belong to any of them.

EXAMPLE 3.7 Consider the following five relations

(1) Relation < (less than or equal) on the set Z of integers

(2) Set inclusion C on a collection C of sets

(3) Relation L (perpendicular) on the set L of lines in the plane

(4) Relation || (parallel) on the set L of lines in the plane

(5) Relation | of divisibility on the set N of positive integers. (Recall x|y if there exists = such that xz = y.)

Determine which of the relations are reflexive.

4
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The relation (3) 15 not reflexive since no hine is perpendicular to isell. Also (4) is not reflexive stce no hine s
parallel to ttself. The other relations are reflexive: that 1.0 7y for cvery integer xin Z, 4 C Aforany set 4 (. and
njn for every positive integer i in N,

Symmetric and Antisymmetric Relations

A relation R on a set 4 is Symmetric if whenever aRb then bRa, that is, if whenever (a,4) € R then
{(h,a) € R. Thus R is not symmetric if there exists «,h € 4 such that (a.b) € R but (b,a) ¢ R

EXAMPLE 3.8
(¢)  Determine which of the relations in Examplc 2.6 arce symmetric.
R\ is not symmetric since (1,2) € Ry but (2,1) ¢ R,. Ry is not symmetric since (1,3) € Ry but (3, 1) € Ry. The
other relations are symmetric.
(5)  Determine which of the relations in Example 2.7 arc symmetric.
The relation 1 is symmetric since if line « is perpendicular 10 line b then b 1s perpendicular to «. Also, i 1s
symmetric since il line @ is parallel 1o line 4 then & 1s parallel to a. The other relations are not symmetric. For
example, 3 < 4 but 4£3; {1,2} C {1.2,3} but {1,2,3} 2 {1,2}, and 2J6 bul 6/2.
A relation R on a set A is antisymmetric if whenever aRb and bRa then a = b, that is, if whenever
(a,b), (h,a) € R then a = b. Thus R is not antisymmetric if there exist a, b € A such that (a,b) and (b, a)
belong to R, but « #b.

EXAMPLE 3.9
(¢) Determine which of the relations in Example 2.6 are antsymmetric

Ry is not antisymmetric since (1,2)and (2, 1) belong to R, but | # 2. Similarly, the universal relation Ry s
not antisymmetric. All the other relations are unlisymmclri_c.

(h)  Determine which of the relations in Example 2.7 are antisymmetric.
The relation < js antisymmetric since whenever a Sband b<authena = b Set inclusion C js antisym-

metric since whenever A € Band BC 4 then A4 = B. Also, divisibility on N is antisymmetric since whenever

mln and njm then m = n. (Note that divisibility on Z is not antisymmetric since 3| - 3 and =33 but 3 # -3)
The relation L is not antisymmetric since we can have distinct lines a and b such that « L and b.La. Similarly, |f
is not antisymmetric.

Remark: The properties of being symmetric and being antisymmetric are not negatives of each
other. For example, the relation R = {(1.3), (3,1), (2.3)} is neither symmetric nor antisymmetric. On
the other hand, the relation R’ = {(1,1). (2.2)} is both symmetric and antisymmetric.

Transitive Relations

A relation R on a set A is transitive if whenever aRb and HRc then aRe, that is, if whenever
(a,b), (b,¢) € R then (¢,c) € R. Thus R is not transitive if there exist a,b.c € 4 such that
(a,b), (h,c) € R but (a,¢) ¢ R.

EXAMPLE 310
(@)  Determine which of the relations in Example 2.6 are transitive.

The relation R; is not transitive since (2.1). (1,3) € Ry but (2,3) £ Ry. All the other relations are
transitive.

(b)  Determine which of the relations in Example 2.7 are transitive.

The relations <, C, and | are transitive. That is: @(@)Ifa<handh scthena<c (1) IFAC Band B S
then 4 C C. (iii) If alh and blc, then ale,



On the other hand the relation L is not transitive. I a Lb and b L ¢, then it is not true that ¢ L ¢ Since no
line is paraliel to itsell, we can have a || and || a, but a ffa. Thus || is not transitive. (We note that the relation
“is parallel or equal to™ is & transitive relation on the set L of lines in the plane.)

The property ol transitivity can also be expressed in terms of the composition of relations. For a
relation R on A we define
R*=RoR and, more generally, R'=R""'oR
Then we have the following result.

Thcorcm}Z: A relation R is transitive if and only if R” C R forn > 1.

3.7 CLOSURE PROPERTIES -

Consider a given set A and the collection of all relations on A. Let £ be a property of such relations,
such as being symmetric or being transitive. A relation with property P will be called a P-relation. The P-
closure of an arbitrary relation R on A, written P(R), 1s a P-relation such that

RCPR)CS

for every P-relation S containing R. We will write

reflexive(R), symmetric(R), and transitive(R)

for the reflexive, symmetric, and transitive closures of R.

Generally speaking, P(R) need not exist. However, there is 2 general situation where P(R) will
always exist. Suppose 7 is a property such that there is at least one P-relation containing R and that
the intersection of any P-relations is again a P-relation. Then one can prove (Problem 2.16) that

P(R) = N(S: S is a P-relation and R C S)

Thus one can obtain P(R) from the “top-down™, that is, as the intersection of relations. However, one
usually wants to find P(R) from the “bottom-up”, that is, by adjoining elements to R to obtain P(R).
This we do below.

Reflexive and Symmetric Closures

The next theorem tells us how to easily obtain the reflexive and symmetric closures of a relation.
Here A, = {(a,a): a € A} is the diagonal or equality relation on A. .

Theorem3.3: Let R be a relation on a set 4. Then:

(i) RUA, is the reflexive closure of R.
(1) RU R~ is the symmetric closure of R.

In other words, reflexive(R) is obtained by simply adding to R those elements (a,d) in the diagonal
which do not already belong to R, and symmetric(R) is obtained by adding to R all pairs (b, a) whenever
(a,b) belongs to R.

EXAMPLE3.11
(a) Consider the following relation R on the sel A4 = {1,2,3,4}:
R={(1,1), (1,3), (2,4). (3.1). (3,3), (4.3)}
Then
reflexive(R) = RU{(2,2). (4.4)}  and  symmetric(R) = RU {(4.2). (3.4)}



\

(hy  Consider the retation = (less than) on the set N of positive integers. Then
reflexive(<) =< UA =<= {(a.0): a £ b}

symmetric(<) =< U > = {(a,b): a # b}

Transitive Closure
Lel R be a relation on a set A. Recall that R* = Ro R and R" = R" "o R. We define

RI

(G

R =

The following theorem applies.
Theorem3.4: R* is the transitive closure of a relation R. .
Suppose A is a finite set with n elements. Then we show in Chapter 8 on directed graphs that
R =RURU---UR"
This gives us the following result. s

Theorem 3.5: Let R be a relation on a set A with n elements. Then

transitive(R) = RUR*U---UR"

Finding transitive(R) can take a lot of time when 4 has a large number of elements. An efficient way
for doing this will be described in Chapter 8. Here we give a simple example where 4 has only three
elements.

EXAMPL53.12 Consider the following relation R on A = {1.2 3}:
R={(1.2). 2.3), 3.3)}
Then
R*=RoR=((1,3),(2,3)3,3)} and R =RoR={(1,3),(2.3),(33)}
Accordingly, -
transitive(R) = RU R*U R® = {(1.2).(2.3),(3,3),(1,3)}

3.8 EQUIVALENCE RELATIONS

Consider a nonempty set S. A relation R on S is an equivalence relation if R is reflexive, symmetric,
and transitive. That is, R is an equivalence relation on S if it has the following three properties:

(1) Foreverya€ S, aRa.
(2) If aRb, then bRa.
(3) If aRb and bRe, then aRe.

The general idea behind an equivalence relation is that it is classification of objects which are in some
way “alike™. In fact, the relation “="" of equality on any set S is an equivalence relation; that is:

(1) a=aforeverya€sS.
2) Ifa=b,thenb=a.
(3) Ifa=band b=c, thena=c

Other equivalence relations follow.



EXAMPLE}.‘IJ

() Connder the set /ool hines and the set 7 of triangles m the Luchdean plane The relation is parallel 10 ot
wentical to™ s an cquivalence relaton on L, and congruence and simuilanty are equivalence relations on T

(M The classihication ol ammals by species. that is. the relation “iv of the same species as™, is an-equivalence
relition on the set ol animals.

() The relanon € of set inclusion s not an equivalence relation It s reflexive and transitive, bul it is not
symmeltnic since A C B does not imply 8 C A4

(/) Let m be o hxed positive mteger. Two integers « and A are said o be congruent modulo i, written
a = h (mod nn

o divides a — b For example, for nm1 = 4 we have 11 = 3 (mod 4) since 4 divides 11 — 3, and 22 = 6 (mod 4)
stnee 4 divides 22 — 6. This relation of congruence modulo nr s an cquivalence relation.

Equivalence Relations and Partitions

This subsection explores the relationship between equivalence relations and partitions o a non-
emply set S. Recall first that a partition P of S is a collection {4,} of nonempty subsets of § with the
following two properties <

(1} Each « € S belongs to some 4,
(2) IfTA, # A,,then 4, N4 = .

In other words, a partiton £ ol § is a subdivision of S into disjoint nonempty sets. (See Section 1.9.)
Suppose R is an equivalence relation on a set S. For each a in S, let {a] denote the set of elements of
S to which @15 related under R: that s,

[a] = {x: (a,x) € R}
We call [«] the equivalence class of a in Si any b € [a] is called a representative of the equivalence class.
The collection of all equivalence classes of elements of S under an equivalence relation R is denoted
by S/R. that s,
S/R = {{a) ue S}
It s called the quotient set of S by R. The fundamental property of a quotient set is contained in the
following theorem.
Theorcmj.é: Let R be un equivalence relution on a set S. Then the quotient set S/R is a partition of S.
Specifically: .
(i} For each a in S. we have a € (a]. .
(1) [a]=[h]if and only if (a.h) € R.
(i) If [a] # [&], then [a] and [b] are disjoint.

Conversely, given a partition {A4,} of the set S, there is an equivalence relation R on S
such that the sets 4; are the equivalence classes.

This important theorem will be proved in Problem 2.21

EXAMPLE3.14

(a) Consider the following relaton R on § = {1,2 3}:

R={(1.1),(1.2),(2,1),(2.2),(3.3)}

|0



R

One can show that B s rellexive, symmete, amd trnsitive, that s that K s an equivalence slutian nder the
relation K,
I {12} 2 g2 (R B

Observe that () = [2Jand that §/8 — {[t]. [3]} s a parution of 8 One canchooseether {1 Vo (2 4] av i
of representatives of the equivalence classes.

(b) Let Rs be the relation on the set Z of integers defined by
vz (modS)

which reads “x is congruent to v modulo 57 and which means that the dillerence v — v s divisible by 5 Then Ky
1s an equivalence relation on Z - There are exactly five equivalence clusses 1n the quotient set Z/ Ry as follows

Ag={..-10,-50.510. .}
Ay = {o0 5,798 5 6.0 b
Ay & [oo =8B 28 Tl
AR = {022 30 8,13,
As={.,-6,-1,49.14, .}

Observe that any nteger x, which can be uniquely expressed in the form x = 5¢ + r where 0 <7 < 5oty
member of the equivalence class 4, where r is the remainder. As expected. the equivalence clusses are disjoint

and
Z- {ududud v,

Usually one chooses {0.1,2.3.4} or {=2 —1 0.1 2} as a set of representatives of the equivalence classes

,: 3.9 PARTIAL ORDERING RELATIONS
This section defines another important class of relations. A relation R on a set S is called a partial
ordertng or a partial order if R is reflexive. antisymmetric, and transitive. A set § together with a partial
ordering R is called a parrially ordered ser oc poser. Partially ordered sets will be studied in more detail in
Chapter 14, so here we simply give some examples.

EXAMPLE3.15

(a) The relation C of set inclusion is a partial ordering on any collection of sets since set inclusion has the three
desired properties. That is,
(1) AC A for any set 4
(2) MAC Band BC A.then 4 = B
(3) WACBand BC C.then 4 C C

(b} The relation < on the set R of real numbers 15 reflexive, anusymmetric, and transitive. Thus < 1s a partial
ordering. ’

(¢) The relation “a divides 5" is a partial ordering on the set N of positive integers. However, “a divides ™ is nol a
partia} ordering on the set Z of integers since ¢|h and hla does not imply a = b. For example, 3| — 3 and -3|3
but 3 # —3.

310 n-ARY RELATIONS

All the relations discussed above were binary relations. By an n-ary relation, we mean a set of
ordered n-tuples. For any set S, a subset of the product set §” is called an n-ary relation on S. In
. o >
particular, a subset of S” is called a rernary relation on S.

fl :
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Functions and Algorithms

4.1 INTRODUCTION

One of the most important concepts in mathematics is that of a function. The terms “map”,
“mapping™, “transformation”, and many others mean the same thing; the choice of which word to
use in a given situation is usually determined by tradition and the mathematical background of the
person using the term.

Related to the notion of a function is thatof an algorithm. The notation for presenting an algorithm
and a discussion of its complexity is also covered in this chapter.

4.2 FUNCTIONS

Suppose that to each element of a set A we assign a unique element of a set B; the collection of such
assignments is called a function from A into B.The set A is called the domain of the function, and the set
B is called the cadomain.

Functions are ordinarily denoted by symbols. For example, let £ denote a function from A into 8.
Then we write

f:A— B

which is read: “/is a function from A into B”, or “ftakes (or; maps) 4 into B”. If & € A, then f(a) (read:

“f of @) denotes the unique element of B which f assigns to a; it is called the image of a under /', or the

denoted by Ran (f), Im (f) or f(A).
Frequently, a function can be expressed by means of a mathematical formula. For example, consider
the function which sends each real number into its square. We may describe this function by writing

2

eI or Xyt or ) = X

In the first notation, x is called a rariable and the letter / denotes the function. In the second notation,
the barred arrow — is read “goes into™. In the last notation, x is called the independent variable and y is
called the dependent variable since the value of y will depend on the value of .

Remark: Whenever a function is given by a formula in terms of a variable x, we assume, unless it is
otherwise stated, that the domain of the function is R (or the largest subset of R for which the formula
has meaning) and the codomain is R.

EXAMPLE4 1

(a) Coasider the (unction f(x) = x’, L.e., f uassigns to each real number its
cube. Then the image of 2 is 8, and so we may write /(2) = 8.

domain of f is the set of countries in the world; the codomain is the list
of cities of the world The image of France is Paris: or, in other words, ’ <
f(France) = Paiis.

() Let f assign to each country in the world its capital city. Here the ' =

(¢) Figure 3-1 defines a function f from 4 = {a,b.c,d}into B = {r,s,1,u}
in the obvious way. Here 4 B

fled=s.  fll=u, Jle)=r, [ld)=s Fig. 441

F 4



The timage of /15 the set of mnage values, {r, v, 10} Note that £ does not belong to the image of f because 1 is not
the image of any clement uader /

(d) Let 4 be any set. The function from A into A which assigns (o cach clement that element itself is called the
tdentity function on A and s usuilly denoted by 1, or simply 1. In other words,

| {a) = u
for every element a in A,

(¢) Suppose S is a subset of 4, that is, suppose S C A. The inclusion map or embedding of S into A, denoted by
& §— A, is the function defined by

i(x)=x
for every x € S; and the restriction to S of any function f: A — B, denoted by fls. is the function from S (o 8
defined by
. Sx) = f(x)

forevery ve §

Functions as Relations

There is another point of view from which functions may be considered. First of all, every function
A — Bgives rise to a relation from A to B called the graph of f and defined by

Graph of f = {(a,b): a € A.b = f{a)}

Two functions f: 4 — B and g A — B are defined to be equal, written / = g, if f(a) = g(a) for every
a € A; that is, if they have the same graph. Accordingly, we do not distinguish between a function and its
graph. Now, such a graph relation has the property that each a in A belongs to a unique ordered pair
(a,b) in the relation. On the other hand, any relation f from A to B that has this property gives rise to a
function f: A — B, where J(a) = b for each (a,4) in /- Consequently, one may equivalently define a
function as follows:

Definition: A function /: 4 — Bisa relation from A to B (i.e., a subset of 4 x B) such that each
a € A belongs to 2 unique ordered pair (a,b) in f.

Although we do not distinguish between a function and its graph, we will still use the terminology
“graph of /™ when referring to f as a set of ordered pairs. Moreover, since the graph of f is a relation, we
can draw its picture as was done for relations in general, and this pictorial representation is itself
sometimes called the graph of /. Also, the defining condition of a function, that each ¢ € A belongs
to a unique pair ¢a, b) in f, is equivalent to the geometrical condition of each vertical line intersecting the
graph in exactly one point.

EXAMPLE 4.2
(@) Let f: A — B be the function defined in Example 3.1(c). Then the graph of f is the following set of ordered
pairs:
{(a.5), (b, u). (¢, 1), (d.5))

(6) Consider the following relations on the set 4 = {1,2,3}:

S =1(1.3),(2,3),3,1)
&={(1,2).3,1)}
A={(1.3),(2,1),(1,2).(3,1)}
/ is a function from A into A since each member of A appears as the first coordinate in exactly one ordered pair

in J; here f(1) = 3. £(2) = 3.and £(3) = I. g is not a function from A into A since 2 € A4 is not the first
coordinate of any pair in g and so g does not assign any image to 2. Also k is not 4 function from A into A




since | € A uppears as the first coordinate of two disunct ordered pairs tn /i, (1.3) and (1,2). If i1 is to be a
function it cannot assign both 3 and 2 (o the element | € A.

(¢} By a real polynomial function, we mean a function /: R — R of the form
fx) =a,X" +a,_i 5" to-taxtay

where the ¢; are real numbers. Since R is an infinite set, it would be impossible to plot each point of the graph.
However. the graph of such a function can be approximated by first plotting some of its points and then
drawing a smooth curve through these points. The points are usually obtained from a table where various
values are assigned to x and the corresponding values of f(x) are computed. Figure 3-2 illustrates this tech-
nique using the function f(x) = x* — 2x — 3.

z | f(=)
—2
-1
0| -3
1) -4
2| -3
3
4| s

Graph of f(x) = 22 —2x—3

Fig. 3-2

Composition Function

Consider functions f: A — B and g: B — C; that is, where the codomain of f is the domain of g.
Then we may define a new function from 4 to C, called the composition of f and g and written go f, as
follows:

4 (gof){a) = g(/(a))

That is, we find the image of a under / and then find the image of f(a) under g. This definition is not
really new. If we view [ and g as relations, then this function is the same as the composition of f and g as
relations (see Section 2.6) except that here we use the functional notation g o f* for the composition of f
and g instead of the notation f o g which was used for relations.

Consider any function /= 4 — B. Then

Joly=f —and  lgof=f

where | 4 and 14 are the identity functions on 4 and B, respectively.

lﬁ.3 ONE-TO-ONE, ONTO, AND INVERTIBLE FUNCTIONS

A function f: A — Bis said to be one-ro-one (written 1-1) if different elements in the domain A have

distinct images. Another way of saying the same thing is that [ is one-to-one if f(a) = f(a’) implies
7
a=a.




A function /: A — Bis said to be an onto function if each element ot & 1s the iImage 01 some cremci
of 4. In other words, /: 4 — Bis onto if the image of / is the entire codomain, i.e., if f(4) = B. In such a
case we say that f is a function from A4 onto B or that /' maps A onto B.

A function [ A — Bis invertible if its inverse relation /! is a function from B to A. In general, the
inverse relation /™' may not be a function. The following theorem gives simple criteria which tells us
when 1t is.

Theorem@.1: A function f: A — Bis invertible if and only if / is both one-to-one and onto.

If f: A — B is one-to-one and onto, then [ is called a one-10-one correspondence between A and B.
This terminology comes from the fact that each element of 4 will then correspond to a unique element of
B and vice versa.

Some texts use the terms injective for a one-to-one function, surjective for an onto function, and
bijective for a one-to-one correspondence.

EXAMPLE&.3 Consider the functions f;: 4 — B, f»: B -ﬂC f:C—=D and [;: D— E defined by the
diagram of Fig. 3-3. Now f; 1s one-to-one since no element of B is the image of more than one element of A.
Similarly, /5 is one~to-one. However, neither fy nor [ is one-to-one since  f3(r) = f3(u) and fi(v) = fa(w).

Figld-3

As far as being onto is concerned, f; and f; are both onto functions since every clement of C is the image under
/> of some element of B and every element of D is the image under f; of some element of C, ie., f7(B) = C and
J3(C) = D. On the other hand, f; is not onto since 3 € B is not the image under /; of any element of A4, and f; is not
onto since x € E is not the image under /; of any element of D.

Thus /, is onc-to-onc but not onto, fy 1s onto but not onc-to-onc and /4 is ncither onc-to-onc nor onto.
However, f; is both one-to-one and onto, i.e., is a one-to-one correspondence between 4 and B. Hence f; is invertible
and /5" is a function from C to B.

Geometrical Characterization of One-to-One and Onto Functions

Since functions may be identified with their graphs, and since graphs may be plotted, we might
wonder whether the concepts of being one-to-one and onto have geometrical meaning. We show that the
answer is yes.

To say that a function f: A — B is one-to-one means that there are no two distinct pairs («,, ) and
(a1, b) in the graph of f; hence each horizontal line can intersect the graph of / in at most one point. On
the other hand, to say that f is an onto function means that for every b € B there must be at least one
a € A such that (a, b) belongs to the graph of f; hence each horizontal line must intersect the graph of f
at least once. Accordingly, if f is both one-to-one and onto, i.e. invertible, then each horizontal line will
intersect the graph of f in exactly one point.




EXAMPLE’#J Consider the lollowing four functions from R into R:
fild =2, M=% Epeatis 2= sx 46, fulv) =X

The graphs of these functions appear in Fig. 3-4. Observe that there are horizontal lines which intersect the graph off
/) twice and there are horizontal lines which do not intersect the graph of f; at all; hence f is neither one-to-one nor
onto. Similarly, f; is one-to-one but not onto, f3 is onto but not one-to-one and f; is both one-to-one and onto. The
inverse of f; is the cube root function. e S (x) =V

._’/ : /)

filx) = 22 fa(x) = 27 filz) =« — 222 —5x +6 Tolr) = x¥*

Fig. 3-4

’#,4 MATHEMATICAL FUNCTIONS, EXPONENTIAL AND LOGARITHMIC FUNCTIONS

This section presents various mathematical functions which appear often in the analysis of algo-
rithms, and in computer science in general, together with their notation. We also discuss the exponential
and logarithmic functions, and their relationship.

Floor and Ceiling Functions

Let x be any real number. Then x lies between two integers called the floor and the ceiling of x.
Specifically,

|x]. called the floor of x, denotes the greatest integer that does not exceed x.
{x], called the ceiling of x, denotes the least integer that is not less than x.

If x is itself an integer, then |x] = [x]; otherwise |x] + 1 = [x]. For example,
3.14) =3, (V3)=2. |-85)=-9, =7 [-4= -4
(4] =4, [V51=3. [-85]=-8 (=7 [-4l=-4

Integer and Absolute Value Functions
Let x be any real number. The integer value of x, written INT(x), converts x into an integer by
deleting (truncating) the fractional part of the number: Thus ’ '
INT(3.14) = 3, INT(VS) = 2, INT(-8.5) = -8, INT(7) =17

Observe that INT(x) = [x] or INT(x) = [x] according to whether x is positive or negative.

The absolute value of the real number x, written ABS(x) or |x], is defined as the greater of x or —x.
Hence ABS(0) = 0, and, for-x # 0, ABS(x) = x or ABS(x) = —x, depending on whether x is positive or
negative. Thus

15| =15  [71=7, [-333=333, |444] =444, [ - 0.075] = 0.075

We note that [x] = | — x| and, for x # 0, |x] is positive.



