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3.4.1 Karnaugh Maps 

To minimize a Boolean equation in the sum-of-products form, we need to 

reduce the number of product terms by applying the combining Boolean 

Theorem (Theorem 14) from Section 2.5.1. In so doing, we will also have 

reduced the number of variables used in the product terms. For example, given 

the following 3-variable function  F = xy'z' + xyz' we can reduce it to 

F = xz' (y' + y)= xz' 1= xz' 

In other words, two product terms that differ by only one variable whose value 

is a 0 (primed) in one term, and a 1 (unprimed) in the other term, can be 

combined together to form just one term with that variable omitted as shown in 

the example above. Thus, we have reduced the number of product terms and the 

resulting product term has one less variable. By reducing the number of product 

terms, we reduce the number of OR operators required, and by reducing the 

number of variables in a product term, we reduce the number of AND operators 

required. Looking at a logic function’s truth table, it is sometimes difficult to 

see how the product terms can be combined and minimized. A Karnaugh map, 

or K-map for short, provides a simple and straightforward procedure for 

combining these product terms. A K-map is just a graphical representation of a 

logic function’s truth table where the minterms are grouped in such a way that 

it allows one to easily see which of the minterms can be combined. It is a 2-

dimensional array of squares, each of which represents one minterm in the 

Boolean function. Thus, the map for an n-variable function is an array with 2n 

squares. 

Figure 3.5 shows the K-maps for functions with 2, 3, 4, and 5 variables. Notice 

the labeling of the columns and rows are such that any two adjacent columns or 

rows differ in only one bit change. This condition is required because we want 

minterms in adjacent squares to differ in the value of only one variable or one 

bit, and so these minterms can be combined together. This is why the labeling 
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for the third and fourth columns, and the third and fourth rows are always 

interchanged. When we read K-maps, we need to visualize it as such that the 

two end columns or rows wrap around so that the first and last columns, and the 

first and last rows are really adjacent to each other because they differ in only 

one bit also. 
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In Figure 3.5, the K-map squares are annotated with its minterm and its 

minterm number for easy reference only. For example, in Figure 3.5 (a) for a 2-

variable K-map, the entry in the first row and second column is labeled x'y, and 

annotated with the number 1. This is because the first row is when the variable 

x is a 0, and the second column is when the variable y is a 1. Since for 

minterms, we need to prime a variable whose value is a 0, and not prime it if its 

value is a 1, therefore, this entry represents the minterm x'y, which is minterm 

number 1.  

 

 

Figure 3.5. Karnaugh maps for: 

(a) 2 variables; (b) 3 variables; (c) 4 variables; (d) 5 variables. 

Be careful that if we label the rows and columns differently, the minterms and 

the minterm numbers will be in different locations. When we are actually using 

K-maps to minimize an equation, we will not write these in the squares. 
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Instead, we will be putting 0’s and 1’s in the squares. 

Given a Boolean function, we set the value for each K-map square to either a 0 

or a 1 depending on whether that minterm for the function is a 0-minterm or a 

1-minterm respectively. However, since we are only interested in the 1-

minterms for a function, the 0’s are sometimes not written in the 0-minterm 

squares. 

For example, the K-map for the 2-variable function F = x'y' + x'y + xy is 

 

The 1-minterms m0 (x'y') and m1 (x'y) are adjacent to each other, which means 

that they differ in the value of only one variable. In this case, x is 0 for both 

minterms, but for y, it is a 0 for one minterm and a 1 for the other minterm. 

Thus, variable y can be dropped and the two terms are combined together 

giving just x'. The prime in x' is because x is 0 for both minterms. This 

reasoning corresponds with the expression     

x'y' + x'y = x' (y'+y) = x' 

Similarly, the 1-minterms m1 (x'y) and M3 (xy) are also adjacent and y is the 

variable having the same value for  both minterms, and so they can be 

combined to give x'y + xy = y. We use the term subcube to refer to a rectangle 

of adjacent 1-minterms. These subcubes must be rectangular in shape and can 

only have sizes that are powers of two. Formally, for an n-variable K-map, an 

m-subcube is defined as that set of 2m minterms in which n – m of the variables 

will have the same value in every minterm while the remaining variables will 

take on the 2m possible combinations of 0’s and 1’s. Thus, a 1-minterm all by 

itself is called a 0-subcube, and two adjacent 1-minterms is a 1-subcube. In the 

above 2-variable K-map, there are two 1-subcubes: one labeled with x' and one 
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with y. 

A 2-subcube will have four adjacent 1-minterms and can be in the shape of any 

one of those shown in Figure 3.6 (a) to (e). Notice that Figure 3.6 (d) and (e) 

also form 2-subcubes even though the four 1-minterms are not physically 

adjacent to each other. They are considered to be adjacent because the first and 

last rows, and first and last columns wrap around in a K-map. In Figure 3.6 (f), 

the four 1-minterms cannot form a 2-subcube because even though they are 

physically adjacent to each other, they do not form a rectangle. However, they 

can form three 1- subcubes – y'z, x'y' and x'z. We say that a subcube is 

characterized by the variables having the same values for all the minterms in 

that subcube. In general, an m-subcube for an n-variable K-map will be 

characterized by n – m variables. If the value that is similar for all the variables 

is a 1, that variable is unprimed, whereas, if the value that is similar for all the 

variables is a 0, that variable is primed. 
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In an expression, this is equivalent to the resulting smaller product term when 

the minterms are combined together. For example, the 2-subcube in Figure 3.6 

(d) is characterized by z' since the value of z is 0 for all the minterms, whereas 

the values for x and y are not all the same for all the minterms. Similarly, the 2-

subcube in Figure 3.6 (e) is characterized by x'z'. 

Figure 3.6. Examples of K-maps with 2-subcubes: (a) and (b) 3-variable; 

(c) 4-variable; (d) 3-variable with wrap around subcube; (e) 4-variable 

with wrap around subcube; (f) cannot form one 2-subcube. 

For a 5-variable K-map as shown in Figure 3.7, we need to visualize the right half of 

the array where v = 1 to be on top of the left half where v = 0. Thus, for example, 

minterm 20 is adjacent to minterm 4 since one is on top of the other, and they form 

the 1-subcube w'xy'z'. Minterms 9, 11, 13, 15, 25, 27, 29, and 31 are all adjacent, and 

together they form the subcube wz. Now, that we are viewing this 5-variable K-map 

in three dimensions, we also need to change the condition of the subcube shape to be 

a three dimensional rectangle. Even though minterm 6 is physically adjacent to 

minterm 20 in the map, they cannot be combined together because when you 

visualize the right half as being on top of the left half, then they are really not on top 
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of each other. Instead minterm 6 is adjacent to minterm 4 because the columns wrap 

around, and they form the subcube v'w'xz'. You can see that this visualization 

becomes almost impossible very quickly as we increase the number of variables. 

Figure 3.7. A 5-variable K-map with wrap around subcubes. 

The K-map method reduces a Boolean function from its canonical form to its 

standard form. The goal for the K-map method is to find as few subcubes as 

possible to cover all the 1-minterms in the given function. This naturally 

implies that the size of the subcube should be as big as possible. The reasoning 

for this is that each subcube corresponds to a product term, and all the subcubes 

(or product terms) must be ORed together to get the function. Larger subcubes 

require fewer AND gates because of fewer variables in the product term, and 

fewer subcubes will require fewer inputs to the OR gate. 

The procedure for using the K-map method is as follows: 

1. Draw the appropriate K-map for the given function and place a 1 in the 

squares that correspond to the function’s 1-minterms. 

2. For each 1-minterm, find the largest subcube that covers this 1-minterm. This 

largest subcube is known as aprime implicant (PI). By definition, a prime 

implicant is a subcube that is not contained within any other subcube. If there 

are more than one subcube that is the same size as the largest subcube, then 

they are all prime implicants. 

3. Look for 1-minterms that are covered by only one prime implicant. Since this 

prime implicant is the only subcube that covers this particular 1-minterm, this 

prime implicant must be in the final solution. This prime 

implicant is referred to as an essential prime implicant (EPI). By definition, an 

essential prime implicant is a subcube that includes a 1-minterm that is not 

included in any other subcube. 

4. Create a minimal cover list by selecting the smallest possible number of 
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prime implicants such that every 1- minterm is contained in at least one prime 

implicant. This cover list must include all the essential prime implicants plus 

zero or more of the remaining prime implicants. It is acceptable that a particular 

1-minterm is covered in more than one prime implicant, but all 1-minterms 

must be covered. 

5. The final minimized function is obtained by ORing all the prime implicants 

from the minimal cover list. Note that the final minimized function obtained by 

the K-map method may not be in its most reduced form. It is only in its most 

reduced standard form. Sometimes, it is possible to reduce the standard form 

further into a nonstandard form. 

Example 3.4 

Use the K-map method to minimize a 4-variable (w, x, y, and z) function F with 

the 1-minterms: m0, m2, m5, m7, m10, m13, m14, and m15. We start with the 

following 4-variable K-map: 

Thus, there are five prime implicants: w'x'z', x'yz', xz, wyz', and wxy. Of these 

five prime implicants, w'x'z' and xz are essential prime implicants since m0 is 

covered only by w'x'z', and m5, m7, and m13 are covered only by xz. We start 

the cover list by including the two essential prime implicants w'x'z' and xz. 
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These two subcubes will have covered minterms m0, m2, m5, m7, m13, and 

m15. To cover the remaining two uncovered minterms m10 and m14, we want 

to use as few prime implicants as possible. Hence, we select the prime 

implicant wyz' which covers both of 

them. Finally, our reduced standard form equation is obtained by ORing these 

three prime implicants  

F = w'x'z' + xz + wyz' 

Notice that we can reduce this standard form equation even further by factoring 

out the z' from the first and last term to get the non-standard form equation F = 

z' (w'x' + wy) + xz 
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Example 3.5 

Use the K-map method to minimize a 5-variable function F (v, w, x, y and z) 

with the 1-minterms: v'w'x'yz', v'w'x'yz, v'w'xy'z, v'w'xyz, vw'x'yz', vw'x'yz, 

vw'xyz', vw'xyz, vwx'y'z, vwx'yz, vwxy'z, and vwxyz. 

The list of prime implicants is: v'w'xz, w'x'y, w'yz, vw'y, vyz, and vwz. From this 

list of prime implicants, w'yz and vyz are not essential. The four remaining 

essential prime implicants are able to cover all the 1-minterms. Hence, the 

solution in standard form is 

F = v'w'xz + w'x'y + vw'y + vwz 

3.4.2 Don’t-cares 

There are times when a function is not fully specified. In other words, there are 

some minterms for the function where we do not care whether their values are a 

0 or a 1. When drawing the K-map for these “don’t-care” minterms, we assign 

an “Ø” in that square instead of a 0 or a 1. Usually, a function can be reduced 

even further if we remember that these Ø’s can be either a 0 or a 1. As you 

recall when drawing K-maps, enlarging a subcube reduces the number of 

variables for that term. Thus, in drawing subcubes, some of them may be 

enlarged if we treat some of these x’s as 1’s. On the other hand, if some of 

these Ø’s will not enlarge a subcube, then we want to treat them as 0’s so that 

we do not need to cover them. It is not necessary to treat all Ø’s to be all 1’s or 

all 0’s. We can assign some Ø’s to be 0’s and some to be 1’s. 

For example, given a function having the following 1-minterms and don’t-care 

minterms:  
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1-minterms: m0, m1, m2, M3, m4, m7, m8, and m9 

x-minterms: m10, m11, m12, m13, m14, and m15  

we obtain the following K-map with the prime implicants x', yz, and y'z'. 

Notice that in order to get the 4-subcube characterized by x' the two don’t-care 

minterms m10 and m11 are taken to have the value 1. Similarly, the don’t-care 

minterms m12 and m15 are assigned a 1 for the subcubes y'z' and yz 

respectively. On the other hand, the don’t-care minterms m13 and m14 are 

taken to have the value 0 so that they do not need to be covered in the solution. 

The reduced standard form function as obtained from the K-map is, therefore, 

 F = x' + yz + y'z'. Again, this equation can be reduced further by recognizing 

that yz + y'z' = y _ z. Thus, F = x' + (y _ z). 

 

4.3 Adder 

4.3.1 Half Adder 

From the verbal explanation of a half adder, we find that this circuit needs two 

binary inputs and two binary outputs. The Input variables designats the augend 

and addend bits; the output variables produce the sum and carry. We assign 

symbols x and y to the two inputs and S (for sum) and C (for carry) to the 

outputs. The truth table for the half adder is listed in Table 4.3. 
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The C output is 1 only when both inputs are 1, The S output represent the least 

significant bit of the sum. 

The simplified Boolean functions for the two outputs can be obtained directly 

from the truth table. The simplified sum-of-products expressions are 

 

 

 

4.3.2 Full Adder 

A full adder is combinational circiut that forms the arithmatic sum of three bits. 

It consists of three inputs and two outputs. Two of the input variabies denoted 

by x and y, represent the two significant bits to be added. The third input ,z, 

repesents the carry from the previous lower significant position. Two output are 

necessory because the arithmatic sum of two bits range from 0 to 3. and binary 

2 or 3 needs two digits. The two outputs are designated by the symbols S for 
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sum and C for carr. The binary variable S gives the value of the least significant 

bit of the sum. The binary variable C gives the output carry. The truth table of 

the full adder is listed in Table 4.4. 

 

The eight rows under the input variables designate all possible combinations of 

the three variables. The output variables are determined from he arithmatic sum 

of the input bits.  
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4.5 Adder-Subtractor Combination 
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It turns out that instead of having to build a separate adder and subtractor units, 

we can modify the ripple-carry adder (or the carry-lookahead adder) slightly to 

perform both operations. The modified circuit performs subtraction by adding 

the negated value of the second operand. In other words, instead of performing 

the subtraction A – B, the addition operation A + (– B) is performed. Recall that 

in two’s complement representation, to negate a value involves inverting all the 

bits from 0 to 1 or vice versa, and then adding a 1. Hence, we need to modify 

the adder circuit so that we can selectively do either one of two things: 1) flip 

the bits of the B operand, and then add an extra 1 for the subtraction operation, 

or 2) not flip the 

bits, and not add an extra 1 for the addition operation. 

For this adder-subtractor combination circuit, in addition to the two input 

operands A and B, a select signal S is needed to select which operation to 

perform. The assignment of the two operations to the select signal S is shown in 

Figure 4.8 (a). When S = 0, we want to perform an addition, and when S = 1, 

we want to perform a subtraction. When S = 0, B does not need to be modified, 

and like the adder circuit from Section 4.2.2, the initial carry-in signal c0 needs 

to be set to a 0. On the other hand, when S = 1, we need to invert the bits in B 

and add a 1. The addition of a 1 is accomplished by setting the initial carry-in 

signal c0 to a 1. Two circuits are needed for handling the above situations: one 

for inverting the bits in B, and one for setting c0. Both of these circuits are 

dependent on S. 
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The truth table for these two circuits is shown in Figure 4.8 (b). The input 

variable bi is the ith bit of the B operand. The output variable yi is the output 

from the circuit that either inverts or not inverts the bits in B. From this truth 

table, we can conclude that the circuit for yi is just a 2-input XOR gate, while 

the circuit for c0 is just a direct connection from S. Putting everything together, 

we obtain the adder-subtractor combination circuit for four bits as shown in 

Figure 4.8 (c). The logic symbol for the circuit is shown in Figure 4.8 (d). 

Figure 4.8. Adder-subtractor combination: (a) operation table; (b) truth 

table for yi and c0; (c) circuit; (d) logic symbol. 

Notice the adder-subtractor circuit in Figure 4.8 (c) has two different overflow 

signals, Unsigned_Overflow and Signed_Overflow. This is because the circuit 

can deal with both signed and unsigned numbers. When working with unsigned 

numbers only, the output signal Unsigned_Overflow is sufficient to determine 

whether there is an overflow or not. However, for signed numbers, we need to 

perform the XOR of Unsigned_Overflow with c3 producing the 

Signed_Overflow signal in order to determine whether there is an overflow or 

not. For example, the valid range for a 4-bit signed number goes from –23 to 

23–1, i.e., from – 8 to 7. Adding the two signed numbers 4 + 5 = 9 should result 

in a signed number overflow since 9 is outside the range. However, the valid 



University of Anbar                                                          Logic Design 

College of Computer Science                                                  Department of Information System 

and Information Technology                                                  Muntaser Abdulwahed Salman 

 1762/2/6/62

range for a 4-bit unsigned number goes from 0 to 24–1, i.e., 0 to 15. If we treat 

the two numbers 4 and 5 as unsigned numbers, then the result of adding these 

two unsigned numbers, 9, is inside the range. So when adding the Chapter 4 

Combinational Components Page 12 of 46 two numbers 4 and 5, the 

Unsigned_Overflow signal should be de-asserted, while the Signed_Overflow 

signal should be asserted. Performing the addition of 4 + 5 in binary as shown 

below  

 

we get 0100 + 0101 = 1001, which produces a 0 for the Unsigned_Overflow 

signal. However, the addition produces a 1 for c3, and XORing these two 

values, 0 for Unsigned_Overflow and 1 for c3, results in a 1 for the 

Signed_Overflow signal. 

In another example, adding the two 4-bit signed numbers – 4 + (– 3) = – 7 

should not result in a signed overflow. Performing the arithmetic in binary, –4 

= 1100 and –3 = 1101, as shown below 

we get 1100 + 1101 = 11001, which produces a 1 for both Unsigned_Overflow 

and c3. XORing these two values together gives a 0 for the Signed_Overflow 

signal. On the other hand, if we treat the two binary numbers, 1100 and 1101, 

as unsigned numbers, then we are adding 12 + 13 = 25. 25 is outside the 
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unsigned number range, and so the Unsigned_Overflow signal should be 

asserted. 

4.4 Decimal Adder 

Consider the arithmetic addition of two decimal digits in BCD, together with an 

input carry from a previous stage. Since each input digit does not exceed 9, the 

output sum cannot be greater than 9 + 9 + 1 = 19, the 1 in the sum being an 

output carry. 

Suppose we apply two BCD digits to a four-bit binmy adder. The adder will 

form the sum in binary and produce a result that ranges from 0 through 19. 

These binary numbers are listed in Table 4.5 and are labled by symbols K, Z8, 

Z4, Z2, and Z1, K is the carry, and the subscripts under the letter Z represent the 

weights 8,4,2, and 1 that can be assigned to the four bits in the BCD code. The 

columns under the binary sum list the binary value that appears in the outputs 

of the four-bit binary adder. The output sum of two decimal digits must be 

represented in BCD and should appear in the form listed in the columns under 

"BCD Sum." The problem is to find a rule by which the binary sum is 

converted to the correct BCD digit representation of the number in the BCD 

sum. 
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4.5 Multiplier  
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As a second example. consider a multiplier circuit mat multiplies a binary 

number represented by four bits by a number represnted by three bits. Let the 

multiplicand be represented by B B B B and the muliplier by A A A A . Since 

k= 4 and J = 3. We need 12 AND gates and 2 four-bit adder to produce the 

product of seven bits. The logic diagram of the multiplier s shown in Fig. below 



University of Anbar                                                          Logic Design 

College of Computer Science                                                  Department of Information System 

and Information Technology                                                  Muntaser Abdulwahed Salman 

 2262/2/6/62

 

4.5 Magnitude Comparator 

The comparison of two numbers is an operation that determined whether one 

number is greater than, less than, or equel to the other number. A comparator is 

a combinational circuit that compares two numbers A and B and detemims their 

relative magnitude. The outcome of the comparison is spacified by three binary 

variables that indicate whether A > B, A = B, or A < B. 
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4.7 Decoder 

A decoder, also known as a demultiplexer, asserts one out of n output lines 

depending on the value of an m-bit binary input data. In general, an m-to-n 

decoder has m input lines, Am-1, …, A0, and n output lines, Yn-1, …, Y0, where n 

= 2m. In addition, it has an enable line E for enabling the decoder. When the 

decoder is disabled with E set to 0, all the output lines are de-asserted. When 

the decoder is enabled, then the output line whose index is equal to the value 
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of the input binary data is asserted. For example, for a 3-to-8 decoder, if the 

input address is 101, then the output line Y5 is asserted (set to 1 for active high) 

while the rest of the output lines are de-asserted (set to 0 for active high). 

A decoder is used in a system having multiple components, and we want only 

one component to be selected or enabled at any one time. For example, in a 

large memory system with multiple memory chips, only one memory chip is 

enabled at a time. One output line from the decoder is connected to the enable 

input on each memory chip. Thus, an address presented to the decoder will 

enable that corresponding memory chip. The truth table, circuit, and logic 

symbol for a 3-to-8 decoder are shown in Figure 4.15. A larger size decoder can 

be implemented using several smaller decoders. For example, Figure 4.16 uses 

seven 1-to-2 decoders to implement a 3-to-8 decoder. The correct operation of 

this circuit is left as an exercise for the reader. 

 

Figure 4.15. A 3-to-8 decoder: (a) truth table; (b) circuit; (c) logic symbol. 
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Figure 4.16. A 3-to-8 decoder implemented with seven 1-to-2 decoders 

4.8 Encoder 

An encoder is almost like the inverse of a decoder where it encodes a 2n-bit input 

data into an n-bit code. The encoder has 2n input lines and n output lines as shown by 

the logic symbol in Figure 4.18 (c) for n = 3. The operation of the encoder is such that 

exactly one of the input lines should have a 1 while the remaining input lines should 

have a 0. The output is the binary value of the input line index that has the 1. The 

truth table for an 8-to-3 encoder is shown in Figure 4.18 (a). For example, when input 

I3 is a 1, the three output bits Y2, Y1, and Y0, are set to 011, which is the binary number 

for the index 3. Entries having multiple 1’s in the truth table inputs are ignored since 

we are assuming that only one input line can be a 1. Looking at the three output 

columns in the truth table, we obtain the three equations shown in Figure 4.18 (b), 

and the resulting circuit in (c). The logic symbol is shown in (d). 

Encoders are used to reduce the number of bits needed to represent some given data 

either in data storage or in data transmission. Encoders are also used in a system with 

2n input devices, each of which may need to request for service. One input line is 

connected to one input device. The input device requesting for service will assert the 

input line that is connected to it. The corresponding n-bit output value will indicate to 

the system which of the 2n devices is requesting for service. For example, if device 5 

requests for service, it will assert the I5 input line. The system will know that device 5 

is requesting for service since the output will be 101 = 5. However, this only works 

correctly if it is guaranteed that only one of the 2n devices will request for service at 

any one time. 
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If two or more devices request for service at the same time, then the output will be 

incorrect. For example, if devices 1 and 4 of the 8-to-3 encoder request for service at 

the same time, then the output will also be 101 because I4 will assert the Y2 signal, and 

I1 will assert the Y0 signal. To resolve this problem, a priority is assigned to each of 

the input lines so that when multiple requests are made, the encoder outputs the index 

value of the input line with the highest priority. This modified encoder is known as a 

priority encoder. 

 

 

 

 

 

Figure 4.18. An 8-to-3 encoder: (a) truth table; (b) equations; (c) circuit; (d) logic symbol. 
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Example 

Design Full Adder using 3X8 decoder 

Sol. 
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4.8 Encoder 

An encoder is a digital circuit that outperforms the inverse operation of a 

decoder. An encoder has 2
n
 (or fewer) input lines and n output lines. The output 

lines, as an aggregate, generate the binary code corresponding to the input 

value, An example of an encoder is the octal-to-binary encoder whose truth 

table is given in Table 4,7. It has eight inputs (one for each of the octal digits) 

and three outputs that generate the corresponding binary number. It is assumed 

that only one input has a value of 1 at any given time. 

 

 

 

4.8 Periority encoder 
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4.9 Multiplixer  

A multiplexer is a combinational circuit that selects binary information from 

one of many input lines and directs it to a single output line. The selection of a 

particular input line is controlled by a set of selection lines. Normally, there are 

2
n
 input lines and n selection lines whose bit combinations determine which 

input is selected. 
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Example: 

Implement the following function using 4x1 Mux. 

F=∑(1,2,6,7) 
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Chapter Five 

Synchronous Sequential Logic 

5.1 Introduction 

The digital circuits considered thus far have been combinational; that is, the 

outputs are entirely dependent on the current inputs. Although every digital 

system is likely to have some combinational circuits, most systems encountered 

in practice also include storage elements, which required that the system be 

considered in terms of sequential logic. 

5.2 Sequential Circuits 

A block diagram of sequential circuit is shown below 
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There are two main types of sequential circuits, and their classification is a 

function of the timing of their signals. A synchronous sequential circuit is a 

system whose behavior can be defined from the knowledge of its signals at 

discrete instants of time. The behavior of an asynchronous sequential circuit 

depends upon the input signals at any instant of time and the order in which the 

inputs change. The storage elements commonly used in asynchronous 

sequential circuits are time-delay devices. The storage capability of a time-

delay device varies with the time it takes for the signal to propagate through the 

device. The block diagram of synchronous clocked sequential circuit is shown: 

 

The outputs are formed by a combinational logic function of the inputs to the 

circuit or the values stored in the flip-flops (or both). 

5.3 Storage Elements: Latches  

SR Latch 

The SR latch is a circuit with two cross-coupled NOR gates or two cross-

coupled NAND gates, and two inputs labeled S for set and R for reset. The SR 

latch constructed with two cross coupled NOR gates is shown 
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The SR latch with two cross-coupled NAND gates is shown 

 

The operation of basic SR latch can be modified by providing an additional 

input signal that determines (controls) when the state of latch can be changed. 

An SR latch with a control input is shown  

 

D latch 

One way to eliminate the undesirable condition of the indeterminate state in the 
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SR latch is to ensure that inputs S and R are never equal to 1 at the same time. 

This is done in the D latch, shown below 

 

 

The graphic symbols for the various latches are shown below:  

 

 

5.4 Storgae Elements: Flip-Flops 

The state of a latch or flip-flop is switched by a change in the control input. This momnetry 

change is called a trigger, and the transition it causes is said to trigger the flip-flop. 

Flip-flop cicuits are constructed in such a way as to make them operate properly when they 

are part of a sequential cicuit that employs a common clock. The problem with the latch is 

that it responds to a change in the level of a clock pulse. As shwon below, apositive level 

response in the enable input allows changes in the output when the D input changes while 

clock pulse stay at logic 1. 
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Egded Trigger D Flip Flop 

The construction of a D flip-flop with two D latches and an inverter is shown 

below. The first latch called the master and the second the slave. 
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Other Flip Flops 

Two flip-flops less widely used in the design of digital systems are the JK and 

T flip-flops. The circuit diagram of a JK flip-flop constructed with a D flip-flop 

and gates is shown below:  

 

The T (toggle) flip-flop is a complementing flip-flop and can be obtianed from 

a JK flip-flop when input J and K are tied together. This is shown below: 
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Characteristic tables 

A characteristic table defines the logical properties of a flip-flop by describing 

its operation in tabular form. The characteristic tables of three types of flip-

flops are presented in next table: 

 

 

 

 

 

5.5 Analysis of Clocked Sequential Circuits 

 

Analysis describes what a given circuit will do under certain operating 

conditions. The behavior of a clocked sequential circuit is detrmined from the 

inputs, the outputs, and the state of its flip-flops. The outputs and the next state 

are both a function of the inputs and the present state. 

 

The behavior of a clocked sequential cicuit can be described algebraically by 
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means of state equetions. A state equation (also called a transition equation) 

specifies the next state as a function of the present state and inputs. 

 

Example: 

 

Consider the sequential cicuit shown below: 

 

 

or 
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Then  

 

Or  

 

 

The sequence of inputs, outputs, and flip-flop states can be enumerated in a 

state table (sometimes called a transition table). The state table for the 

pervious circuit is shown below: 

 

Or in other form like below 
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State Diagram 

The information available in a state table can be represented graphically in the 

form of a state diagram. In this type of diagram, a state is represented by a 

circle, and the (clock-triggered) transitions between states are indicated by 

directed lines connecting the circles. The state diagram of the example 

sequential circuit is shown below: 

 

Example 2: 
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Example 3: 
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Example 4: 
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5.6 State Reduction 

The reduction in the number of flip-flops in a sequential circuit is referred to as 

the state reduction problem. State-reduction algorithms are concerned with 

procedures for reducing the number of states in a state table, while keeping the 
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external, input-output requirements unchanged. 

Since m flip- flops produce 2
m

 states, a reduction in the number of states may 

(or may not) result in a reduction in the number of flip-flops. An unpredictable 

effect in reducing the number of flip-flops is that sometimes the equivalent 

circuit (with fewer flip-flops) may require more combinational gates. 

Example 1: 

 

As an example, consider the input sequence 01010110100 starting from the 

initial state a. Each input of 0 or 1 produces an output of 0 or 1 and causes the 

circuit to go to the next state. From the state diagram, we obtain the output and 

state sequence for the given input sequence as follows: With the circuit in 

initial state a, an input of 0 produce an output of 0 and the circuit remains in 

state a. With present state a and an output of 1, the output is 0 and the next state 

is b. With present state b and an input of 0, the output is 0 and the next state is 
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c. Continuing this process, we find the complete sequence to be as follows: 

 

 

We now proceed to reduce the number of states for this example. First. we need 

the state table; it is more convenient to apply procedures for state reduction 

with the use of a table rather than a diagram. The state table of the circuit is 

listed in Table 5.6 and is obtained directly from the state diagram. 

 

The procedure of removing a state and replacing it by its equivalent is 

demonstrated in Table 5.7. 
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The same next states and outputs appear in the row with present state d. 

Therefore, states f and d are equivalent, and state f can be removed d replaced 

by d The final reduced table is shown in Table 5.8. 

 

The state diagram for the reduced table consists of only five states and is shown 

in Fig. 5.26 
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5.7 State Assignment 

In order to design a sequential circuit with physical components, it is necessary 

to assign unique coded binary values to the states. For a circuit with m state the 

codes must contain n bits, where 2n>= m. For example, with three bits, it is 

possible to assign codes to eight states, denoted by binary numbers 000 through 

111. 

The simplest way to code five states is to use the 6rst five integers in binary 

counting order, as shown in the first assignment of table 5.9. Another similar 

assignment is the Gray code shown in assignment 2. 
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