
University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 162/2/6/62

3.4.1 Karnaugh Maps

To minimize a Boolean equation in the sum-of-products form, we need to

reduce the number of product terms by applying the combining Boolean

Theorem (Theorem 14) from Section 2.5.1. In so doing, we will also have

reduced the number of variables used in the product terms. For example, given

the following 3-variable function F = xy'z' + xyz' we can reduce it to

F = xz' (y' + y)= xz' 1= xz'

In other words, two product terms that differ by only one variable whose value

is a 0 (primed) in one term, and a 1 (unprimed) in the other term, can be

combined together to form just one term with that variable omitted as shown in

the example above. Thus, we have reduced the number of product terms and the

resulting product term has one less variable. By reducing the number of product

terms, we reduce the number of OR operators required, and by reducing the

number of variables in a product term, we reduce the number of AND operators

required. Looking at a logic function’s truth table, it is sometimes difficult to

see how the product terms can be combined and minimized. A Karnaugh map,

or K-map for short, provides a simple and straightforward procedure for

combining these product terms. A K-map is just a graphical representation of a

logic function’s truth table where the minterms are grouped in such a way that

it allows one to easily see which of the minterms can be combined. It is a 2-

dimensional array of squares, each of which represents one minterm in the

Boolean function. Thus, the map for an n-variable function is an array with 2n

squares.

Figure 3.5 shows the K-maps for functions with 2, 3, 4, and 5 variables. Notice

the labeling of the columns and rows are such that any two adjacent columns or

rows differ in only one bit change. This condition is required because we want

minterms in adjacent squares to differ in the value of only one variable or one

bit, and so these minterms can be combined together. This is why the labeling

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 262/2/6/62

for the third and fourth columns, and the third and fourth rows are always

interchanged. When we read K-maps, we need to visualize it as such that the

two end columns or rows wrap around so that the first and last columns, and the

first and last rows are really adjacent to each other because they differ in only

one bit also.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 362/2/6/62

In Figure 3.5, the K-map squares are annotated with its minterm and its

minterm number for easy reference only. For example, in Figure 3.5 (a) for a 2-

variable K-map, the entry in the first row and second column is labeled x'y, and

annotated with the number 1. This is because the first row is when the variable

x is a 0, and the second column is when the variable y is a 1. Since for

minterms, we need to prime a variable whose value is a 0, and not prime it if its

value is a 1, therefore, this entry represents the minterm x'y, which is minterm

number 1.

Figure 3.5. Karnaugh maps for:

(a) 2 variables; (b) 3 variables; (c) 4 variables; (d) 5 variables.

Be careful that if we label the rows and columns differently, the minterms and

the minterm numbers will be in different locations. When we are actually using

K-maps to minimize an equation, we will not write these in the squares.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 462/2/6/62

Instead, we will be putting 0’s and 1’s in the squares.

Given a Boolean function, we set the value for each K-map square to either a 0

or a 1 depending on whether that minterm for the function is a 0-minterm or a

1-minterm respectively. However, since we are only interested in the 1-

minterms for a function, the 0’s are sometimes not written in the 0-minterm

squares.

For example, the K-map for the 2-variable function F = x'y' + x'y + xy is

The 1-minterms m0 (x'y') and m1 (x'y) are adjacent to each other, which means

that they differ in the value of only one variable. In this case, x is 0 for both

minterms, but for y, it is a 0 for one minterm and a 1 for the other minterm.

Thus, variable y can be dropped and the two terms are combined together

giving just x'. The prime in x' is because x is 0 for both minterms. This

reasoning corresponds with the expression

x'y' + x'y = x' (y'+y) = x'

Similarly, the 1-minterms m1 (x'y) and M3 (xy) are also adjacent and y is the

variable having the same value for both minterms, and so they can be

combined to give x'y + xy = y. We use the term subcube to refer to a rectangle

of adjacent 1-minterms. These subcubes must be rectangular in shape and can

only have sizes that are powers of two. Formally, for an n-variable K-map, an

m-subcube is defined as that set of 2m minterms in which n – m of the variables

will have the same value in every minterm while the remaining variables will

take on the 2m possible combinations of 0’s and 1’s. Thus, a 1-minterm all by

itself is called a 0-subcube, and two adjacent 1-minterms is a 1-subcube. In the

above 2-variable K-map, there are two 1-subcubes: one labeled with x' and one

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 562/2/6/62

with y.

A 2-subcube will have four adjacent 1-minterms and can be in the shape of any

one of those shown in Figure 3.6 (a) to (e). Notice that Figure 3.6 (d) and (e)

also form 2-subcubes even though the four 1-minterms are not physically

adjacent to each other. They are considered to be adjacent because the first and

last rows, and first and last columns wrap around in a K-map. In Figure 3.6 (f),

the four 1-minterms cannot form a 2-subcube because even though they are

physically adjacent to each other, they do not form a rectangle. However, they

can form three 1- subcubes – y'z, x'y' and x'z. We say that a subcube is

characterized by the variables having the same values for all the minterms in

that subcube. In general, an m-subcube for an n-variable K-map will be

characterized by n – m variables. If the value that is similar for all the variables

is a 1, that variable is unprimed, whereas, if the value that is similar for all the

variables is a 0, that variable is primed.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 662/2/6/62

In an expression, this is equivalent to the resulting smaller product term when

the minterms are combined together. For example, the 2-subcube in Figure 3.6

(d) is characterized by z' since the value of z is 0 for all the minterms, whereas

the values for x and y are not all the same for all the minterms. Similarly, the 2-

subcube in Figure 3.6 (e) is characterized by x'z'.

Figure 3.6. Examples of K-maps with 2-subcubes: (a) and (b) 3-variable;

(c) 4-variable; (d) 3-variable with wrap around subcube; (e) 4-variable

with wrap around subcube; (f) cannot form one 2-subcube.

For a 5-variable K-map as shown in Figure 3.7, we need to visualize the right half of

the array where v = 1 to be on top of the left half where v = 0. Thus, for example,

minterm 20 is adjacent to minterm 4 since one is on top of the other, and they form

the 1-subcube w'xy'z'. Minterms 9, 11, 13, 15, 25, 27, 29, and 31 are all adjacent, and

together they form the subcube wz. Now, that we are viewing this 5-variable K-map

in three dimensions, we also need to change the condition of the subcube shape to be

a three dimensional rectangle. Even though minterm 6 is physically adjacent to

minterm 20 in the map, they cannot be combined together because when you

visualize the right half as being on top of the left half, then they are really not on top

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 762/2/6/62

of each other. Instead minterm 6 is adjacent to minterm 4 because the columns wrap

around, and they form the subcube v'w'xz'. You can see that this visualization

becomes almost impossible very quickly as we increase the number of variables.

Figure 3.7. A 5-variable K-map with wrap around subcubes.

The K-map method reduces a Boolean function from its canonical form to its

standard form. The goal for the K-map method is to find as few subcubes as

possible to cover all the 1-minterms in the given function. This naturally

implies that the size of the subcube should be as big as possible. The reasoning

for this is that each subcube corresponds to a product term, and all the subcubes

(or product terms) must be ORed together to get the function. Larger subcubes

require fewer AND gates because of fewer variables in the product term, and

fewer subcubes will require fewer inputs to the OR gate.

The procedure for using the K-map method is as follows:

1. Draw the appropriate K-map for the given function and place a 1 in the

squares that correspond to the function’s 1-minterms.

2. For each 1-minterm, find the largest subcube that covers this 1-minterm. This

largest subcube is known as aprime implicant (PI). By definition, a prime

implicant is a subcube that is not contained within any other subcube. If there

are more than one subcube that is the same size as the largest subcube, then

they are all prime implicants.

3. Look for 1-minterms that are covered by only one prime implicant. Since this

prime implicant is the only subcube that covers this particular 1-minterm, this

prime implicant must be in the final solution. This prime

implicant is referred to as an essential prime implicant (EPI). By definition, an

essential prime implicant is a subcube that includes a 1-minterm that is not

included in any other subcube.

4. Create a minimal cover list by selecting the smallest possible number of

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 862/2/6/62

prime implicants such that every 1- minterm is contained in at least one prime

implicant. This cover list must include all the essential prime implicants plus

zero or more of the remaining prime implicants. It is acceptable that a particular

1-minterm is covered in more than one prime implicant, but all 1-minterms

must be covered.

5. The final minimized function is obtained by ORing all the prime implicants

from the minimal cover list. Note that the final minimized function obtained by

the K-map method may not be in its most reduced form. It is only in its most

reduced standard form. Sometimes, it is possible to reduce the standard form

further into a nonstandard form.

Example 3.4

Use the K-map method to minimize a 4-variable (w, x, y, and z) function F with

the 1-minterms: m0, m2, m5, m7, m10, m13, m14, and m15. We start with the

following 4-variable K-map:

Thus, there are five prime implicants: w'x'z', x'yz', xz, wyz', and wxy. Of these

five prime implicants, w'x'z' and xz are essential prime implicants since m0 is

covered only by w'x'z', and m5, m7, and m13 are covered only by xz. We start

the cover list by including the two essential prime implicants w'x'z' and xz.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 962/2/6/62

These two subcubes will have covered minterms m0, m2, m5, m7, m13, and

m15. To cover the remaining two uncovered minterms m10 and m14, we want

to use as few prime implicants as possible. Hence, we select the prime

implicant wyz' which covers both of

them. Finally, our reduced standard form equation is obtained by ORing these

three prime implicants

F = w'x'z' + xz + wyz'

Notice that we can reduce this standard form equation even further by factoring

out the z' from the first and last term to get the non-standard form equation F =

z' (w'x' + wy) + xz

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 1162/2/6/62

Example 3.5

Use the K-map method to minimize a 5-variable function F (v, w, x, y and z)

with the 1-minterms: v'w'x'yz', v'w'x'yz, v'w'xy'z, v'w'xyz, vw'x'yz', vw'x'yz,

vw'xyz', vw'xyz, vwx'y'z, vwx'yz, vwxy'z, and vwxyz.

The list of prime implicants is: v'w'xz, w'x'y, w'yz, vw'y, vyz, and vwz. From this

list of prime implicants, w'yz and vyz are not essential. The four remaining

essential prime implicants are able to cover all the 1-minterms. Hence, the

solution in standard form is

F = v'w'xz + w'x'y + vw'y + vwz

3.4.2 Don’t-cares

There are times when a function is not fully specified. In other words, there are

some minterms for the function where we do not care whether their values are a

0 or a 1. When drawing the K-map for these “don’t-care” minterms, we assign

an “Ø” in that square instead of a 0 or a 1. Usually, a function can be reduced

even further if we remember that these Ø’s can be either a 0 or a 1. As you

recall when drawing K-maps, enlarging a subcube reduces the number of

variables for that term. Thus, in drawing subcubes, some of them may be

enlarged if we treat some of these x’s as 1’s. On the other hand, if some of

these Ø’s will not enlarge a subcube, then we want to treat them as 0’s so that

we do not need to cover them. It is not necessary to treat all Ø’s to be all 1’s or

all 0’s. We can assign some Ø’s to be 0’s and some to be 1’s.

For example, given a function having the following 1-minterms and don’t-care

minterms:

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 1162/2/6/62

1-minterms: m0, m1, m2, M3, m4, m7, m8, and m9

x-minterms: m10, m11, m12, m13, m14, and m15

we obtain the following K-map with the prime implicants x', yz, and y'z'.

Notice that in order to get the 4-subcube characterized by x' the two don’t-care

minterms m10 and m11 are taken to have the value 1. Similarly, the don’t-care

minterms m12 and m15 are assigned a 1 for the subcubes y'z' and yz

respectively. On the other hand, the don’t-care minterms m13 and m14 are

taken to have the value 0 so that they do not need to be covered in the solution.

The reduced standard form function as obtained from the K-map is, therefore,

 F = x' + yz + y'z'. Again, this equation can be reduced further by recognizing

that yz + y'z' = y _ z. Thus, F = x' + (y _ z).

4.3 Adder

4.3.1 Half Adder

From the verbal explanation of a half adder, we find that this circuit needs two

binary inputs and two binary outputs. The Input variables designats the augend

and addend bits; the output variables produce the sum and carry. We assign

symbols x and y to the two inputs and S (for sum) and C (for carry) to the

outputs. The truth table for the half adder is listed in Table 4.3.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 1262/2/6/62

The C output is 1 only when both inputs are 1, The S output represent the least

significant bit of the sum.

The simplified Boolean functions for the two outputs can be obtained directly

from the truth table. The simplified sum-of-products expressions are

4.3.2 Full Adder

A full adder is combinational circiut that forms the arithmatic sum of three bits.

It consists of three inputs and two outputs. Two of the input variabies denoted

by x and y, represent the two significant bits to be added. The third input ,z,

repesents the carry from the previous lower significant position. Two output are

necessory because the arithmatic sum of two bits range from 0 to 3. and binary

2 or 3 needs two digits. The two outputs are designated by the symbols S for

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 1362/2/6/62

sum and C for carr. The binary variable S gives the value of the least significant

bit of the sum. The binary variable C gives the output carry. The truth table of

the full adder is listed in Table 4.4.

The eight rows under the input variables designate all possible combinations of

the three variables. The output variables are determined from he arithmatic sum

of the input bits.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 1462/2/6/62

4.5 Adder-Subtractor Combination

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 1562/2/6/62

It turns out that instead of having to build a separate adder and subtractor units,

we can modify the ripple-carry adder (or the carry-lookahead adder) slightly to

perform both operations. The modified circuit performs subtraction by adding

the negated value of the second operand. In other words, instead of performing

the subtraction A – B, the addition operation A + (– B) is performed. Recall that

in two’s complement representation, to negate a value involves inverting all the

bits from 0 to 1 or vice versa, and then adding a 1. Hence, we need to modify

the adder circuit so that we can selectively do either one of two things: 1) flip

the bits of the B operand, and then add an extra 1 for the subtraction operation,

or 2) not flip the

bits, and not add an extra 1 for the addition operation.

For this adder-subtractor combination circuit, in addition to the two input

operands A and B, a select signal S is needed to select which operation to

perform. The assignment of the two operations to the select signal S is shown in

Figure 4.8 (a). When S = 0, we want to perform an addition, and when S = 1,

we want to perform a subtraction. When S = 0, B does not need to be modified,

and like the adder circuit from Section 4.2.2, the initial carry-in signal c0 needs

to be set to a 0. On the other hand, when S = 1, we need to invert the bits in B

and add a 1. The addition of a 1 is accomplished by setting the initial carry-in

signal c0 to a 1. Two circuits are needed for handling the above situations: one

for inverting the bits in B, and one for setting c0. Both of these circuits are

dependent on S.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 1662/2/6/62

The truth table for these two circuits is shown in Figure 4.8 (b). The input

variable bi is the ith bit of the B operand. The output variable yi is the output

from the circuit that either inverts or not inverts the bits in B. From this truth

table, we can conclude that the circuit for yi is just a 2-input XOR gate, while

the circuit for c0 is just a direct connection from S. Putting everything together,

we obtain the adder-subtractor combination circuit for four bits as shown in

Figure 4.8 (c). The logic symbol for the circuit is shown in Figure 4.8 (d).

Figure 4.8. Adder-subtractor combination: (a) operation table; (b) truth

table for yi and c0; (c) circuit; (d) logic symbol.

Notice the adder-subtractor circuit in Figure 4.8 (c) has two different overflow

signals, Unsigned_Overflow and Signed_Overflow. This is because the circuit

can deal with both signed and unsigned numbers. When working with unsigned

numbers only, the output signal Unsigned_Overflow is sufficient to determine

whether there is an overflow or not. However, for signed numbers, we need to

perform the XOR of Unsigned_Overflow with c3 producing the

Signed_Overflow signal in order to determine whether there is an overflow or

not. For example, the valid range for a 4-bit signed number goes from –23 to

23–1, i.e., from – 8 to 7. Adding the two signed numbers 4 + 5 = 9 should result

in a signed number overflow since 9 is outside the range. However, the valid

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 1762/2/6/62

range for a 4-bit unsigned number goes from 0 to 24–1, i.e., 0 to 15. If we treat

the two numbers 4 and 5 as unsigned numbers, then the result of adding these

two unsigned numbers, 9, is inside the range. So when adding the Chapter 4

Combinational Components Page 12 of 46 two numbers 4 and 5, the

Unsigned_Overflow signal should be de-asserted, while the Signed_Overflow

signal should be asserted. Performing the addition of 4 + 5 in binary as shown

below

we get 0100 + 0101 = 1001, which produces a 0 for the Unsigned_Overflow

signal. However, the addition produces a 1 for c3, and XORing these two

values, 0 for Unsigned_Overflow and 1 for c3, results in a 1 for the

Signed_Overflow signal.

In another example, adding the two 4-bit signed numbers – 4 + (– 3) = – 7

should not result in a signed overflow. Performing the arithmetic in binary, –4

= 1100 and –3 = 1101, as shown below

we get 1100 + 1101 = 11001, which produces a 1 for both Unsigned_Overflow

and c3. XORing these two values together gives a 0 for the Signed_Overflow

signal. On the other hand, if we treat the two binary numbers, 1100 and 1101,

as unsigned numbers, then we are adding 12 + 13 = 25. 25 is outside the

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 1862/2/6/62

unsigned number range, and so the Unsigned_Overflow signal should be

asserted.

4.4 Decimal Adder

Consider the arithmetic addition of two decimal digits in BCD, together with an

input carry from a previous stage. Since each input digit does not exceed 9, the

output sum cannot be greater than 9 + 9 + 1 = 19, the 1 in the sum being an

output carry.

Suppose we apply two BCD digits to a four-bit binmy adder. The adder will

form the sum in binary and produce a result that ranges from 0 through 19.

These binary numbers are listed in Table 4.5 and are labled by symbols K, Z8,

Z4, Z2, and Z1, K is the carry, and the subscripts under the letter Z represent the

weights 8,4,2, and 1 that can be assigned to the four bits in the BCD code. The

columns under the binary sum list the binary value that appears in the outputs

of the four-bit binary adder. The output sum of two decimal digits must be

represented in BCD and should appear in the form listed in the columns under

"BCD Sum." The problem is to find a rule by which the binary sum is

converted to the correct BCD digit representation of the number in the BCD

sum.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 1962/2/6/62

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 2162/2/6/62

4.5 Multiplier

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 2162/2/6/62

As a second example. consider a multiplier circuit mat multiplies a binary

number represented by four bits by a number represnted by three bits. Let the

multiplicand be represented by B B B B and the muliplier by A A A A . Since

k= 4 and J = 3. We need 12 AND gates and 2 four-bit adder to produce the

product of seven bits. The logic diagram of the multiplier s shown in Fig. below

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 2262/2/6/62

4.5 Magnitude Comparator

The comparison of two numbers is an operation that determined whether one

number is greater than, less than, or equel to the other number. A comparator is

a combinational circuit that compares two numbers A and B and detemims their

relative magnitude. The outcome of the comparison is spacified by three binary

variables that indicate whether A > B, A = B, or A < B.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 2362/2/6/62

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 2462/2/6/62

4.7 Decoder

A decoder, also known as a demultiplexer, asserts one out of n output lines

depending on the value of an m-bit binary input data. In general, an m-to-n

decoder has m input lines, Am-1, …, A0, and n output lines, Yn-1, …, Y0, where n

= 2m. In addition, it has an enable line E for enabling the decoder. When the

decoder is disabled with E set to 0, all the output lines are de-asserted. When

the decoder is enabled, then the output line whose index is equal to the value

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 2562/2/6/62

of the input binary data is asserted. For example, for a 3-to-8 decoder, if the

input address is 101, then the output line Y5 is asserted (set to 1 for active high)

while the rest of the output lines are de-asserted (set to 0 for active high).

A decoder is used in a system having multiple components, and we want only

one component to be selected or enabled at any one time. For example, in a

large memory system with multiple memory chips, only one memory chip is

enabled at a time. One output line from the decoder is connected to the enable

input on each memory chip. Thus, an address presented to the decoder will

enable that corresponding memory chip. The truth table, circuit, and logic

symbol for a 3-to-8 decoder are shown in Figure 4.15. A larger size decoder can

be implemented using several smaller decoders. For example, Figure 4.16 uses

seven 1-to-2 decoders to implement a 3-to-8 decoder. The correct operation of

this circuit is left as an exercise for the reader.

Figure 4.15. A 3-to-8 decoder: (a) truth table; (b) circuit; (c) logic symbol.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 2662/2/6/62

Figure 4.16. A 3-to-8 decoder implemented with seven 1-to-2 decoders

4.8 Encoder

An encoder is almost like the inverse of a decoder where it encodes a 2n-bit input

data into an n-bit code. The encoder has 2n input lines and n output lines as shown by

the logic symbol in Figure 4.18 (c) for n = 3. The operation of the encoder is such that

exactly one of the input lines should have a 1 while the remaining input lines should

have a 0. The output is the binary value of the input line index that has the 1. The

truth table for an 8-to-3 encoder is shown in Figure 4.18 (a). For example, when input

I3 is a 1, the three output bits Y2, Y1, and Y0, are set to 011, which is the binary number

for the index 3. Entries having multiple 1’s in the truth table inputs are ignored since

we are assuming that only one input line can be a 1. Looking at the three output

columns in the truth table, we obtain the three equations shown in Figure 4.18 (b),

and the resulting circuit in (c). The logic symbol is shown in (d).

Encoders are used to reduce the number of bits needed to represent some given data

either in data storage or in data transmission. Encoders are also used in a system with

2n input devices, each of which may need to request for service. One input line is

connected to one input device. The input device requesting for service will assert the

input line that is connected to it. The corresponding n-bit output value will indicate to

the system which of the 2n devices is requesting for service. For example, if device 5

requests for service, it will assert the I5 input line. The system will know that device 5

is requesting for service since the output will be 101 = 5. However, this only works

correctly if it is guaranteed that only one of the 2n devices will request for service at

any one time.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 2762/2/6/62

If two or more devices request for service at the same time, then the output will be

incorrect. For example, if devices 1 and 4 of the 8-to-3 encoder request for service at

the same time, then the output will also be 101 because I4 will assert the Y2 signal, and

I1 will assert the Y0 signal. To resolve this problem, a priority is assigned to each of

the input lines so that when multiple requests are made, the encoder outputs the index

value of the input line with the highest priority. This modified encoder is known as a

priority encoder.

Figure 4.18. An 8-to-3 encoder: (a) truth table; (b) equations; (c) circuit; (d) logic symbol.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 2862/2/6/62

Example

Design Full Adder using 3X8 decoder

Sol.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 2962/2/6/62

4.8 Encoder

An encoder is a digital circuit that outperforms the inverse operation of a

decoder. An encoder has 2
n
 (or fewer) input lines and n output lines. The output

lines, as an aggregate, generate the binary code corresponding to the input

value, An example of an encoder is the octal-to-binary encoder whose truth

table is given in Table 4,7. It has eight inputs (one for each of the octal digits)

and three outputs that generate the corresponding binary number. It is assumed

that only one input has a value of 1 at any given time.

4.8 Periority encoder

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 3162/2/6/62

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 3162/2/6/62

4.9 Multiplixer

A multiplexer is a combinational circuit that selects binary information from

one of many input lines and directs it to a single output line. The selection of a

particular input line is controlled by a set of selection lines. Normally, there are

2
n
 input lines and n selection lines whose bit combinations determine which

input is selected.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 3262/2/6/62

Example:

Implement the following function using 4x1 Mux.

F=∑(1,2,6,7)

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 3362/2/6/62

Chapter Five

Synchronous Sequential Logic

5.1 Introduction

The digital circuits considered thus far have been combinational; that is, the

outputs are entirely dependent on the current inputs. Although every digital

system is likely to have some combinational circuits, most systems encountered

in practice also include storage elements, which required that the system be

considered in terms of sequential logic.

5.2 Sequential Circuits

A block diagram of sequential circuit is shown below

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 3462/2/6/62

There are two main types of sequential circuits, and their classification is a

function of the timing of their signals. A synchronous sequential circuit is a

system whose behavior can be defined from the knowledge of its signals at

discrete instants of time. The behavior of an asynchronous sequential circuit

depends upon the input signals at any instant of time and the order in which the

inputs change. The storage elements commonly used in asynchronous

sequential circuits are time-delay devices. The storage capability of a time-

delay device varies with the time it takes for the signal to propagate through the

device. The block diagram of synchronous clocked sequential circuit is shown:

The outputs are formed by a combinational logic function of the inputs to the

circuit or the values stored in the flip-flops (or both).

5.3 Storage Elements: Latches

SR Latch

The SR latch is a circuit with two cross-coupled NOR gates or two cross-

coupled NAND gates, and two inputs labeled S for set and R for reset. The SR

latch constructed with two cross coupled NOR gates is shown

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 3562/2/6/62

The SR latch with two cross-coupled NAND gates is shown

The operation of basic SR latch can be modified by providing an additional

input signal that determines (controls) when the state of latch can be changed.

An SR latch with a control input is shown

D latch

One way to eliminate the undesirable condition of the indeterminate state in the

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 3662/2/6/62

SR latch is to ensure that inputs S and R are never equal to 1 at the same time.

This is done in the D latch, shown below

The graphic symbols for the various latches are shown below:

5.4 Storgae Elements: Flip-Flops

The state of a latch or flip-flop is switched by a change in the control input. This momnetry

change is called a trigger, and the transition it causes is said to trigger the flip-flop.

Flip-flop cicuits are constructed in such a way as to make them operate properly when they

are part of a sequential cicuit that employs a common clock. The problem with the latch is

that it responds to a change in the level of a clock pulse. As shwon below, apositive level

response in the enable input allows changes in the output when the D input changes while

clock pulse stay at logic 1.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 3762/2/6/62

Egded Trigger D Flip Flop

The construction of a D flip-flop with two D latches and an inverter is shown

below. The first latch called the master and the second the slave.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 3862/2/6/62

Other Flip Flops

Two flip-flops less widely used in the design of digital systems are the JK and

T flip-flops. The circuit diagram of a JK flip-flop constructed with a D flip-flop

and gates is shown below:

The T (toggle) flip-flop is a complementing flip-flop and can be obtianed from

a JK flip-flop when input J and K are tied together. This is shown below:

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 3962/2/6/62

Characteristic tables

A characteristic table defines the logical properties of a flip-flop by describing

its operation in tabular form. The characteristic tables of three types of flip-

flops are presented in next table:

5.5 Analysis of Clocked Sequential Circuits

Analysis describes what a given circuit will do under certain operating

conditions. The behavior of a clocked sequential circuit is detrmined from the

inputs, the outputs, and the state of its flip-flops. The outputs and the next state

are both a function of the inputs and the present state.

The behavior of a clocked sequential cicuit can be described algebraically by

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 4162/2/6/62

means of state equetions. A state equation (also called a transition equation)

specifies the next state as a function of the present state and inputs.

Example:

Consider the sequential cicuit shown below:

or

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 4162/2/6/62

Then

Or

The sequence of inputs, outputs, and flip-flop states can be enumerated in a

state table (sometimes called a transition table). The state table for the

pervious circuit is shown below:

Or in other form like below

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 4262/2/6/62

State Diagram

The information available in a state table can be represented graphically in the

form of a state diagram. In this type of diagram, a state is represented by a

circle, and the (clock-triggered) transitions between states are indicated by

directed lines connecting the circles. The state diagram of the example

sequential circuit is shown below:

Example 2:

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 4362/2/6/62

Example 3:

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 4462/2/6/62

Example 4:

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 4562/2/6/62

5.6 State Reduction

The reduction in the number of flip-flops in a sequential circuit is referred to as

the state reduction problem. State-reduction algorithms are concerned with

procedures for reducing the number of states in a state table, while keeping the

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 4662/2/6/62

external, input-output requirements unchanged.

Since m flip- flops produce 2
m

 states, a reduction in the number of states may

(or may not) result in a reduction in the number of flip-flops. An unpredictable

effect in reducing the number of flip-flops is that sometimes the equivalent

circuit (with fewer flip-flops) may require more combinational gates.

Example 1:

As an example, consider the input sequence 01010110100 starting from the

initial state a. Each input of 0 or 1 produces an output of 0 or 1 and causes the

circuit to go to the next state. From the state diagram, we obtain the output and

state sequence for the given input sequence as follows: With the circuit in

initial state a, an input of 0 produce an output of 0 and the circuit remains in

state a. With present state a and an output of 1, the output is 0 and the next state

is b. With present state b and an input of 0, the output is 0 and the next state is

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 4762/2/6/62

c. Continuing this process, we find the complete sequence to be as follows:

We now proceed to reduce the number of states for this example. First. we need

the state table; it is more convenient to apply procedures for state reduction

with the use of a table rather than a diagram. The state table of the circuit is

listed in Table 5.6 and is obtained directly from the state diagram.

The procedure of removing a state and replacing it by its equivalent is

demonstrated in Table 5.7.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 4862/2/6/62

The same next states and outputs appear in the row with present state d.

Therefore, states f and d are equivalent, and state f can be removed d replaced

by d The final reduced table is shown in Table 5.8.

The state diagram for the reduced table consists of only five states and is shown

in Fig. 5.26

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 4962/2/6/62

5.7 State Assignment

In order to design a sequential circuit with physical components, it is necessary

to assign unique coded binary values to the states. For a circuit with m state the

codes must contain n bits, where 2n>= m. For example, with three bits, it is

possible to assign codes to eight states, denoted by binary numbers 000 through

111.

The simplest way to code five states is to use the 6rst five integers in binary

counting order, as shown in the first assignment of table 5.9. Another similar

assignment is the Gray code shown in assignment 2.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 5162/2/6/62

