

University: University of Anbar

College: CS & IT

Instructor Name:

Academic status:

Qualification:

Place of work: Anbar University

Republic of Iraq

Ministry of Higher Education

& Scientific Research

Al Anbar University

Course Weekly Outline
Course Name: Microprocessor

Course Instructor

E-mail

Title

Course Coordinator

Course Objective

Course Description

Textbook

References

Course Assessments
TermTests Laboratory Quizzes Project Final Exam

General Notes

University: University of Anbar

College: CS & IT

Instructor Name:

Academic status:

Qualification:

Place of work: Anbar University

Republic of Iraq

Ministry of Higher Education

& Scientific Research

Al Anbar University

 First Course Weekly Outline

 Instructor Signature: Dean Signature:

W
eek

Date Topics Covered Notes

1
 Introduction

Computer organization

2
 Historical development for computers

3 Computer Levels

4 Data Representation in Computer Systems.

5 Signed Integer Representation

6 Floating Point Representation

7 Introduction to a Simple Computer

8 CPU Functions

9 Mid Examination

10 Registers, Buses

11 simple model computer design, Marie

12 Instruction Processing

13 Assembler

14 Control Unit, Real World Architecture

15 Final Examination.

Term Tests Laboratory Quizzes Project Final Exam

(30%) ----- (10 %) (%) (60%)

University: University of Anbar

College: CS & IT

Instructor Name:

Academic status:

Qualification:

Place of work: Anbar University

Republic of Iraq

Ministry of Higher Education

& Scientific Research

Al Anbar University

Second Course Weekly Outline

 Instructor Signature: Dean Signature:

W
eek

Date Topics Covered Notes

1 Instruction Set Architecture

2
 Instruction Format and types

3 Addressing modes:1-3

4 Addressing modes:3-7

5 Memory system, Introduction

6 Components of memory system

7 The memory Hierarchy

8 Cache Memory

9 Mid Examination

10 Cache Organization

11 Replacements Algorithms

12 Write Strategies

13 Virtual Memory

14 Virtual Memory

15 Final Examination.

Term Tests Laboratory Quizzes Project Final Exam

(30%) ----- (10 %) (%) (60%)

Chapter 1: THE 80x86 MICROPROCESSOR

Page 1

1.1 Evolution from 8080/8085 to 8086
In 1978, Intel Corporation introduced a 16-bit microprocessor called the 8086. This
processor was a major improvement over the previous generation 8080/8085 series

Intel microprocessors in several ways:

First, the 8086's capacity of 1 megabyte of memory exceeded the 8080/8085 's
capability of handling a maximum of 64K bytes of memory.

Second, the 8080/8085 was an 8-bit system, meaning that the microprocessor
could work on only 8 bits of data at a time. Data larger than 8 bits had to be broken
into 8-bit pieces to be processed by the CPU. In contrast, the 8086 is a 16-bit

microprocessor.
Third, the 8086 was a pipelined processor, as opposed to the non pipelined

8080/8085. In a system with pipelining, the data and address buses are busy
transferring data while the CPU is processing information, thereby increasing the

effective processing power of the microprocessor.

 Evolution from 8086 to 8088
The 8086 is a microprocessor with a 16-bit data bus internally and externally,
meaning that all registers are 16 bits wide and there is a 16-bit data bus to transfer

data in and out of the CPU.
Although the introduction of the 8086 marked a great advancement over the

previous generation of microprocessors, there was still some resistance in using the
16-bit external data bus since at that time all peripherals were designed around an
8-bit microprocessor.

 In addition, a printed circuit board with a 16-bit data bus was much more
expensive. Therefore, Intel came out with the 8088 version. It is identical to the

8086 as far as programming is concerned, but externally it has an 8-bit data bus
instead of a 16-bit bus. It has the same memory capacity, 1 megabyte.

 Other microprocessors: the 80286, 80386, and 80486
With a major victory behind Intel and a need from PC users for a more powerful
microprocessor, Intel introduced the 80286 in 1982. Its features included 16-bit

internal and external data buses; 24 address lines, which give 16 megabytes of
memory (2

24
 = 16 megabytes); and most significantly, virtual memory.

The 80286 can operate in one of two modes: real mode or protected mode. Real

mode is simply a faster 8088/8086 with the same maximum of 1 megabyte of
memory. Protected mode allows for 16M of memory but is also capable of

protecting the operating system and programs from accidental or deliberate
destruction by a user, a feature that is absent in the single-user 8088/8086.

Chapter 1: THE 80x86 MICROPROCESSOR

Page 2

Virtual memory is a way of fooling the microprocessor into thinking that it has
access to an almost unlimited amount of memory by swapping data between disk

storage and RAM.

With users demanding even more powerful systems, in 1985 Intel introduced the
80386 (sometimes called 80386DX), internally and externally a 32-bit

microprocessor with a 32-bit address bus. It is capable of handling physical
memory of up to 4 gigabytes (2

32
). Virtual memory was increased to 64 terabytes

(2
46

). All microprocessors discussed so far were general-purpose microprocessors
and could not handle mathematical calculations rapidly. For this reason, Intel

introduced numeric data processing chips, called math coprocessors, such as the
8087, 80287, and 80387.

Later Intel introduced the 386SX, which is internally identical to the 80386 but has

a 16-bit external data bus and a 24-bit address bus which gives a capacity of 16
megabytes (2

24
) of memory. This makes the 386SX system much cheaper. With

the introduction of the 80486 in 1989, Intel put a greatly enhanced version of the

80386 and the math coprocessor on a single chip plus additional features such as
cache memory. Cache memory is static RAM with a very fast access time. Table

1-1 summarizes the evolution of Intel's microprocessors. It must be noted that all
programs written for the 8086/88 will run on 286, 386, and 486 computers.

Notes:
1. The 80386SX architecture is the same as the 80386 except that the external data

bus is 16 bits in the SX as opposed to 32 bits, and the address bus is 24 bits instead
of32; therefore, physical memory is 16MB.

2. Clock rates range from the rates when the product was introduced to current
rates; some rates have risen during this time.

Chapter 1: THE 80x86 MICROPROCESSOR

Page 3

1.2 INSIDE THE 8088/8086
In this section we explore concepts important to the internal operation of the
8088/86, such as pipelining and registers. See the block diagram in Figure 1.1.

Figure (1.1) Internal block diagram of the 8088/86 CPU

Pipelining
There are two ways to make the CPU process information faster: increase the

working frequency or change the internal architecture of the CPU.

The first option is technology dependent, meaning that the designer must use

whatever technology is available at the time, with consideration for cost. The
technology and materials used in making ICs (integrated circuits) determine the

working frequency, power consumption, and the number of transistors packed into
a single-chip microprocessor.

Chapter 1: THE 80x86 MICROPROCESSOR

Page 4

The second option for improving the processing power of the CPU has to do with
the internal working of the CPU. In the 8085 microprocessor, the CPU could either

fetch or execute at a given time. In other words, the CPU had to fetch an
instruction from memory, then execute it and then fetch again, execute it, and so

on. The idea of pipelining in its simplest form is to allow the CPU to fetch and
execute at the same time as shown in Figure 1-2. It is important to point out that

Figure 1.2 is not meant to imply that the amount of time for fetch and execute are
equal.

Figure (1.2) Pipelined vs. non pipelined Execution

Intel implemented the concept of pipelining in the 8088/86 by splitting the internal
structure of the microprocessor into two sections: the execution unit (EU) and the
bus interface unit (BIU).

These two sections work simultaneously. The BIU accesses memory and

peripherals while the EU executes instructions previously fetched.

This works only if the BIU keeps ahead of the EU; thus the BIU of the 8088/86 has
a buffer, or queue (see Figure 1.1). The buffer is 4 bytes long in the 8088 and 6

bytes in the 8086. If any instruction takes too long to execute, the queue is filled to
its maximum capacity and the buses will sit idle. The BIU fetches a new

instruction whenever the queue has room for 2 bytes in the 6-byte 8086 queue, and
for 1 byte in the 4-byte 8088 queue. In some circumstances, the microprocessor

must flush out the queue. For example, when a jump instruction is executed, the
BIU starts to fetch information from the new location in memory and information
in the queue that was fetched previously is discarded. In this situation the EU must

wait until the BIU fetches the new instruction. This is referred to in computer

Chapter 1: THE 80x86 MICROPROCESSOR

Page 5

science terminology as a branch penalty. In a pipelined CPU, this means that too
much jumping around reduces the efficiency of a program.

Pipelining in the 8088/86 has two stages: fetch and execute, but in more powerful

computers pipelining can have many stages. The concept of pipelining combined
with an increased number of data bus pins has, in recent years, led to the design of

very powerful microprocessors.

 Registers

In the CPU, registers are used to store information temporarily. That information

could be one or two bytes of data to be processed or the address of data. The
registers of the 8088/86 fall into the six categories outlined in Table 1.2.

The general-purpose registers in 8088/86 microprocessors can be accessed as
either 16-bit or 8-bit registers. All other registers can be accessed only as the full

16 bits. In the 8088/86, data types are either 8 or 16 bits. To access 12-bit data, for
example, a 16-bit register must be used with the highest 4 bits set to 0. The bits of

a register are numbered in descending order, as shown below.

Different registers in the 8088/86 are used for different functions, and since some

instructions use only specific registers to perform their tasks, the use of registers
will be described in the context of instructions and their application in a given
program. The first letter of each general register indicates its use. AX is used for

the accumulator, BX as a base addressing register, CX is used as a counter in loop
operations, and DX is used to point to data in I/O operations.

Chapter 1: THE 80x86 MICROPROCESSOR

Page 6

Note:
The general registers can be accessed as the full 16 bits (such as AX), or as the

high byte only (AH) or low byte only (AL).

1.3 Assembly language programming
An Assembly language program consists of, among other things, a series of lines

of Assembly language instructions. An Assembly language instruction consists of a
mnemonic, optionally followed by one or two operands. The operands are the data

items being manipulated, and the mnemonics are the commands to the CPU,
telling it what to do with those items.

We introduce Assembly language programming with two widely used instructions:
the move and add instructions.

MOV instruction
Simply stated, the MOV instruction copies data from one location to another. It
has the following format:

MOV destination, source ; copy source operand to destination

This instruction tells the CPU to move (in reality, copy) the source operand to the
destination operand.

For example, the instruction "MOV DX,CX" copies the contents of register CX to

register DX. After this instruction is executed, register DX will have the same
value as register CX. The MOV instruction does not affect the source operand.

Chapter 1: THE 80x86 MICROPROCESSOR

Page 7

 The following program first loads CL with value 55H, then moves this value
around to various registers inside the CPU.

In the 8086 CPU, data can be moved among all the registers shown in Table (1-2)

(except the flag register) as long as the source and destination registers match in
size. such as "MOV AL,DX" will cause an error, since one cannot move the
contents of a 16-bit register into an 8-bit register. The exception of the flag register

means that there is no such instruction as "MOV FR,AX". Loading the flag register
is done through other means, discussed in later chapters.

If data can be moved among all registers including the segment registers, can

data be moved directly into all registers?

The answer is no. Data can be moved directly into non segment registers only,
using the May instruction. For example, look at the following instructions to see

which are legal and which are illegal.

Chapter 1: THE 80x86 MICROPROCESSOR

Page 8

From the discussion above, note the following three points:

1. Values cannot be loaded directly into any segment register (CS, OS, ES, or SS).
To load a value into a segment register, first load it to a non segment register and

then move it to the segment register, as shown next.

2. If a value less than FFH is moved into a 16-bit register, the rest of the bits are
assumed to be all zeros.

For example, in "MOV BX,5" the result will be BX ~ 0005; that is, BH ~ 00 and

BL ~ 05.

3. Moving a value that is too large into a register will cause an error.

ADD instruction:
The ADD instruction has the following format:

ADD destination, source ; ADD the source operand to the destination

The ADD instruction tells the CPU to add the source and the destination operands

and put the result in the destination. To add two numbers such as 25H and 34H,
each can be moved to a register and then added together

Executing the program above results in AL ~ 59H (25H + 34H ~ 59H) and BL ~

34H. Notice that the contents of BL do not change. The program above can be
written in many ways, depending on the registers used. Another way might be:

Chapter 1: THE 80x86 MICROPROCESSOR

Page 9

The program above results in DH = 59H and CL = 34H. There are always many

ways to write the same program. One question that might come to mind after
looking at the program above is whether it is necessary to move both data items

into registers before adding them together. The answer is no, it is not necessary.

Look at the following variation of the same program:

In the case above, while one register contained one value, the second value
followed the instruction as an operand. This is called an immediate operand. The

examples shown so far for the ADD and MOV instructions show that the source
operand can be either a register or immediate data. In the examples above, the

destination operand has always been a register.

The largest number that an 8-bit register can hold is FFH. To use numbers larger
than FFH (255 decimal), 16-bit registers such as AX, BX, CX, or DX must be

used.

For example, to add two numbers such as 34EH and 6A5H, the following program
can be used:

Running the program above gives DX = 9F3H (34E + 6A5 = 9F3) and AX = 34E.

Again, any 16-bit non segment registers could have been used to perform the
action above:

The general-purpose registers are typically used in arithmetic operations. Register
AX is sometimes referred to as the accumulator.

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
10

1.4 INTRODUCTION TO PROGRAM SEGMENTS
A typical assembly language program consists of at least three segments:
 a code segment, a data segment, and a stack segment.

The code segment contains the Assembly language instructions that perform the

tasks that the program was designed to accomplish. The data segment is used to
store information (data) that needs to to be processed by the instructions in the

code segment. The stack is used to store information temporarily.

Origin and definition of the segment
A segment is an area of memory that includes up to 64K bytes and begins on an

address evenly divisible by 16 (such an address ends in OH). The segment size of
64K bytes came about because the 8085 microprocessor could address a maximum

of 64K bytes of physical memory since it had only 16 pins for the address lines (2
16 = 64K). This limitation was carried into the design of the 8088/86 to ensure

compatibility. Whereas in the 8085 there was only 64K bytes of memory for all
code, data, and stack information, in the 8088/86 there can be up to 64K bytes of
memory assigned to each category. Within an Assembly language program, these

categories are called the code segment, data segment, and stack segment. For this
reason, the 8088/86 can only handle a maximum of 64K bytes of code and 64K

bytes of data and 64K bytes of stack at any given time, although it has a range of 1
Mega byte of memory because of its 20 address pins (2

20
 = 1 megabyte). How to

move this window of 64K bytes to cover all 1 megabyte of memory is discussed
below, after we discuss logical address and physical address

Logical address and physical address
In Intel literature concerning the 8086, there are three types of addresses mentioned
frequently: the physical address, the offset address, and the logical address.

The physical address is the 20-bit address that is actually put on the address pins

of the 8086 microprocessor and decoded by the memory interfacing circuitry. This
address can have a range of 00000H to FFFFFH for the 8086 and real-mode

286,386, and 486 CPUs. This is an actual physical location in RAM or ROM
within the 1 megabyte memory range.
The offset address is a location within a 64K-byte segment range. Therefore, an

offset address can range from 0000H to FFFFH. The logical address consists of a
segment value and an offset address. The differences among these addresses and

the process of converting from one to another are best understood in the context of
some examples, as shown next.

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
11

Code segment

To execute a program, the 8086 fetches the instructions (Op codes and operands)

from the code segment. The logical address of an instruction always consists of a
CS (code segment) and an IP (instruction pointer), shown in CS:IP format. The

physical address for the location of the instruction is generated by shifting the CS
left one hex digit and then adding it to the IP. IP contains the offset address. The

resulting 20-bit address is called the physical address since it is put on the external
physical address bus pins to be decoded by the memory decoding circuitry.

To clarify this important concept, assume values in CS and IP as shown in the

diagram. The offset address is contained in IP; in this case it is 95F3H. The logical
address is CS:IP, or 2500:95F3H. The physical address will be 25000 + 95F3 =

2E5F3H. The physical address of an instruction can be calculated as follows:

The microprocessor will retrieve the instruction from memory locations starting at
2E5F3. Since IP can have a minimum value of0000H and a maximum of FFFFH,
the logical address range in this example is 2500:0000 to 2500: FFFF. This means

that the lowest memory location of the code segment above will be 25000H (25000
+ 0000) and the highest memory location will be 34FFFH (25000 + FFFF).

What happens if the desired instructions are located beyond these two limits?

The answer is that the value of CS must be changed to access those instructions.
See Example 1-1.

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
12

Logical vs. physical address in the code segment
In the code segment, CS and IP hold the logical address of the instructions to be
executed. The following Assembly language instructions have been assembled
(translated into machine code) and stored in memory. The three columns show the

logical address of CS:IP the machine code stored at that address and the
corresponding Assembly language code. This information can easily be generated

by the DEBUG program using the Unassemble command.

The program above shows that the byte at address 1132:0 100 contains BO, which

is the opcode for moving a value into register AL, and address 1132:0101 contains
the operand (in this case 57) to be moved to AL. Therefore, the instruction "MOV

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
13

AL, 57" has a machine code of B057, where BO is the opcode and 57 is the
operand. Similarly, the machine code B686 is located in memory locations

1132:0102 and 1132:0103 and represents the opcode and the operand for the
instruction "MOV DH,86". The physical address is an actual location within RAM

(or even ROM). The following are the physical addresses and the contents of each
location for the program above. Remember that it is the physical address that is put

on the address bus by the 8086 CPU to be decoded by the memory circuitry.

Data segment
Assume that a program is being written to add 5 bytes of data, such as 25H, 12H,
15H, IFH, and2BH, where each byte represents a person's daily overtime pay.

One way to add them is as follows:

In the program above, the data and code are mixed together in the instructions.
The problem with writing the program this way is that if the data changes, the code

must be searched for every place the data is included, and the data retyped. For this
reason, the idea arose to set aside an area of memory strictly for data. In 80x86
microprocessors, the area of memory set aside for data is called the data segment.

Just as the code segment is associated with CS and IP as its segment register and
offset, the data segment uses register DS and an offset value.

The following demonstrates how data can be stored in the data segment and the
program rewritten so that it can be used for any set of data. Assume that the offset

for the data segment begins at 200H. The data is placed in memory locations:

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
14

Notice: The 8086/88 allows only the use of registers BX, SI, and DI as offset
registers for the data segment. In other words, while CS uses only the IP register as

an offset, OS uses only BX, DI, and SI to hold the offset address of the data. The
term pointer is often used for a register holding an offset address. In the following

example, BX is used as a pointer:

The "INC" instruction adds 1 to (increments) it~ operand. "INC BX" achieves the

same result as "ADD BX,I". For the program above, if the offset address where
data is located is changed, only one instruction will need to be modified and the

rest of the program will be unaffected. Examining the program above shows that
there is a pattern of two instructions being repeated. This leads to the idea of using

a loop to repeat certain instructions. Implementing a loop requires familiarity with
the flag register, discussed later in this chapter.

Logical address and physical address in the data segment

The physical address for data is calculated using the same rules as for the code

segment. That is, the physical address of data is calculated by shifting OS left one
hex digit and adding the offset value, as shown in Examples 1-2, 1-3, and 1-4.

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
15

Little endian convention:
Previous examples used 8-bit or 1-byte data. In this case the bytes are stored one
after another in memory. What happens when 16-bit data is used?

For example:

In cases like this, the low byte goes to the low memory location and the high byte
goes to the high memory address. In the example above, memory location OS:

1500 contains F3H and memory location OS: 1501 contains 35H.

This convention is called little endian versus big endian. See Example 1-5.

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
16

Extra segment (ES)
ES is a segment register used as an extra data segment. Although in many normal
programs this segment is not used, its use is absolutely essential for string

operations and is discussed in detail in later chapters.

Memory map of the IBM PC

For a program to be executed on the PC, DOS must first load it into RAM. Where

in RAM will it be loaded?

To answer that question, we must first explain some very important concepts
concerning memory in the Pc. The 20-bit address of the 8088/86 allows a total of 1

megabyte (1024K bytes) of memory space with the address range 00000 - FFFFF.

During the design phase of the first IBM PC, engineers had to decide on the
allocation of the 1-megabyte memory space to various sections of the PC. This

memory allocation is called a memory map. The memory map of the IBM PC is
shown in Figure 1-3. Of this 1 megabyte, 640K bytes from addresses 00000 -
9FFFFH were set aside for RAM. The 128K bytes from AOOOOH to BFFFFH

were allocated for video memory. The remaining 256K bytes from COOOOH to
FFFFFH were set aside for ROM.

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
17

1.5 What is a stack, and why is it needed?
The stack is a section of read/write memory (RAM) used by the CPU to store

information temporarily. The CPU needs this storage area since there are only a
limited number of registers

How stacks are accessed
If the stack is a section of RAM, there must be registers inside the CPU to point to
it. The two main registers used to access the stack are the SS (stack segment)

register and the SP (stack pointer) register. These registers must be loaded before
any instructions accessing the stack are used.

Every register inside the 80x86 (except segment registers and SP) can be stored in
the stack and brought back into the CPU from the stack memory. The storing of a
CPU register in the stack is called a push, and loading the contents of the stack into

the CPU register is called a pop. In other words, a register is pushed onto the stack
to store it and popped off the stack to retrieve it. The job of the SP is very critical

when push and pop are performed.
In the 80x86, the stack pointer register (SP) points at the current memory location

used for the top of the stack and as data is pushed onto the stack it is decremented.
It is incremented as data is popped off the stack into the CPU.

Pushing onto the stack
Notice in Example 1-6 that as each PUSH is executed, the contents of the register
are saved on the stack and SP is decremented by 2. For every byte of data saved on

the stack, SP is decremented once, and since push is saving the contents of a 16-bit
register, it is decremented twice. Notice also how the data is stored on the stack.

In the 80x86, the lower byte is always stored in the memory location with the

lower address. That is the reason that 24H, the contents of AH, is saved in memory
location with address 1235 and AL in location 1234.

Popping the stack
Popping the contents of the stack back into the 80x86 CPU is the opposite process
of pushing. With every pop, the top 2 bytes of the stack are copied to the register

specified by the instruction and the stack pointer is incremented twice. Although
the data actually remains in memory, it is not accessible since the stack pointer is

beyond that point. Example 1-7 demonstrates the POP instruction

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
18

Logical address VS, physical address for the stack:
Now one might ask, what is the exact physical location of the stack?
That depends on the value of the stack segment (SS) register and SP, the stack

pointer. To compute physical addresses for the stack, the same principle is applied
as was used for the code and data segments. The method is to shift left SS and then

add offset SP, the stack pointer register. This is demonstrated in Example 1-8.

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
19

What values are assigned to the SP and SS, and who assigns them?
It is the job of the DOS operating system to assign the values for the SP and SS

since memory management is the responsibility of the operating system. Before
leaving the discussion of the stack, two points must be made.

First, in the 80x 86 literatures, the top of the stack is the last stack location
occupied. This is different from other CPUs.

Second, BP is another register that can be used as an offset into the stack, but it has

very special applications and is widely used to access parameters passed between
Assembly language programs and high-level language programs such as C.

A few more words about segments in the 80x86
Can a single physical address belong to many different logical addresses?

Yes, look at the case of a physical address value of 15020H. There are many
possible logical addresses that represent this single physical address:

This shows the dynamic behavior of the segment and offset concept in the 8086
CPU. One last point that must be clarified is the case when adding the offset to the

shifted segment register results in an address beyond the maximum allowed range
of FFFFFH. In that situation, wrap-around will occur. This is shown in Example 1-

9.

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
20

Overlapping
In calculating the physical address, it is possible that two segments can overlap,

which is desirable in some circumstances. Figure 1-4 illustrates overlapping and
non overlapping segments.

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
21

Flag register
The flag register is a 16-bit register sometimes referred to as the status register.
Although the register is 16 bits wide, only some of the bits are used. The rest are

either undefined or reserved by Intel. Six of the flags are called conditional flags,
meaning that they indicate some condition that resulted after an instruction was

executed. These six are CF, PF, AF, ZF, SF, and OF. The three remaining flags are
sometimes called control flags since they are used to control the operation of

instructions before they are executed. A diagram of the flag register is shown in
Figure 1-5.

Bits of the flag register
Below are listed the bits of the flag register that are used in 80x86 Assembly

language programming. A brief explanation of each bit is given. How these flag
bits are used will be seen in programming examples.

CF, the Carry Flag. This flag is set whenever there is a carry out, either from d7

after an 8-bit operation or from dl5 after a 16-bit data operation.
PF, the Parity Flag. After certain operations, the parity of the result's low-order

byte is checked. If the byte has an even number of 1s, the parity flag is set to 1;
otherwise, it is cleared.
AF, Auxiliary Carry Flag. If there is a carry from d3 to d4 of an operation, this

bit is set; otherwise, it is cleared (set equal to zero). This flag is used by the
instructions that perform BCD (binary coded decimal) arithmetic.
ZF, the Zero Flag. The zero flag is set to 1 if the result of an arithmetic or logical

operation is zero; otherwise, it is cleared.

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
22

SF, the Sign Flag. Binary representation of signed numbers uses the most
significant bit as the sign bit. After arithmetic or logic operations, the status of this

sign bit is copied into the SF, thereby indicating the sign of the result.
TF, the Trap Flag. When this flag is set it allows the program to single-step,

meaning to execute one instruction at a time. Single-stepping is used for debugging
purposes.

IF, Interrupt Enable Flag. This bit is set or cleared to enable or disable only the
external mask able interrupt requests.

DF, the Direction Flag. This bit is used to control the direction of string
operations.

OF, the Overflow Flag. This flag is set whenever the result of a signed number
operation is too large, causing the high-order bit to overflow into the sign bit. In

general, the carry flag is used to detect errors in unsigned arithmetic operations.
The overflow flag is only used to detect errors in signed arithmetic operations.

Flag register and ADD instruction
In this section we examine the impact of the ADD instruction on the flag register
as an example of the use of the flag bits. The flag bits affected by the ADD
instruction are CF (carry flag), PF (parity flag), AF (auxiliary carry flag), ZF (zero

flag), SF (sign flag), and OF (overflow flag).

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
23

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
24

Running the instructions in Example 1-14 in DEBUG will verify that MOV
instructions have no effect on the flag. How these flag bits are used in
programming is discussed in future chapters in the context of many applications .

Use of the zero flag for looping
One of the most widely used applications of the flag register is the use of the zero

flag to implement program loops. The term loop refers to a set of instructions that
is repeated a number of times. For example, to add 5 bytes of data, a counter can

be used to keep track of how many times the loop needs to be repeated. Each time
the addition is performed the counter is decremented and the zero flag is checked.

When the counter becomes zero, the zero flag is set (ZF = I) and the loop is
stopped. The following shows the implementation of the looping concept in the

program, which adds 5 bytes of data. Register CX is used to hold the counter and
BX is the offset pointer (SI or or could have been used instead). AL is initialized

before the start of the loop. In each iteration, ZF is checked by the JNZ instruction.

JNZ stands for "Jump Not Zero" meaning that if ZF = 0, jump to a new address. If

ZF = 1, the jump is not performed and the instruction below the jump will be
executed. Notice that the JNZ instruction must come immediately after the

instruction that decrements CX since JNZ needs to check the affect of "DEC CX"
on the zero flag. If any instruction were placed between them, that instruction

might affect the zero flag.

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
25

1.6 80x86 Addressing Modes

 The CPU can access operands (data) in various ways, called addressing modes.

The number of addressing modes is determined when the microprocessor is
designed and cannot be changed. The 80x86 provides a total of seven distinct

addressing modes:

A. Register addressing mode

The register addressing mode involves the use of registers to hold the data to be

manipulated. Memory is not accessed when this addressing mode is executed;
therefore, it is relatively fast. Examples of register addressing mode follow:

MOV BX, DX ;copy contents of DX into BX

MOV ES, AX ;copy contents of AX into ES

ADD AL, BH ;add the contents of BH to the contents of AL and store in AL

It should be noted that the source and destination registers must match in size. In
other words coding "MOV CL,AX" will give an error, since the source is a 16-bit

register and the destination is an 8-bit register.

B. Immediate addressing mode

In the immediate addressing mode, the source operand is a constant. In immediate

addressing mode, as the name implies, when the instruction is assembled, the
operand comes immediately after the opcode. For this reason, this addressing mode

executes quickly. However, in programming it has limited use. Immediate
addressing mode can be used to load information into any of the registers except

the segment registers and flag registers. Examples:

MOV AX 3F50H ;move 3F50H into AX

MOV CX, 425 ;load decimal value 425 into CX

MOV BL, 40H ;load 40H into BL

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
26

To move information to the segment registers, the data must first be moved to a
general-purpose registers and then to the segment register. Example:

MOV AX,2550H

MOV DS,AX

In other words, the following would produce an error:

MOV DS,0123H ;illegal!!

In the first two addressing modes, the operands are either inside the microprocessor

or tagged along with the instruction. In most programs, the data to be processed is
often in some memory location outside the CPU. There are many ways of

accessing the data in the data segment. The following describes those different
methods.

C. Direct addressing mode

In the direct addressing mode the data is in some memory location(s) and the

address of the data in memory comes immediately after the instruction. Note that
in immediate addressing, the operand itself is provided with the ins truction,

whereas in direct addressing mode, the address of the operand is provided with the
instruction. This address is the offset address and one can calculate the physical

address by shifting left the DS register and adding it to the offset as follows:

MOV DL,[2400] ;move contents of DS:2400H into DL

In this case the physical address is calculated by combining the contents of offset

location 2400 with DS, the data segment register. Notice the bracket around the
address. In the absence of this bracket it will give an error since it is interpreted to

move the value 2400 (l6-bit data) into register DL, an 8-bit register. Example
1-15 gives another example of direct addressing.

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
27

D. Register indirect addressing

In the register indirect addressing mode, the address of the memory location where
the operand resides is held by a register. The registers used for this purpose are SI,

DI, and BX. If these three registers are used as pointers, that is, if they hold the
offset of the memory location, they must be combined with DS in order to generate

the 20-bit physical address. For example:

Notice that BX is in brackets. In the absence of brackets, it is interpreted as an
instruction moving the contents of register BX to AL (which gives an error because

source and destination do not match) instead of the contents of the memory
location whose offset address is in BX. The physical address is calculated by

shifting OS left one hex position and adding BX to it. The same rules apply when
using register SI or Or DI

In the examples above, the data moved is byte sized. Example 1-16 shows 16-bit

operands.

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
28

E. Based relative addressing mode

In the based relative addressing mode, base registers BX and BP, as well as a
displacement value, are used to calculate what is called the effective address. The

default segments used for the calculation of the physical address (PA) are OS for
BX and SS for BP. For example:

Alternative coding's are "MOV CX,[BX+10]" or "MOV CX,10[BX]". Again the
low address contents will go into CL and the high address contents into CH. In the

case of the BP register,

Again, alternative codings are "MOY AL,[BP+5]" or "MOY AL,5[BP]". A brief

mention should be made of the terminology effective address used in Intel
literature. In "MOV AL,[BP]+5", BP+5 is called the effective address since the

fifth byte from the beginning of the offset BP is moved to register AL. Similarly in
"MOV CX,[BX]+10", BX+1O is called the effective address.

F. Indexed relative addressing modes

The indexed relative addressing mode works the same as the based relative

addressing mode, except that registers DI and SI hold the offset address. Examples:

Example 1-17 gives further examples of indexed relative addressing mode.

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
29

G. Based indexed addressing mode

By combining based and indexed addressing modes, a new addressing mode is
derived called the based indexed addressing mode. In this mode, one base register

and one index register are used. Examples:

The coding of the instructions above can vary; for example, the last example could
have been written

In many of the examples above, the MOV instruction was used for the sake of
clarity, even though one can use any instruction as long as that instruction supports

the addressing mode. For example, the instruction "ADD DL,[BX]" would add the
contents of the memory location pointed at by DS:BX to the contents of register

DL.

Segment overrides

Table 1.3 provides a summary of the offset registers that can be used with the four
segment registers of the 80x86. The 80x86 CPU allows the program to override the

default segment and use any segment register. To do that, specify the segment in
the code. For example, in "MOV AL,[BX]", the physical address of the operand to

be moved into AL is DS:BX, as was shown earlier since DS is the default segment
for pointer BX. To override that default, specify the desired segment in the

instruction as "MOV AL,ES:[BX]". Now the address of the operand being moved
to AL is ES:BX instead of DS:BX. Extensive use of all these addressing modes is

Chapter 1: THE 80x86 MICROPROCESSOR

 Page
30

shown in future chapters in the context of program examples. Table 1.4 shows
more examples of segment overrides shown next to the default address in the

absence of the override. Table 1.5 summarizes addressing modes of the 8086/88.

Chapter 2: ASSEMBLY LANGUAGE PROGRAMMING

Page 1

2.1 CONTROL TRANSFER INSTRUCTIONS

In the sequence of instructions to be executed, it is often necessary to transfer
program control to a different location. There are many instructions in the 80x86 to

achieve this. This section covers the control transfer instructions available in the
8086 Assembly language. Before that, however, it is necessary to explain the
concept of FAR and NEAR as it applies to jump and call instructions.

FAR and NEAR

If control is transferred to a memory location within the current code segment, it is

NEAR. This is sometimes called intrasegment (within segment). If control is
transferred outside the current code segment, it is a FAR or intersegment (between

segments) jump. Since the CS:IP registers always point to the address of the next
instruction to be executed, they must be updated when a control transfer instruction

is executed. In a NEAR jump, the IP is updated and CS remains the same, since
control is still inside the current code segment. In a FAR jump, because control is

passing outside the current code segment, both CS and IP have to be updated to the
new values. In other words, in any control transfer instruction such as jump or call,

the IP must be changed, but only in the FAR case is the CS changed, too.

Conditional jumps

Conditional jumps, summarized in Table 2-1, have mnemonics such as JNZ (Jump

not zero) and JC (Jump if carry). In the conditional jump, control is transferred to a
new location if a certain condition is met. The flag register is the one that indicates

the current condition. For example, with "JNZ label", the processor looks at the
zero flag to see if it is raised. If not, the CPU starts to fetch and execute

instructions from the address of the label. If ZF = 1, it will not jump but will
execute the next instruction below the JNZ.

Short jumps

All conditional jumps are short jumps. In a short jump, the address of the target

must be within -128 to + 127 bytes of the IP. In other words, the conditional jump
is a two-byte instruction: one byte is the opcode of the J condition and the second

byte is a value between 00 and FF. An offset range of 00 to FF gives 256 possible
addresses; these are split between backward jumps (to -128) and forward jumps (to

+ 127).
In a jump backward, the second byte is the 2's complement of the displacement

value. To calculate the target address, the second byte is added to the IP of the
instruction after the jump. To understand this, look at the unassembled code below.

Chapter 2: ASSEMBLY LANGUAGE PROGRAMMING

Page 2

The instruction "JNZ AGAIN" was assembled as "JNZ 000D", and 000D is the

address of the instruction with the label AGAIN. The instruction "JNZ 000D" has
the opcode 75 and the target address FA, which is located at offset addresses 0011

and 0012. This is followed by "MOV SUM,AL", which is located beginning at
offset address 0013. The IP value of MOV, 0013, is added to FA to calculate the
address of label AGAIN (0013 + FA = 000D) and the carry is dropped. In reality,

FA is the 2's complement of -6, meaning that the address of the target is -6 bytes
from the lP of the next instruction.

Similarly, the target address for a forward jump is calculated by adding the IP of

the following instruction to the operand. In that case the displacement value is

Chapter 2: ASSEMBLY LANGUAGE PROGRAMMING

Page 3

positive, as shown next. Below is a portion of a list file showing the opcodes for
several conditional jumps.

In the program above, "JB NEXT" has the opcode 72 and the target address 06 and
is located at IP = 000A and 000B. The jump will be 6 bytes from the next

instruction, which is IP = OOOC. Adding gives us OOOCH + 0006H = 0012H,
which is the exact address of the NEXT label. Look also at "JA NEXT", which has

77 and 02 for the opcode and displacement, respectively. The IP of the following
instruction, 0010, is added to 02 to get 0012, the address of the target location.

It must be emphasized that regardless of whether the jump is forward or backward,

for conditional jumps the address of the target address can never be more than -128
to + 127 bytes away from the IP associated with the instruction following the jump

(- for the backward jump and + for the forward jump). If any attempt is made to
violate this rule, the assembler will generate a "relative jump out of range"

message. These conditional jumps are sometimes referred to as SHORT jumps.

Unconditional jumps

"JMP label" is an unconditional jump in which control is transferred

unconditionally to the target location label. The unconditional jump can take the
following forms:

1. SHORT JUMP, which is specified by the format "JMP SHORT label". This is a

jump in which the address of the target location is within -128 to + 127 bytes of
memory relative to the address of the current IP. In this case, the opcode is EB and

the operand is 1 byte in the range 00 to FF. The operand byte is added to the
current IP to calculate the target address. If the jump is backward, the operand is in
2's complement. This is exactly like the J condition case. Coding the directive

"short" makes the jump more efficient in that it will be assembled into a 2-byte
instruction instead of a 3-byte instruction.

Chapter 2: ASSEMBLY LANGUAGE PROGRAMMING

Page 4

2. NEAR JUMP, which is the default, has the format "JMP label". This is a near
jump (within the current code segment) and has the opcode E9. The target address

can be any of the addressing modes of direct, register, register indirect, or memory
indirect:

 (a) Direct JUMP is exactly like the short jump explained earlier, except that the
target address can be anywhere in the segment within the range +32767 to -32768

of the current IP.
 (b) Register indirect JUMP; the target address is in a register. For example, in

"JMP BX", IP takes the value BX.
(c) Memory indirect JMP; the target address is the contents of two memory

locations pointed at by the register. Example: "JMP [DI]" will replace the IP
with the contents of memory locations pointed at by DI and DI+ 1.

3. FAR JUMP which has the format "JMP FAR PTR label". This is a jump out of
the current code segment, meaning that not only the IP but also the CS is replaced

with new values.

CALL statements
Another control transfer instruction is the CALL instruction, which is used to call a

procedure. CALLs to procedures are used to perform tasks that need to be
performed frequently. This makes a program more structured. The target address

could be in the current segment, in which case it will be a NEAR call or outside the
current CS segment, which is a FAR call. To make sure that after execution of the

called subroutine the microprocessor knows where to come back, the
microprocessor automatically saves the address of the instruction following the call

on the stack. It must be noted that in the NEAR call only the IP is saved on the
stack, and in a FAR call both CS and IP are saved. When a subroutine is called,

control is transferred to that subroutine and the processor saves the IP (and CS in
the case of a FAR call) and begins to fetch instructions from the new location.
After finishing execution of the subroutine, for control to be transferred back to the

caller, the last instruction in the called subroutine must be RET (return). In the
same way that the assembler generates different opcode for FAR and NEAR calls,

the opcode for the RET instruction in the case of NEAR and FAR is different, as
well. For NEAR calls, the IP is restored; for FAR calls, both CS and IP are

restored. This will ensure that control is given back to the caller. As an example,
assume that SP = FFFEH and the following code is a portion of the program

unassembled in DEBUG:

Chapter 2: ASSEMBLY LANGUAGE PROGRAMMING

Page 5

Since the CALL instruction is a NEAR call, meaning that it is in the same code
segment (different IP, same CS), only IP is saved on the stack. In this case, the IP

address of the instruction after the call is saved on the stack as shown in Figure 2-
5. That IP will be 0206, which belongs to the "MOV AX,142F" instruction.

The last instruction of the called subroutine must be a RET instruction which

directs the CPU to POP the top 2 bytes of the stack into the IP and resume
executing at offset address 0206. For this reason, the number of PUSH and POP

instructions (which alter the SP) must match. In other words, for every PUSH there
must be a POP.

2.2 Assembly language subroutines
In Assembly language programming it is common to have one main program and
many subroutines to be called from the main program. This allows you to make

each subroutine into a separate module. Each module can be tested separately and
then brought together, as will be shown next chapters. The main program is the

entry point from DOS and is FAR, as explained earlier, but the subroutines called
within the main program can be FAR or NEAR.

Remember that NEAR routines are in the same code segment, while FAR routines

are outside the current code segment. If there is no specific mention of FAR after
the directive PROC, it defaults to NEAR, as shown in Figure 2-6. From now on, all

code segments will be written in that format.

Rules for names in Assembly language

By choosing label names that are meaningful, a programmer can make a program
much easier to read and maintain. There are several rules that names must follow.

First, each label name must be unique. The names used for labels in Assembly

Chapter 2: ASSEMBLY LANGUAGE PROGRAMMING

Page 6

language programming consist of alphabetic letters in both upper and lower case,
the digits 0 through 9, and the special characters question mark (?), period (.), at

(@), underline (_), and dollar sign ($). The first character of the name must be an
alphabetic character or special character. It cannot be a digit. The period can only

be used as the first character, but this is not recommended since later versions of
MASM have several reserved words that begin with a period. Names may be up to

31 characters long.

 Microprocessor lab 1

Lab 1

Inside the CPU

The simple computer model as:

The system bus (shown in yellow) connects the various components of a

computer.

The CPU is the heart of the computer, most of computations occur inside

the CPU.

RAM is a place to where the programs are loaded in order to be executed.

 Microprocessor lab 2

Assembly Language

Assembly language is a low level programming language. An

Assembly language program consists of, among other things, a series of

lines of Assembly language instructions. An Assembly language

instruction consists of a mnemonic, optionally followed by one or two

operands. The operands are the data items being manipulated, and the

mnemonics are the commands to the CPU, telling it what to do with those

items.

Registers

In the CPU, registers are used to store information temporarily.

That information could be one or two bytes of data to be processed or the

address of data.

General purpose registers

The general purpose registers, are used for arithmetic and data

movement. Each register can be addressed as either 16-bit or 8 bit value.

Example, AX register is a 16-bit register, its upper 8-bit is called AH, and

its lower 8-bit is called AL. Bit 0 in AL corresponds to bit 0 in AX and

bit 0 in AH corresponds to bit 8 in AX.

 AX - the accumulator register (divided into AH / AL).

 BX - the base address register (divided into BH / BL).

 CX – the counter register (divided into CH / CL).

 DX - the data register (divided into DH / DL).

 Microprocessor lab 3

Each general purpose register has special attributes:

1- AX (Accumulator): AX is the accumulator register because it is

favored by the CPU for arithmetic operations. Other operations are also

slightly more efficient when performed using AX.

2- BX (Base): the BX register can hold the address of a procedure or

variable. Three other registers with this ability are SI, DI and BP. The

BX register can also perform arithmetic and data movement.

3- CX (Counter): the CX register acts as a counter for repeating or

looping instructions. These instructions automatically repeat and

decrement CX.

4- DX (Data): the DX register has a special role in multiply and divide

operation. When multiplying for example DX hold the high 16 bit of the

product.

 Microprocessor lab 4

Lab 2

Instructions

MOV instruction

Simply stated, the MOV instruction copies data from one location

to another. It has the following format:

MOV destination, source ;copy source operand to destination

This instruction tells the CPU to move (in reality, copy) the source

operand to the destination operand. For example, the instruction "MOV

DX,CX" copies the contents of register CX to register DX. After this

instruction is executed, register DX will have the same value as register

CX. The MOV instruction does not affect the source operand.

These types of operands are supported:

MOV REG, memory

MOV memory, REG

MOV REG, REG

MOV memory, immediate

MOV REG, immediate

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP,

SP.

memory: [BX], [BX+SI+7], variable, etc...

immediate: 5, -24, 3Fh, 10001101b, etc...

Example:

MOV AX,2345H ;Ioad 2345H into AX

MOV DS,AX ;then load the value of AX into DS

ADD instruction

The ADD instruction has the following format:

ADD destination, source ;ADD the source operand to the destination

The ADD instruction tells the CPU to add the source and the

destination operands and put the result in the destination.

 Microprocessor lab 5

operand1 = operand1 + operand2

These types of operands are supported:

ADD REG, memory

ADD memory, REG

ADD REG, REG

ADD memory, immediate

ADD REG, immediate

Example:

MOV AL, 5 ; AL = 5

ADD AL, -3 ; AL = 2

RET

INT instruction

Interrupts can be seen as a number of functions. These functions

make the programming much easier.

To make a software interrupt there is an INT instruction, it has very

simple syntax:

INT value

Where value can be a number between 0 to 255 (or 0 to 0FFh),

Each interrupt may have sub-functions.

To specify a sub-function AH register should be set before calling

interrupt.

Each interrupt may have up to 256 sub-functions (so we get 256 * 256 =

65536 functions). In general AH register is used, but sometimes other

registers maybe in use. Generally other registers are used to pass

parameters and data to sub-function.

These types of operands are supported:

INT immediate byte

Example:

MOV AH, 0Eh ; teletype.

MOV AL, 'A'

INT 10h ; BIOS interrupt.

RET

 Microprocessor lab 6

Eum8086

 Microprocessor lab 7

Lab 3

Assembly language instructions and pseudo-Instructions

An Assembly language program is composed of a series of

statements that are either instructions or pseudo-instructions, also called

directives, Instructions are translated by the assembler into machine code.

Pseudo-instructions are not translated into machine code; They direct the

assembler in how to translate the instructions into machine code, The

statements of an Assembly language program are grouped into segments.

Directives do not generate any machine code and are used only by

the assembler as opposed to instructions, which are translated into

machine code for the CPU to execute. In the below figure the commands

DB, END, and ENDP are examples of directives.

Notes:

 A given Assembly language program is a series of statements, or

lines, which are either Assembly language instructions such as

ADD and MOV, or statements called directives. Directives (also

called pseudo-instructions) give directions to the assembler about

how it should translate the Assembly language instructions into

machine code.

 Microprocessor lab 8

 What is the purpose of pseudo-instructions? Pseudo-instructions

direct the assembler as to how to assemble the program.

 Instructions are translated by the assembler into machine code,

whereas pseudo-instructions or directives are not.

Identify the segments of an Assembly language program

An Assembly language instruction consists of four fields:

[label:] mnemonic [operands] [;comment]

In Assembly language statements such as

ADD AL,BL

MOV AX,6764

ADD and MOV are the mnemonic opcodes and "AL,BL" and

"AX,6764" are the operands. Instead of a mnemonic and operand, these

two fields could contain assembler pseudo-instructions, or directives.

Code simple Assembly language instructions

Code control transfer instructions

In the sequence of instructions to be executed, it is often necessary

to transfer program control to a different location. There are many

instructions in the 8086 to achieve this.

FAR and NEAR

If control is transferred to a memory location within the current

code segment, it is NEAR. This is sometimes called intrasegment (within

segment). If control is transferred outside the current code segment, it is a

FAR or intersegment(between segments) jump.

 Microprocessor lab 9

Conditional jumps

Conditional jumps, have mnemonics such as JNZ Gump not zero)

and JC Gump if carry). In the conditional jump, control is transferred to a

new location if a certain condition is met.

 Microprocessor lab 10

Lab 4

Numbering Systems

Decimal System

Most people today use decimal representation to count. In the

decimal system there are 10 digits:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

These digits can represent any value, for example:

754.

The value is formed by the sum of each digit, multiplied by the

base (in this case it is 10 because there are 10 digits in decimal system) in

power of digit position (counting from zero):

Position of each digit is very important! for example if you place

"7" to the end:

547

it will be another value:

Important note: any number in power of zero is 1, even zero in power of

zero is 1:

Binary System

Computers are not as smart as humans are, it's easy to make an

electronic machine with two states: on and off, or 1 and 0.

 Microprocessor lab 11

Computers use binary system, binary system uses 2 digits:

0, 1

And thus the base is 2.

Each digit in a binary number is called a BIT, 4 bits form a

NIBBLE, 8 bits form a BYTE, two bytes form a WORD, two words

form a DOUBLE WORD (rarely used):

There is a convention to add "b" in the end of a binary number,

this way we can determine that 101b is a binary number with decimal

value of 5.

The binary number 10100101b equals to decimal value of 165:

Octal System

Octal System uses 8 digits:

0, 1, 2, 3, 4, 5, 6, 7

And thus the base is 8.

Octal numbers are compact and easy to read. It is very easy to

convert numbers from binary system to Octal system and vice-versa,

every 3 bits can be converted to a Octal digit using this table:

 Microprocessor lab 12

Decimal

(base 10)

Binary

(base 2)

Octal

(base 8)

0 000 0

1 001 1

2 010 2

3 011 3

4 100 4

5 101 5

6 110 6

7 111 7

Hexadecimal System

Hexadecimal System uses 16 digits:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

And thus the base is 16.

Hexadecimal numbers are compact and easy to read. It is very easy

to convert numbers from binary system to hexadecimal system and vice-

versa, every nibble (4 bits) can be converted to a hexadecimal digit using

this table:

Decimal

(base 10)

Binary

(base 2)

Hexadecimal

(base 16)

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

 Microprocessor lab 13

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

There is a convention to add "h" in the end of a hexadecimal

number, this way we can determine that 5Fh is a hexadecimal number

with decimal value of 95.

We also add "0" (zero) in the beginning of hexadecimal numbers

that begin with a letter (A..F), for example 0E120h.

The hexadecimal number 1234h is equal to decimal value of 4660:

 Microprocessor lab 14

Lab 5

Numbering Systems (2)

Converting from Decimal System to Any Other

In order to convert from decimal system, to any other system, it is

required to divide the decimal value by the base of the desired system,

each time you should remember the result and keep the remainder, the

divide process continues until the result is zero.

The remainders are then used to represent a value in that system.

Let's convert the value of 39 (base 10) to Hexadecimal System (base 16):

As you see we got this hexadecimal number: 27h.

All remainders were below 10 in the above example, so we do not use

any letters.

Here is another more complex example:

let's convert decimal number 43868 to hexadecimal form:

 Microprocessor lab 15

The result is 0AB5Ch, we are using the table to convert remainders

over 9 to corresponding letters.

Using the same principle we can convert to binary form (using 2 as

the divider), or convert to hexadecimal number, and then convert it to

binary number using the table:

As you see we got this binary number: 1010101101011100b

Signed Numbers

There is no way to say for sure whether the hexadecimal byte

0FFh is positive or negative, it can represent both decimal value "255"

and "- 1".

8 bits can be used to create 256 combinations (including zero), so

we simply presume that first 128 combinations (0..127) will represent

positive numbers and next 128 combinations (128..256) will represent

negative numbers.

In order to get "- 5", we should subtract 5 from the number of

combinations (256), so it we'll get: 256 - 5 = 251.

Using this complex way to represent negative numbers has some

meaning, in math when you add "- 5" to "5" you should get zero.

This is what happens when processor adds two bytes 5 and 251, the result

gets over 255, because of the overflow processor gets zero!

When combinations 128..256 are used the high bit is always 1, so

this maybe used to determine the sign of a number.

 Microprocessor lab 16

The same principle is used for words (16 bit values), 16 bits create

65536 combinations, first 32768 combinations (0..32767) are used to

represent positive numbers, and next 32768 combinations (32767..65535)

represent negative numbers.

 Microprocessor lab 17

Lab 6

Data Types in Assembly Language

In this lab, you will learn how to deal with the types of data.

 Integer

-5,0,4,100

 Character

'A','b','2','#'

 String

'Hello, World'

Variables

Variable is a memory location. For a programmer it is much easier

to have some value be kept in a variable named "var1" then at the address

5A73:235B, especially when you have 10 or more variables.

Our compiler supports two types of variables: BYTE and WORD.

name DB value

name DW value

DB - stays for Define Byte.

DW - stays for Define Word.

name - can be any letter or digit combination, though it should start with

a letter. It's possible to declare unnamed variables by not specifying the

name (this variable will have an address but no name).

value - can be any numeric value in any supported numbering system

(hexadecimal, binary, or decimal), or "?" symbol for variables that are not

initialized.

ORG 100h

MOV AL, var1

MOV BX, var2

RET ; stops the program.

var1DB 7

var2 DW 1234h

 Microprocessor lab 18

Arrays

Arrays can be seen as chains of variables. A text string is an example of a

byte array, each character is presented as an ASCII code value (0..255).

Here are some array definition examples:

a DB 48h, 65h, 6Ch, 6Ch, 6Fh, 00h

b DB 'Hello', 0

b is an exact copy of the a array, when compiler sees a string inside

quotes it automatically converts it to set of bytes. This chart shows a part

of the memory where these arrays are declared:

you can access the value of any element in array using square brackets,

for example:

MOV AL, a[3]

You can also use any of the memory index registers BX, SI, DI, BP, for

example:

MOV SI, 3

MOV AL, a[SI]

If you need to declare a large array you can use DUP operator.

The syntax for DUP:

number DUP (value(s))

number - number of duplicate to make (any constant value).

value - expression that DUP will duplicate.

for example:

c DB 5 DUP(9)

is an alternative way of declaring:

c DB 9, 9, 9, 9, 9

one more example:

 Microprocessor lab 19

d DB 5 DUP(1, 2)

is an alternative way of declaring:

d DB 1, 2, 1, 2, 1, 2, 1, 2, 1, 2

Constants

Constants are just like variables, but they exist only until your program is

compiled (assembled). After definition of a constant its value cannot be

changed. To define constants EQU directive is used:

name EQU < any expression >

For example:

k EQU 5

MOV AX, k

The above example is functionally identical to code:

MOV AX, 5

You can view variables while your program executes by selecting

"Variables" from the "View" menu of emulator.

To view arrays you should click on a variable and set Elements property

to array size.

In assembly language there are not strict data types, so any variable can

be presented as an array.

 Microprocessor lab 20

Lab 7

Notes

Note:

The Numbering system have:

Loop instruction

Decrease CX, jump to label if CX not zero.

Algorithm:

 CX = CX - 1

 if CX <> 0 then

o jump

else

o no jump, continue

Example:

ORG 100h

 MOV CX, 5

label1: PRINTN 'loop!'

 LOOP label1

RET

Numbering system Stat Example

decimal without any letters 12

hexadecimal h 0ch

octal O 14O

binary b 1100b

when start as character use 0 in start 0ch

0 writ 0 only 0

 Microprocessor lab 21

Previous labs programs in assembly language

Write an assembly language program that put number 5 in Registrar

AX?

org 100h

 MOV AX,5 ;Copy 5 to AX.

Ret

Write an assembly language program that calculates the sum of two

numbers, such as: 5 +6?

org 100h

 MOV AX,5 ;Copy 5 to AX.

 ADD AX,6 ;Such as AX=AX+6.

ret

Assembly language program to find summation 1 ten times?

org 100h

 MOV AX,0000

 MOV CX,10

aa: ADD AX,1

 loop aa

ret

Do in Assembly language program: AX  0ah

 BX  5h

org 100h

 MOV AX,0ah

 MOV BX,5h

ret

Assembly language program to find summation the numbers from 1

to 10?

org 100h

 MOV AX,0000

 MOV CX,10

aa: ADD AX,CX

 loop aa

ret

 Microprocessor lab 22

Do in Assembly language program: AX  11 in decimal

 BX  11 in binary

 CX  11 in octal

 DX 11 in hexadecimal

org 100h

 MOV AX,11 ;decimal

 MOV BX,01011B ;binary

 MOV CX,13O ;octal

 MOV DX,0BH ;hexadecimal

ret

Explains four fields of assembly language?

org 100h

;My Program

CC: MOV AX,5H ;Put 5 in AX.

ret

Write an assembly language program that calculates the multiplying

two numbers, such as 5 * 6 using instructions (MOV, ADD, LOOP)

only?

org 100h

 MOV AX,0000

 MOV CX,5

 MOV BX,6

cc: ADD AX,BX

 loop cc

ret

Print the letter 'A' on the screen?
org 100h

MOV AL,'A'

MOV AH,0Eh

INT 10h

ret

Print the letter 'E' on the screen Ten times?

 Microprocessor lab 23

org 100h

MOV AL,'E'

MOV CX,10

MOV AH,0Eh

PP: INT 10h

LOOP PP

ret

Write program prints letters in a sequence on the screen?

ABC…XYZ

org 100h

MOV AL,65 ;the ascii code of 'A'

MOV CX,26 ;number of letters

MOV AH,0Eh

PP: INT 10h

ADD AL,1

LOOP PP

Ret

 Microprocessor lab 24

Lab 8

Registers of the 80x86 Microprocessor

The 80x86 family, like other processors, has both general and special

purpose registers available to the assembly language programmer.

These registers can be loosely classified into Data Registers, Address

Registers, and Status Registers.

8-bit Registers

o AH, AL, BH, BL, CH, CL, DH, DL

o Any of these registers can be used as an 8-bit operand.

16-bit Registers

o AX, BX, CX, DX, SI, DI, SP, BP

o Any of these registers can be used as a 16-bit operand.

General Data Registers

Special Register Functions

 AX - Accumulator register

o Generates shortest machine code

o Arithmetic, logic and data transfer

o One number must be in AL or AX

o Multiplication & Division

o Input & Output

 BX - Base Register Addressing (Pointer)

 CX - Counter Register

o Iterative code segments using the LOOP instruction

o Repetitive operations on strings with the REP command

 Microprocessor lab 25

o Count (in CL) of bits to shift and rotate

 DX - Data Register (Arithmetic)

o DX:AX concatenated into 32-bit register for some MUL and

DIV operations

o Specifying ports in some IN and OUT operations

Segmentation and Segment Registers

 8086 Address Space

o The 8086 processor has a 20-bit physical address to directly

address 1M byte of memory

o Word size is only 16 bits

o 20-bit address is splitted in 16-bit segment address and 16-

bit offset address

o Segment address shifted four bits to the left and added to the

offset value to generate a 20-bit effective address

o Effective address is expressed as a 5 digit hex value (00000h

to FFFFFh)

 Memory Segments

o A segment is a block of 64K consecutive memory bytes

o Segments are identified by segment numbers 0 - FFFFh

o A 16 byte block makes up a paragraph

o Segments always start on paragraph boundaries

o Least significant nibble of segment address will always be 0

 Segment Registers - CS, DS, SS, ES

o Always point to low address end of segment

o CS - Code Segment Register - points to a segment

containing code

o DS - Data Segment Register - points to a segment

containing data

o SS - Stack Segment Register - points to a segment

containing stack

o ES - Extra Segment register - points to a segment containing

data

Pointer and Index Registers - SP, BP, SI, DI

 SP - Stack Pointer

o Always points to top item on the stack

 Microprocessor lab 26

o Offset address relative to SS

o Always points to word (byte at even address)

o An empty stack will had SP = FFFEh

 BP - Base pointer

o Primarily used to access parameters passed via the stack

o Offset address relative to SS

 SI - Source Index

o Can be used for pointer addressing of data

o Used as source in some string processing instructions

o Offset address relative to DS

 DI - Destination Index

o Can be used for pointer addressing of data

o Used as destination in some string processing instructions

o Offset address relative to ES

 IP - Instruction Pointer

o Always points to next instruction to be executed

o Offset address relative to CS

Flag Register

o Status is indicated with individual bits:

 0 - CF - Carry Flag

 2 - PF - Parity Flag

 4 - AF - Auxiliary carry Flag

 6 - ZF - Zero Flag

 7 - SF - Sign Flag

 8 - TF - Trap Flag

 9 - IF - Interrupt Flag

 10 - DF - Direction Flag

 11 - OF - Overflow Flag

o Flag bits are set by instructions

o Flag bits are basis of conditional jump instructions

 Microprocessor lab 27

Write program summation two numbers in the two variables.

org 100h

MOV AL,VAR1

ADD AL,VAR2

ret

VAR1 DB 5

VAR2 DB 6

Write program summation the numbers in the array: (2,4,6,8,10).

org 100h

MOV CX,5

MOV SI,0

MOV AL,0

AA: ADD AL,a[SI]

ADD SI,1

LOOP AA

ret

a DB 2,4,6,8,10

Write program that add 2 to all the elements of the array:

(2,4,6,8,10). Definition number 2 a constant.

org 100h

MOV CX,5

MOV SI,0

AA: ADD a[SI],c

ADD SI,1

LOOP AA

MOV BL,a[0]

ret

a DB 2,4,6,8,10

c EQU 2

