

DATABASE MANAGEMENT SYSTEMS
LECTURE NOTES

2rd Class, CS Dept.

1st Semester

UNIT-ONE

Introduction to Database Management System
As the name suggests, the database management system consists of two parts. They are:

1. Database and

2. Management System

What is a Database?

To find out what database is, we have to start from data, which is the basic building block of any

DBMS.

 Data: Facts, figures, statistics etc. having no particular meaning (e.g. 01, ABC, 19 etc).

 Record: Collection of related data items, e.g. in the above example the three data items had no

meaning. However, if we organize them in the following way, then they collectively represent

meaningful information.

Roll Name Age

01 ABC 19

 Table or Relation: Collection of related records.

Roll Name Age

01 ABC 19

02 DEF 22

03 XYZ 28

 The columns of this relation are called Fields, Attributes or Domains.

 The rows are called Tuples or Records.

 Database: Collection of related relations.

 Consider the following collection of tables:

T1

Roll Name Age

01 ABC 19

02 DEF 22

03 XYZ 28

T3

Roll Year

01 I

02 II

03 I

T2

Roll Address

01 KOL

02 DEL

03 MUM

We now have a collection of four tables. They can be called a “related collection” because we can

clearly find out that there are some common attributes existing in a selected pair of tables. Because

of these common attributes, we may combine the data of two or more tables together to find out the

complete details of a student.

Questions like “Which hostel does the youngest student live in?” can be answered now, although

Age and Hostel attributes are in different tables.

A database in a DBMS could be viewed by lots of different people with different responsibilities.

Figure 1.1: Employees are accessing Data through DBMS

For example, within a company there are different departments, as well as customers, who each need

to see different kinds of data. Each employee in the company will have different levels of access to

the database with their own customized front-end application.

In a database, data is organized strictly in row and column format. The rows are called Tuple or

Record.

The data items within one row may belong to different data types.

T4

Year Hostel

I H1

II H2

On the other hand, the columns are often called Domain or Attribute. All the data items within a

single attribute are of the same data type.

What is Management System?

 A database-management system (DBMS) is a collection of interrelated data and a set of

programs to access those data. This is a collection of related data with an implicit meaning and

hence is a database. The collection of data, usually referred to as the database, contains

information relevant to an enterprise.

 The primary goal of a DBMS is to provide a way to store and retrieve database information that

is both convenient and efficient. By data, we mean known facts that can be recorded and that have

implicit meaning.

The management system is important, why? Because without the existence of some kind of rules and

regulations it is not possible to maintain the database. We have to select the particular attributes, which

should be included in a particular table; the common attributes to create relationship between two

tables; if a new record has to be inserted or deleted then which tables should have to be handled etc.

These issues must be resolved by having some kind of rules to follow in order to maintain the integrity

of the database.

 Database systems are designed to manage large bodies of information.

 Management of data involves both defining structures for storage of information and providing

mechanisms for the manipulation of information.

In addition, the database system must ensure the safety of the information stored, despite system

crashes or attempts at unauthorized access. If data are to be shared among several users, the system

must avoid possible anomalous results.

Because information is so important in most organizations, computer scientists have developed a large

body of concepts and techniques for managing data. This chapter briefly introduces the principles of

database systems.

Database Management System (DBMS) and Its Applications:

A Database management system is a computerized record-keeping system. It is a repository or a

container for collection of computerized data files. The overall purpose of DBMS is to allow the users

to define, store, retrieve and update the information contained in the database on demand. Information

can be anything that is of significance to an individual or organization.

Databases touch all aspects of our lives. Some of the major areas of application are as follows:

1. Banking

2. Airlines

3. Universities

4. Manufacturing and selling

5. Human resources

 Enterprise Information

◦ Sales: For customer, product, and purchase information.

◦ Accounting: For payments, receipts, account balances, assets and other accounting information.

◦ Human resources: For information about employees, salaries, payroll taxes, and benefits, and for

generation of paychecks.

◦ Manufacturing: For management of the supply chain and for tracking production of items in factories,

inventories of items in warehouses and stores, and orders for items.

◦ Online retailers: For sales data noted above plus online order tracking, generation of recommendation

lists, and maintenance of online product evaluations.

 Banking and Finance

◦ Banking: For customer information, accounts, loans, and banking transactions.

◦ Credit card transactions: For purchases on credit cards and generation of monthly statements.

 Finance

◦ For storing information about holdings, sales, and purchases of financial instruments such as stocks

and bonds; also for storing real-time market data to enable online trading by customers and automated

trading by the firm.

 Universities

◦ For student information, course registrations, and grades (in addition to standard enterprise

information such as human resources and accounting).

 Airlines

◦ For reservations and schedule information. Airlines were among the first to use databases in a

geographically distributed manner.

 Telecommunication

◦ For keeping records of calls made, generating monthly bills, maintaining balances on prepaid calling

cards, and storing information about the communication networks.

Purpose of Database Systems:

Database systems arose in response to early methods of computerized management of commercial

data. As an example of such methods, typical of the 1960s, consider part of a university organization

that, among other data, keeps information about all instructors, students, departments, and course

offerings. One way to keep the information on a computer is to store it in operating system files. To

allow users to manipulate the information, the system has a number of application programs that

manipulate the files, including programs to:

 Add new students, instructors, and courses

 Register students for courses and generate class rosters

 Assign grades to students, compute grade point averages (GPA), and generate transcripts

 LECTURE TWO -DBMS

 Page | 1

When Processed When Processed
KNOWLEDGE

INFORMATION

DATA

INTRODUCTION TO BASIC CONCEPTS OF DATABASE SYSTEMS Cont.

What is Data?

The raw facts are called as data. The word “raw” indicates that they have not been processed.

For example, 89 is the data.

What is information?

The processed data is known as information.

For example, Marks: 89; then it becomes information.

What is Knowledge?

1. Knowledge refers to the practical use of information.

2. Knowledge necessarily involves a personal experience.

DATA/INFORMATION PROCESSING:

The process of converting the data (raw facts) into meaningful information is called as

data/information processing.

Note: In business, processing knowledge is more useful to make decisions for any organization.

DIFFERENCE BETWEEN DATAAND INFORMATION:

DATA INFORMATION

a) Raw facts. a) Processed data

b) It is in unorganized form b) It is in organized form

c) Data doesn’t help in Decision
making process

c) Information helps in Decision
making process

FILE ORIENTED APPROACH:

The earliest business computer systems were used to process business records and produce

information. They were generally faster and more accurate than equivalent manual systems.

These systems stored groups of records in separate files, and so they were called file processing

systems.

 LECTURE TWO -DBMS

 Page | 2

1. File system is a collection of data. Any management with the file system, user has to write

the procedures.

2. File system gives the details of the data representation and Storage of data.

3. In File, system storing and retrieving of data cannot be done efficiently.

4. Concurrent access to the data in the file system has many problems like a Reading the file

while other deleting some information, updating some information.

5. File system does not provide crash recovery mechanism.

For example, while we are entering some data into the file if System crashes then content

of the file is completely lost.

6. Protecting a file under file system is very difficult.

The typical file-oriented system is supported by a conventional operating system. Permanent

records are stored in various files and a number of different application programs are written to

extract records from and add records to the appropriate files.

DISADVANTAGES OF FILE-ORIENTED SYSTEM:

The following are the disadvantages of File-Oriented System:

1. Data Redundancy and Inconsistency:

Since files and application programs are created by different programmers over a long

period, the files are likely to be:

a) Having different formats and the programs may be written in several programming

languages.

b) Moreover, the same piece of information may be duplicated in several places.

 This redundancy leads to:

 Higher storage and access cost.

 In addition, it may lead to data inconsistency.

2. Difficulty in Accessing Data:

The conventional file processing environments do not allow needed data to be retrieved in a

convenient and efficient manner. Better data retrieval system must be developed for general

use.

 LECTURE TWO -DBMS

 Page | 3

3. Data Isolation:

Since data is scattered in various files, and files may be in different formats, it is difficult to

write new application programs to retrieve the appropriate data.

4. Concurrent Access Anomalies:

In order to improve the overall performance of the system and obtain a faster response time,

many systems allow multiple users to update the data simultaneously. In such an

environment, interaction of concurrent updates may result in inconsistent data.

5. Security Problems:

Not every user of the database system should be able to access all the data. For example, in

banking system, payroll personnel need only that part of the database that has information

about various bank employees. They do not need access to information about customer

accounts. It is difficult to enforce such security constraints.

6. Integrity Problems:

The data values stored in the database must satisfy certain types of consistency constraints.

For example, the balance of a bank account may never fall below a prescribed amount.

These constraints are enforced in the system by adding appropriate code in the various

application programs. When new constraints are added, it is difficult to change the

programs to enforce them. The problem is compounded when constraints involve several

data items for different files.

7. Atomicity Problem:

A computer system like any other mechanical or electrical device is subject to failure. In

many applications, it is crucial to ensure that once a failure has occurred and has been

detected, the data are restored to the consistent state existed prior to the failure.

Example:

Consider part of a savings-bank enterprise that keeps information about all customers and

savings accounts. One way to keep the information on a computer is to store it in operating

system files. To allow users to manipulate the information, the system has a number of

application programs that manipulate the files, including:

 LECTURE TWO -DBMS

 Page | 4

 A program to debit or credit an account

 A program to add a new account

 A program to find the balance of an account

 A program to generate monthly statements

Programmers wrote these application programs to meet the needs of the bank. New application

programs are added to the system as the need arises. For example, suppose that the savings bank

decides to offer checking accounts.

As a result, the bank creates new permanent files that contain information about all the checking

accounts maintained in the bank, and it may have to write new application programs to deal with

situations that do not arise in savings accounts, such as overdrafts. Thus, as time goes by, the

system acquires more files and more application programs.

The system stores permanent records in various files, and it needs different Application programs

to extract records from, and add records to, the appropriate files. Before database management

systems (DBMS) came along, organizations usually stored information in such systems.

Organizational information in a file- processing system has a number of major disadvantages:

1. Data Redundancy and Inconsistency:

The address and telephone number of a particular customer may appear in a file that

consists of savings-account records and in a file that consists of checking-account records.

This redundancy leads to higher storage and access cost. In, it may lead to data

inconsistency; that is, the various copies of the same data may no longer agree. For

example, a changed customer address may be reflected in savings-account records but not

elsewhere in the system.

2. Difficulty in Accessing Data:

Suppose that one of the bank officers needs to find out the names of all customers who live

within a particular postal-code area. The officer asks the data-processing department to

generate such a list. Because there is no application program to generate that. The bank

officer has now two choices: either obtain the list of all customers and extract the needed

information manually or ask a system programmer to write the necessary application

program. Both alternatives are obviously unsatisfactory.

 LECTURE TWO -DBMS

 Page | 5

3. Data Isolation:

Because data are scattered in various files and files may be in different formats, writing new

application programs to retrieve the appropriate data is difficult.

4. Integrity Problems:

The balance of a bank account may never fall below a prescribed amount (say, $25).

Developers enforce these constraints in the system by adding appropriate code in the

various application programs. However, when new constraints are added, it is difficult to

change the programs to enforce them. The problem is compounded when constraints

involve several data items from different files.

5. Atomicity Problems:

A computer system, like any other mechanical or electrical device, is subject to failure. In

many applications, it is important that, if a failure occurs, the data be restored to the

consistent state that existed prior to the failure.

Consider a program to transfer $50 from account A to account B. If a system failure occurs

during the execution of the program, it is possible that the $50 was removed from account A

but was not credited to account B, resulting in an inconsistent database state. Clearly, it is

essential to database consistency that either both the credit and debit occur, or that neither

occur. That is, the funds transfer must be atomic—it must happen in its entirety or not at

all. It is difficult to ensure atomicity in a conventional file-processing system.

6. Concurrent-Access Anomalies:

For the sake of overall performance of the system and faster response, many systems allow

multiple users to update the data simultaneously. In such an environment, interaction of

concurrent updates may result in inconsistent data.

Consider bank account A, containing $500. If two customers withdraw funds (say $50 and

$100 respectively) from account A at about the same time, the result of the concurrent

executions may leave the account in an incorrect (or inconsistent) state. Suppose that the

programs executing on behalf of each withdrawal read the old balance, reduce that value by

the amount being withdrawn, and write the result back. If the two programs run

concurrently, they may both read the value $500, and write back $450 and $400,

respectively. Depending on which one writes the value last, the account may contain $450

or $400, rather than the correct value of $350. To guard against this possibility, the system

must maintain some form of supervision. However, supervision is difficult to provide

 LECTURE TWO -DBMS

 Page | 6

because data may be accessed by many different application programs that have not been

coordinated previously.

7. Security Problems:

Not every user of the database system should be able to access all the data. For example, in

a banking system, payroll personnel need to see only that part of the database that has

information about the various bank employees. They do not need access to information

about customer accounts. But, since application programs are added to the system in an ad

hoc manner, enforcing such security constraints is difficult. These difficulties, among

others, prompted the development of database systems.

1
 LECTURE Three -DBMS

1 | P a g e

History of Database Systems:

1950s and early 1960s:

 Magnetic tapes were developed for data storage

 Data processing tasks such as payroll were automated, with data stored on tapes.

 Data could also be input from punched card decks, and output to printers.

 Late 1960s and 1970s: The use of hard disks in the late 1960s changed the scenario for data

processing greatly, since hard disks allowed direct access to data.

 With disks, network and hierarchical databases could be created that allowed data structures

such as lists and trees to be stored on disk. Programmers could construct and manipulate these

data structures.

 With disks, network and hierarchical databases could be created that allowed data structures

such as lists and trees to be stored on disk. Programmers could construct and manipulate these

data structures.

 In the 1970’s the EF CODD defined the Relational Model.

In the 1980’s:

 Initial commercial relational database systems, such as IBM DB2, Oracle, Ingress, and DEC

Rdb, played a major role in advancing techniques for efficient processing of declarative

queries.

 In the early 1980s, relational databases had become competitive with network and hierarchical

database systems even in the area of performance.

 The 1980s also saw much research on parallel and distributed databases, as well as initial

work on object-oriented databases.

Early 1990s:

 The SQL language was designed primarily in the 1990’s.

 And this is used for the transaction processing applications.

 Decision support and querying re-emerged as a major application area for databases.

 Database vendors also began to add object-relational support to their databases.

2
 LECTURE Three -DBMS

2 | P a g e

Late 1990s:

 The major event was the explosive growth of the World Wide Web.

 Databases were deployed much more extensively than ever before. Database systems now had

to support very high transaction processing rates, as well as very high reliability and 24 * 7

availability (availability 24 hours a day, 7 days a week, meaning no downtime for scheduled

maintenance activities).

 Database systems also had to support Web interfaces to data.

The Evolution of Database systems:

The Evolution of Database systems are as follows:

1. File Management System

2. Hierarchical database System

3. Network Database System

4. Relational Database System

1) File Management System:

The file management system also called as FMS in short is one in which all data is stored on a

single large file. The main disadvantage in this system is searching a record or data takes a long

time. This lead to the introduction of the concept, of indexing in this system. Then also the FMS

system had lot of drawbacks to name a few like updating or modifications to the data cannot be

handled easily, sorting the records took long time and so on. All these drawbacks led to the

introduction of the Hierarchical Database System.

2) Hierarchical Database System:

Fig: Hierarchical Database System

The previous system FMS drawback of accessing records and sorting records which took a long

3
 LECTURE Three -DBMS

3 | P a g e

time was removed in this by the introduction of parent-child relationship between records in

database. The origin of the data is called the root from which several branches have data at

different levels and the last level is called the leaf. The main drawback in this was if there is any

modification or addition made to the structure then the whole structure needed alteration, which

made the task a tedious one. In order to avoid this next system took its origin, which is called as

the Network Database System.

3) Network Database System:

In this, the main concept of many-many relationships got introduced. But this also followed the

same technology of pointers to define relationships with a difference in this made in the

introduction if grouping of data items as sets.

Fig: Network Database System

4) Relational Database System:

In order to overcome all the drawbacks of the previous systems, the Relational Database System got

introduced in which data get organized as tables and each record forms a row with many fields or

attributes in it. Relationships between tables are also formed in this system.

Fig: Relational Database System (RDBS)

CUSTOMER

4 LECTURE Three -DBMS

4 | P a g e

Fig: Relationship in RDBS

 Advantages of DBMS:

1) Controlling of Redundancy: Data redundancy refers to the duplication of data (i.e storing same

data multiple times). In a database system, by having a centralized database and centralized

control of data by the DBA the unnecessary duplication of data is avoided. It also eliminates the

extra time for processing the large volume of data. It results in saving the storage space.

2) Improved Data Sharing: DBMS allows a user to share the data in any number of application

programs.

3) Data Integrity: Integrity means that the data in the database is accurate. Centralized control of

the data helps in permitting the administrator to define integrity constraints to the data in the

database. For example: in customer database, we can enforce an integrity that it must accept the

customer only from Noida and Meerut city.

4) Security: Having complete authority over the operational data, enables the DBA in ensuring that

the only mean of access to the database is through proper channels. The DBA can define

authorization checks to be carried out whenever access to sensitive data is attempted.

5) Data Consistency: By eliminating data redundancy, we greatly reduce the opportunities for

5 LECTURE Three -DBMS

5 | P a g e

inconsistency. For example: is a customer address is stored only once, we cannot have

disagreement on the stored values. Also updating data values is greatly simplified when each

value is stored in one place only. Finally, we avoid the wasted storage that results from redundant

data storage.

6) Efficient Data Access: In a database system, the data is managed by the DBMS and all access

to the data is through the DBMS providing a key to effective data processing

7) Enforcements of Standards: With the centralized of data, DBA can establish and enforce the

data standards which may include the naming conventions, data quality standards etc.

8) Data Independence: Ina database system, the database management system provides the

interface between the application programs and the data. When changes are made to the data

representation, the Meta data obtained by the DBMS is changed but the DBMS is continues to

provide the data to application program in the previously used way. The DBMs handles the task

of transformation of data wherever necessary.

9) Reduced Application Development and Maintenance Time: DBMS supports many important

functions that are common to many applications, accessing data stored in the DBMS, which

facilitates the quick development of application.

 Disadvantages of DBMS:

1) It is bit complex. Since it supports multiple functionality to give the user the best, the underlying

software has become complex. The designers and developers should have thorough knowledge

about the software to get the most out of it.

2) Because of its complexity and functionality, it uses large amount of memory. It also needs large

memory to run efficiently.

3) DBMS system works on the centralized system, i.e.; all the users from all over the world access

this database. Hence any failure of the DBMS, will impact all the users.

4) DBMS is generalized software, i.e.; it is written work on the entire systems rather specific one.

Hence, some of the application will run slow.

 LECTURE FOUR -DBMS

1 | P a g e

 View of Data

A database system is a collection of interrelated data and a set of programs that allow users to access and

modify these data. A major purpose of a database system is to provide users with an abstract view of the

data. That is, the system hides certain details of how the data are stored and maintained.

Data Abstraction

For the system to be usable, it must retrieve data efficiently. The need for efficiency has led designers to

use complex data structures to represent data in the database. Since many database-system users are not

computer trained, developers hide the complexity from users through several levels of abstraction, to

simplify users’ interactions with the system:

Fig: Levels of Abstraction in a DBMS

A) Physical level (or Internal View / Schema): The lowest level of abstraction describes how the data

are actually stored. The physical level describes complex low-level data structures in detail.

B) Logical level (or Conceptual View / Schema): The next-higher level of abstraction describes what

data are stored in the database, and what relationships exist among those data. The logical level

thus describes the entire database in terms of a small number of relatively simple structures.

 LECTURE FOUR -DBMS

2 | P a g e

Although implementation of the simple structures at the logical level may involve complex physical-

level structures, the user of the logical level does not need to be aware of this complexity. This is

referred to as physical data independence.

Database administrators, who must decide what information to keep in the database, use the

logical level of abstraction.

C) View level (or External View / Schema): The highest level of abstraction describes only part of

the entire database. Even though the logical level uses simpler structures, complexity remains

because of the variety of information stored in a large database. Many users of the database system

do not need all this information; instead, they need to access only a part of the database. The view

level of abstraction exists to simplify their interaction with the system. The system may provide

many views for the same database. Figure above shows the relationship among the three levels of

abstraction.

An analogy to the concept of data types in programming languages may clarify the distinction among

levels of abstraction. Many high-level programming languages support the notion of a structured type.

For example, we may describe a record as follows:

 type

Instructor = record

ID : char (5);

name : char (20);

dept name : char (20);

salary : numeric (8,2);

 end;

This code defines a new record type called instructor with four fields. Each field has a name and a type

associated with it. A university organization may have several such record types, including

- Department, with fields dept_name, building, and budget

- Course, with fields course_id, title, dept_name, and credits

- Student, with fields ID, name, dept_name, and tot_cred

At the physical level, an Instructor, Department, or Student record can be described as a block of

consecutive storage locations. The compiler hides this level of detail from programmers.

Similarly, the database system hides many of the lowest-level storage details from database

 LECTURE FOUR -DBMS

3 | P a g e

programmers. Database administrators, on the other hand, may be aware of certain details of the

physical organization of the data.

At the logical level, each such record is described by a type definition, as in the previous code segment,

and the interrelationship of these record types is defined as well. Programmers using a programming

language work at this level of abstraction. Similarly, database administrators usually work at this

level of abstraction.

Finally, at the view level, computer users see a set of application programs that hide details of the

data types. At the view level, several views of the database are defined, and a database user sees

some or all of these views.

In addition to hiding details of the logical level of the database, the views also provide a security

mechanism to prevent users from accessing certain parts of the database.

For example, clerks in the university registrar office can see only that part of the database that has

information about students; they cannot access information about salaries of instructors.

 Instances and Schemas

Databases change over time as information is inserted and/or deleted. The collection of information stored

in the database at a particular moment is called an instance of the database. The overall design of the

database is called the database schema. Schemas are changed infrequently, if at all. The concept of

database schemas and instances can be understood by analogy to a program written in a programming

language. A database schema corresponds to the variable declarations (along with associated type

definitions) in a program. Each variable has a particular value at a given instant. The values of the

variables in a program at a point in time correspond to an instance of a database schema.

Database systems have several schemas, partitioned according to the levels of abstraction. The physical

schema describes the database design at the physical level, while the logical schema describes the

database design at the logical level. A database may also have several schemas at the view level,

sometimes called subschemas, which describe different views of the database. Of these, the logical

schema is by far the most important, in terms of its effect on application programs, since programmers

construct applications by using the logical schema. The physical schema is hidden beneath the logical

 LECTURE FOUR -DBMS

4 | P a g e

schema, and can usually be changed easily without affecting application programs. Application programs

are said to exhibit physical data independence if they do not depend on the physical schema, and thus

need not be rewritten if the physical schema changes.

 Data Models

Underlying the structure of a database is the data model: a collection of conceptual tools for describing

data, data relationships, data semantics, and consistency constraints. A data model provides a way to

describe the design of a database at the physical, logical, and view levels.

The data models can be classified into four different categories:

A). Relational Model. The relational model uses a collection of tables to represent both data and the

relationships among those data. Each table has multiple columns, and each column has a unique name.

Tables are also known as relations. The relational model is an example of a record-based model.

Record-based models are so named because the database is structured in fixed-format records of several

types. Each table contains records of a particular type. Each record type defines a fixed number of

fields, or attributes. The columns of the table correspond to the attributes of the record type. The

relational data model is the most widely used data model, and a vast majority of current database

systems are based on the relational model.

B). Entity-Relationship Model. The entity-relationship (E-R) data model uses a collection of basic

objects, called entities, and relationships among these objects.

An entity is a “thing” or “object” in the real world that is distinguishable from other objects. The entity-

relationship model is widely used in database design.

C). Object-Based Data Model. Object-oriented programming (especially in Java, C++, or C#) has become

the dominant software-development methodology. This led to the development of an object-oriented

data model that can be seen as extending the E-R model with notions of encapsulation, methods

(functions), and object identity. The object-relational data model combines features of the object-

oriented data model and relational data model.

D). Semi-structured Data Model. The semi-structured data model permits the specification of data where

individual data items of the same type may have different sets of attributes. This is in contrast to the

data models mentioned earlier, where every data item of a particular type must have the same set of

attributes. The Extensible Markup Language (XML) is widely used to represent semi-structured data.

 LECTURE FOUR -DBMS

5 | P a g e

 Historically, the network data model and the hierarchical data model preceded the relational data

model. These models were tied closely to the underlying implementation, and complicated the task of

modeling data. As a result they are used little now, except in old database code that is still in service in

some places.

 Database Languages

A database system provides a data-definition language to specify the database schema and a data-

manipulation language to express database queries and updates. In practice, the data- definition and data-

manipulation languages are not two separate languages; instead they simply form parts of a single

database language, such as the widely used SQL language.

(1) Data-Manipulation Language

A data-manipulation language (DML) is a language that enables users to access or manipulate data

as organized by the appropriate data model. The types of access are:

- Retrieval of information stored in the database

- Insertion of new information into the database

- Deletion of information from the database

- Modification of information stored in the database

There are basically two types of DML:

(a) Procedural DMLs require a user to specify what data are needed and how to get those data.

(b) Declarative DMLs (also referred to as nonprocedural DMLs) require a user to specify what data

are needed without specifying how to get those data.

Declarative DMLs are usually easier to learn and use than are procedural DMLs. However, since a

user does not have to specify how to get the data, the database system has to figure out an efficient

means of accessing data. A query is a statement requesting the retrieval of information. The portion

of a DML that involves information retrieval is called a query language. Although technically

incorrect, it is common practice to use the terms query language and data-manipulation language

synonymously.

 LECTURE FOUR -DBMS

6 | P a g e

(2) Data-Definition Language (DDL)

We specify a database schema by a set of definitions expressed by a special language called a Data-

Definition Language (DDL). The DDL is also used to specify additional properties of the data.

We specify the storage structure and access methods used by the database system by a set of statements

in a special type of DDL called a data storage and definition language. These statements define the

implementation details of the database schemas, which are usually hidden from the users. The data values

stored in the database must satisfy certain consistency constraints.

For example, suppose the university requires that the account balance of a department must never be

negative. The DDL provides facilities to specify such constraints. The database system checks these

constraints every time the database is updated. In general, a constraint can be an arbitrary predicate

pertaining to the database. However, arbitrary predicates may be costly to test. Thus, database systems

implement integrity constraints that can be tested with minimal overhead.

A) Domain Constraints. A domain of possible values must be associated with every attribute (for

example, integer types, character types, date/time types). Declaring an attribute to be of a particular

domain acts as a constraint on the values that it can take. Domain constraints are the most elementary

form of integrity constraint. They are tested easily by the system whenever a new data item is entered

into the database.

B) Referential Integrity. There are cases where we wish to ensure that a value that appears in one

relation for a given set of attributes also appears in a certain set of attributes in another relation

(referential integrity). For example, the department listed for each course must be one that actually

exists. More precisely, the dept name value in a course record must appear in the dept name attribute

of some record of the department relation.

Database modifications can cause violations of referential integrity. When a referential-integrity

constraint is violated, the normal procedure is to reject the action that caused the violation.

C) Assertions. An assertion is any condition that the database must always satisfy. Domain constraints

and referential-integrity constraints are special forms of assertions. However, there are many

constraints that we cannot express by using only these special forms. For example, “Every department

must have at least five courses offered every semester” must be expressed as an assertion. When an

 LECTURE FOUR -DBMS

7 | P a g e

assertion is created, the system tests it for validity. If the assertion is valid, then any future modification

to the database is allowed only if it does not cause that assertion to be violated.

D) Authorization. We may want to differentiate among the users as far as the type of access they are

permitted on various data values in the database. These differentiations are expressed in terms of

authorization, the most common being: read authorization, which allows reading, but not

modification, of data; insert authorization, which allows insertion of new data, but not modification

of existing data; update authorization, which allows modification, but not deletion, of data; and delete

authorization, which allows deletion of data. We may assign the user all, none, or a combination of

these types of authorization.

The DDL, just like any other programming language, gets as input some instructions (statements) and

generates some output. The output of the DDL is placed in the data dictionary, which contains

metadata—that is, data about data. The data dictionary is considered to be a special type of table that

can only be accessed and updated by the database system itself (not a regular user). The database system

consults the data dictionary before reading or modifying actual data.

1

1

Lec 5

 Database Languages

A database system provides a data-definition language to specify the

database schema and a data-manipulation language to express database

queries and updates. In practice, the data- definition and data-manipulation

languages are not two separate languages; instead they simply form parts of a

single database language, such as the widely used SQL language.

(1) Data-Manipulation Language

A data-manipulation language (DML) is a language that enables users to

access or manipulate data as organized by the appropriate data model. The

types of access are:

- Retrieval of information stored in the database

- Insertion of new information into the database

- Deletion of information from the database

- Modification of information stored in the database

A query is a statement requesting the retrieval of information. The portion of a

DML that involves information retrieval is called a query language.

(2) Data-Definition Language (DDL)

We specify a database schema by a set of definitions expressed by a special

language called a data-definition language (DDL). The DDL is also used

to specify additional properties of the data.

2

2

We specify the storage structure and access methods used by the database

system by a set of statements in a special type of DDL called a data

storage and definition language. These statements define the

implementation details of the database schemas, which are usually hidden

from the users.

The data values stored in the database must satisfy certain consistency

constraints.

A) Domain Constraints. A domain of possible values must be associated

with every attribute (for example, integer types, character types, date/time

types). Declaring an attribute to be of a particular domain acts as a

constraint on the values that it can take. Domain constraints are the most

elementary form of integrity constraint. They are tested easily by the

system whenever a new data item is entered into the database.

B) Referential Integrity. There are cases where we wish to ensure that a

value that appears in one relation for a given set of attributes also appears

in a certain set of attributes in another relation (referential integrity). For

example, the department listed for each course must be one that actually

exists. More precisely, the dept name value in a course record must appear

in the dept name attribute of some record of the department relation.

Database modifications can cause violations of referential integrity. When

a referential-integrity constraint is violated, the normal procedure is to

reject the action that caused the violation.

C) Assertions. An assertion is any condition that the database must always

satisfy. Domain constraints and referential-integrity constraints are special

forms of assertions. However, there are many constraints that we cannot

3

3

express by using only these special forms. For example, “Every department

must have at least five courses offered every semester” must be expressed

as an assertion. When an assertion is created, the system tests it for

validity. If the assertion is valid, then any future modification to the

database is allowed only if it does not cause that assertion to be violated.

D) Authorization. We may want to differentiate among the users as far as

the type of access they are permitted on various data values in the database.

These differentiations are expressed in terms of authorization, the most

common being: read authorization, which allows reading, but not

modification, of data; insert authorization, which allows insertion of new

data, but not modification of existing data; update authorization, which

allows modification, but not deletion, of data; and delete authorization,

which allows deletion of data. We may assign the user all, none, or a

combination of these types of authorization.

 Data Dictionary

We can define a data dictionary as a DBMS component that stores the

definition of data characteristics and relationships. You may recall that such

“data about data” were labeled metadata. The DBMS data dictionary provides

the DBMS with its self-describing characteristic.

The two main types of data dictionary exist, integrated and stand alone. An

integrated data dictionary is included with the DBMS. For example, all

relational DBMSs include a built in data dictionary or system catalog that is

frequently accessed and updated by the RDBMS. Other DBMSs especially

older types, do not have a built in data dictionary instead the DBA may use

4

4

third party stand-alone data dictionary systems.

Data dictionaries can also be classified as active or passive. An active data

dictionary is automatically updated by the DBMS with every database access,

thereby keeping its access information up-to-date. A passive data dictionary is

not updated automatically and usually requires a batch process to be run. Data

dictionary access information is normally used by the DBMS for query

optimization purpose.

The data dictionary’s main function is to store the description of all objects

that interact with the database. Integrated data dictionaries tend to limit their

metadata to the data managed by the DBMS. Stand-alone data dictionary

systems are more usually more flexible and allow the DBA to describe and

manage all the organization’s data, whether or not they are computerized.

Whatever the data dictionary’s format, its existence provides database

designers and end users with a much improved ability to communicate. In

addition, the data dictionary is the tool that helps the DBA to resolve data

conflicts.

 Database Administrators

Database Administrator (DBA): is a person/team who defines the schema and

also controls the 3 levels of database. The DBA will then create a new account

id and password for the user if he/she needs to access the database.

 DBA is also responsible for providing security to the database and he

allows only the authorized users to access/modify the database.

 DBA also monitors the recovery and backup and provide technical

5

5

support.

 The DBA has a DBA account in the DBMS which called a system or

super user account.

 DBA repairs damage caused due to hardware and/or software failures.

 Database Users and User Interfaces

There are four different types of database-system users, differentiated by the

way they expect to interact with the system. Different types of user interfaces

have been designed for the different types of users.

1- Naive users / End Users are unsophisticated users who interact with the

system by invoking one of the application programs that have been written

previously. For example, a bank teller who needs to transfer $50 from

account A to account B invokes a program called transfer. This program

asks the teller for the amount of money to be transferred, the account from

which the money is to be transferred, and the account to which the money

is to be transferred.

2- Application programmers are computer professionals who write

application programs. Application programmers can choose from many

tools to develop user interfaces. Rapid application development (RAD)

tools are tools that enable an application programmer to construct forms

and reports without writing a program. There are also special types of

programming languages that combine imperative control structures (for

example, for loops, while loops and if-then-else statements) with

statements of the data manipulation language. These languages, sometimes

called fourth-generation languages, often include special features to

6

6

facilitate the generation of forms and the display of data on the screen.

Most major commercial database systems include a fourth generation

language.

3- Sophisticated users interact with the system without writing programs.

Instead, they form their requests in a database query language. They submit

each such query to a query processor, whose function is to break down

DML statements into instructions that the storage manager understands.

Analysts who submit queries to explore data in the database fall in this

category. They use the tools to perform their task such as:

a- Online analytical processing (OLAP) tools simplify analysts’ tasks by

letting them view summaries of data in different ways. For instance, an

analyst can see total sales by region (for example, North, South, East,

and West), or by product, or by a combination of region and product

(that is, total sales of each product in each region). The tools also permit

the analyst to select specific regions, look at data in more detail (for

example, sales by city within a region) or look at the data in less detail

(for example, aggregate products together by category).

b- Another class of tools for analysts is data mining tools, which help

them, find certain kinds of patterns in data.

4- Specialized users are sophisticated users who write specialized database

applications that do not fit into the traditional data-processing framework.

Among these applications are computer-aided design systems, knowledge base

and expert systems, systems that store data with complex data types (for

example, graphics data and audio data), and environment-modeling systems.

1

Lec 6

Database Architecture:

The architecture of a database system is greatly influenced by the underlying computer

system on which the database system runs. Database systems can be centralized, or client-

server, where one server machine executes work on behalf of multiple client machines.

Database systems can also be designed to exploit parallel computer architectures.

Distributed databases span multiple geographically separated machines.

Database System Architecture

A database system is partitioned into modules that deal with each of the responsibilities of

the overall system. The functional components of a database system can be broadly divided

into the storage manager and the query processor components. The storage manager is

important because databases typically require a large amount of storage space. The query

processor is important because it helps the database system simplify and facilitate access to

data.

2

It is the job of the database system to translate updates and queries written in a

nonprocedural language, at the logical level, into an efficient sequence of operations at the

physical level.

Database applications are usually partitioned into two or three parts, as in Figure 1.4. In

two-tier architecture, the application resides at the client machine, where it invokes

database system functionality at the server machine through query language statements.

Application program interface standards like ODBC and JDBC are used for interaction

between the client and the server. In contrast, in a three-tier architecture, the client machine

acts as merely a front end and does not contain any direct database calls. Instead, the client

end communicates with an application server, usually through a forms interface.

The application server in turn communicates with a database system to access data. The

business logic of the application, which says what actions to carry out under what

conditions, is embedded in the application server, instead of being distributed across

multiple clients. Three-tier applications are more appropriate for large applications, and for

applications that run on the WorldWideWeb.

Two-tier and three-tier architectures.

3

Query Processor:

The query processor components include

DDL interpreter, which interprets DDL statements and records the definitions in the data

dictionary.

DML compiler, which translates DML statements in a query language into an evaluation

plan consisting of low-level instructions that the query evaluation engine understands.

A query can usually be translated into any of a number of alternative evaluation plans that

all give the same result. The DML compiler also performs query optimization, that is, it

picks the lowest cost evaluation plan from among the alternatives.

Query evaluation engine, which executes low-level instructions generated by the DML

compiler.

Storage Manager:

A storage manager is a program module that provides the interface between the lowlevel

data stored in the database and the application programs and queries submitted to the

system. The storage manager is responsible for the interaction with the file manager. The

raw data are stored on the disk using the file system, which is usually provided by a

conventional operating system. The storage manager translates the various DML

statements into low-level file-system commands. Thus, the storage manager is responsible

for storing, retrieving, and updating data in the database.

The storage manager components include:

Authorization and integrity manager, which tests for the satisfaction of integrity

constraints and checks the authority of users to access data.

Transaction manager, which ensures that the database remains in a consistent (correct)

state despite system failures, and that concurrent transaction executions proceed without

conflicting.

File manager, which manages the allocation of space on disk storage and the data

structures used to represent information stored on disk.

4

Buffer manager, which is responsible for fetching data from disk storage into main

memory, and deciding what data to cache in main memory. The buffer manager is a critical

part of the database system, since it enables the database to handle data sizes that are much

larger than the size of main memory.

Transaction Manager:

A transaction is a collection of operations that performs a single logical function in a

database application. Each transaction is a unit of both atomicity and consistency. Thus, we

require that transactions do not violate any database-consistency constraints. That is, if the

database was consistent when a transaction started, the database must be consistent when

the transaction successfully terminates. Transaction - manager ensures that the database

remains in a consistent (correct) state despite system failures (e.g., power failures and

operating system crashes) and transaction failures.

Conceptual Database Design - Entity Relationship(ER) Modeling:

Database Design Techniques

1. ER Modeling (Top down Approach)

2. Normalization (Bottom Up approach)

What is ER Modeling?

A graphical technique for understanding and organizing the data independent of the actual

database implementation

We need to be familiar with the following terms to go further.

Entity

Any thing that has an independent existence and about which we collect data. It is also

known as entity type. In ER modeling, notation for entity is given below.

5

Entity instance

Entity instance is a particular member of the entity type. Example for entity instance : A

particular employee Regular Entity

An entity which has its own key attribute is a regular entity. Example for regular entity :

Employee.

Weak entity

An entity which depends on other entity for its existence and doesn't have any key attribute

of its own is a weak entity.

Example for a weak entity: In a parent/child relationship, a parent is considered as a strong

entity and the child is a weak entity.

In ER modeling, notation for weak entity is given below.

Attributes

Properties/characteristics which describe entities are called attributes. In ER modeling,

notation for attribute is given below.

Domain of Attributes

The set of possible values that an attribute can take is called the domain of the attribute.

For example, the attribute day may take any value from the set {Monday, Tuesday ...

Friday}. Hence this set can be termed as the domain of the attribute day.

6

Key attribute

The attribute (or combination of attributes) which is unique for every entity instance is

called key attribute.

E.g the employee_id of an employee, pan_card_number of a person etc.If the key attribute

consists of two or more attributes in combination, it is called a composite key.

In ER modeling, notation for key attribute is given below.

Simple attribute

If an attribute cannot be divided into simpler components, it is a simple attribute. Example

for simple attribute : employee_id of an employee.

Composite attribute

If an attribute can be split into components, it is called a composite attribute.

Example for composite attribute : Name of the employee which can be split into

First_name, Middle_name, and Last_name.

Single valued Attributes

If an attribute can take only a single value for each entity instance, it is a single valued

attribute. example for single valued attribute : age of a student. It can take only one value

for a particular student.

Multi-valued Attributes

If an attribute can take more than one value for each entity instance, it is a multi-valued

attribute. Multi-valued

example for multi valued attribute : telephone number of an employee, a particular

employee may have multiple telephone numbers.

7

In ER modeling, notation for multi-valued attribute is given below.

Stored Attribute

An attribute which need to be stored permanently is a stored attribute Example for stored

attribute : name of a student

Derived Attribute

An attribute which can be calculated or derived based on other attributes is a derived

attribute.

Example for derived attribute : age of employee which can be calculated from date of birth

and current date. In ER modeling, notation for derived attribute is given below.

Relationships

Associations between entities are called relationships

Example : An employee works for an organization. Here "works for" is a relation between

the entities employee and organization.

8

In ER modeling, notation for relationship is given below.

However in ER Modeling, To connect a weak Entity with others, you should use a weak

relationship notation as given below

Degree of a Relationship

Degree of a relationship is the number of entity types involved. The n-ary relationship is

the general form for degree n. Special cases are unary, binary, and ternary ,where the

degree is 1, 2, and 3, respectively.

Example for unary relationship : An employee ia a manager of another employee Example

for binary relationship : An employee works-for department.

Example for ternary relationship : customer purchase item from a shop keeper

Cardinality of a Relationship

Relationship cardinalities specify how many of each entity type is allowed. Relationships

can have four possible connectivities as given below.

1. One to one (1:1) relationship

2. One to many (1:N) relationship

3. Many to one (M:1) relationship

9

4. Many to many (M:N) relationship

The minimum and maximum values of this connectivity is called the cardinality of the

relationship

Example for Cardinality – One-to-One (1:1)

Employee is assigned with a parking space.

One employee is assigned with only one parking space and one parking space is assigned

to only one employee. Hence it is a 1:1 relationship and cardinality is One-To-One (1:1)

In ER modeling, this can be mentioned using notations as given below

Example for Cardinality – One-to-Many (1:N)

10

Organization has employees

One organization can have many employees , but one employee works in only one

organization. Hence it is a 1:N relationship and cardinality is One-To-Many (1:N)

In ER modeling, this can be mentioned using notations as given below

Example for Cardinality – Many-to-One (M :1)

It is the reverse of the One to Many relationship. employee works in organization

One employee works in only one organization But one organization can have many

employees. Hence it is a M:1 relationship and cardinality is Many-to-One (M :1)

11

In ER modeling, this can be mentioned using notations as given below.

Cardinality – Many-to-Many (M:N)

Students enrolls for courses

One student can enroll for many courses and one course can be enrolled by

many students. Hence it is a M:N relationship and cardinality is Many-to-

Many (M:N)

In ER modeling, this can be mentioned using notations as given below

12

Relationship Participation

1. Total

In total participation, every entity instance will be connected through the

relationship to another instance of the other participating entity types

2. Partial

Example for relationship participation

Consider the relationship - Employee is head of the department.

Here all employees will not be the head of the department. Only one

employee will be the head of the department. In other words, only few

instances of employee entity participate in the above relationship. So

employee entity's participation is partial in the said relationship.

However each department will be headed by some employee. So department

entity's participation is total in the said relationship.

Advantages and Disadvantages of ER Modeling

Advantages

1. ER Modeling is simple and easily understandable. It is represented in

business users language and it can be understood by non-technical

specialist.

2. Intuitive and helps in Physical Database creation.

3. Can be generalized and specialized based on needs.

13

4. Can help in database design.

5. Gives a higher level description of the system.

Disadvantages

1. Physical design derived from E-R Model may have some amount of

ambiguities or inconsistency.

2. Sometime diagrams may lead to misinterpretations

Lec 7

Relational Model

Structure of Relational Databases:

A relational database consists of a collection of tables, each of which is

assigned a unique name. For example, consider the instructor table of

Figure 1, 2, and 3.

Figure 1: The instructor relation

In general, a row in a table represents a relationship among a set of

values. Since a table is a collection of such relationships, there is a close

correspondence between the concept of table and the mathematical

concept of relation, from which the relational data model takes its name.

In mathematical terminology, a tuple is simply a sequence (or list) of

values. A relationship between n values is represented mathematically by

an n-tuple of values, i.e., a tuple with n values, which corresponds to a

row in a table.

Figure 2: The course relation

Figure 3: The prereq relation.

Thus, in the relational model the term relation is used to refer to a table,

while the term tuple is used to refer to a row. Similarly, the term

attribute refers to a column of a table.

Examining Figure 1, we can see that the relation instructor has four

attributes:

ID, name, dept name, and salary.

We use the term relation instance to refer to a specific instance of a

relation, i.e., containing a specific set of rows. The instance of

instructor shown in Figure 1 has 12 tuples, corresponding to 12

instructors.

The order in which tuples appear in a relation is irrelevant, since a

relation is a set of tuples. Thus, whether the tuples of a relation are listed

in sorted order, as in Figure 1, or are unsorted, as in Figure 4, does not

matter; the relations in the two figures are the same, since both contain

the same set of tuples. For ease of exposition, we will mostly show the

relations sorted by their first attribute. For each attribute of a relation,

there is a set of permitted values, called the domain of that attribute.

Thus, the domain of the salary attribute of the instructor relation is the

set of all possible salary values, while the domain of the name attribute is

the set of all possible instructor names.

Figure 4: Unsorted display of the instructor relation.

The null value is a special value that signifies that the value is unknown

or does not exist. For example, suppose as before that we include the

attribute phone number in the instructor relation. It may be that an

instructor does not have a phone number at all, or that the telephone

number is unlisted.

Database Schema

When we talk about a database, we must differentiate between the

database schema, which is the logical design of the database, and the

database instance, which is a snapshot of the data in the database at a

given instant in time.

Figure 5: The department relation.

Consider the department relation of Figure 5. The schema for that relation

is

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema

and the department schema. Using common attributes in relation

schemas is one way of relating tuples of distinct relations.

A superkey is a set of one or more attributes that, taken collectively,

allow us to identify uniquely a tuple in the relation. For example, the ID

attribute of the relation instructor is sufficient to distinguish one

instructor tuple from another. Thus, ID is a superkey. The name attribute

of instructor, on the other hand, is not a superkey, because several

instructors might have the same name.

It is possible that several distinct sets of attributes could serve as a

candidate key. Suppose that a combination of name and dept name is

sufficient to distinguish among members of the instructor relation. Then,

both {ID} and {name, dept name} are candidate keys. Although the

attributes ID and name together can distinguish instructor tuples, their

combination, {ID, name}, does not form a candidate key, since the

attribute ID alone is a candidate key.

We shall use the term primary key to denote a candidate key that is

chosen by the database designer as the principal means of identifying

tuples within a relation.

It is customary to list the primary key attributes of a relation schema

before the other attributes; for example, the dept name attribute of

department is listed first, since it is the primary key. Primary key

attributes are also underlined. A relation, say r1, may include among its

attributes the primary key of another relation, say r2. This attribute is

called a foreign key from r1, referencing r2.

Schema Diagrams

A database schema, along with primary key and foreign key

dependencies, can be depicted by schema diagrams. Figure 6 shows the

schema diagram for our university organization. Each relation appears as

a box, with the relation name at the top in blue, and the attributes listed

inside the box. Primary key attributes are shown underlined. Foreign key

dependencies appear as arrows from the foreign key attributes of the

referencing relation to the primary key of the referenced relation.

Figure 6 : Schema diagram for the university database.

1

Structured Query Language (SQL)

A database most often contains one or more tables. Each table is identified

by a name (e.g. "Customers" or "Orders"). Tables contain records (rows)

with data.

Below is a selection from the "Customers" table:

Custome

rID

CustomerN

ame

ContactN

ame

Address City PostalC

ode

Count

ry

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berli

n

12209 Germa

ny

2 Ana Trujillo

Emparedad

os y helados

Ana

Trujillo

Avda. de

la

Constituci

ón 2222

Méxi

co

D.F.

05021 Mexic

o

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxi

co

D.F.

05023 Mexic

o

4

Around the

Horn

Thomas

Hardy

120

Hanover

Sq.

Lond

on

WA1

1DP

UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsv

ägen 8

Luleå S-958

22

Swede

n

The table above contains five records (one for each customer) and seven

columns (CustomerID, CustomerName, ContactName, Address, City,

PostalCode, and Country).

SQL Statements

Most of the actions you need to perform on a database are done with SQL

statements.

The following SQL statement selects all the records in the "Customers"

table:

Example

SELECT * FROM Customers;

2

Keep in Mind That...

 SQL keywords are NOT case sensitive: select is the same as SELECT

 Semicolon after SQL Statements, some database systems require a

semicolon at the end of each SQL statement. Semicolon is the

standard way to separate each SQL statement in database systems that

allow more than one SQL statement to be executed in the same call to

the server.

Some of the Most Important SQL Commands

 SELECT - extracts data from a database

 UPDATE - updates data in a database

 DELETE - deletes data from a database

 INSERT INTO - inserts new data into a database

 CREATE DATABASE - creates a new database

 ALTER DATABASE - modifies a database

 CREATE TABLE - creates a new table

 ALTER TABLE - modifies a table

 DROP TABLE - deletes a table

 CREATE INDEX - creates an index (search key)

 DROP INDEX - deletes an index

SQL SELECT Statement

The SELECT statement is used to select data from a database.

3

The data returned is stored in a result table, called the result-set.

SELECT Syntax

SELECT column1, column2, ...

FROM table_name;

Here, column1, column2, ... are the field names of the table you want to

select data from. If you want to select all the fields available in the table, use

the following syntax:

SELECT * FROM table_name;

Example

SELECT CustomerName, City FROM Customers;

SELECT * FROM Customers;

1

Structured Query Language (SQL)

The SQL WHERE Clause

The WHERE clause is used to filter records.

It is used to extract only those records that fulfill a specified condition.

SELECT column1, column2, ...

FROM table_name

WHERE condition;

Note: The WHERE clause is not only used in SELECT statements, it is also

used in UPDATE, DELETE, etc.!

Example

The following SQL statement selects all the customers from the country

"Mexico", in the "Customers" table:

SELECT * FROM Customers

WHERE Country='Mexico';

However, numeric fields should not be enclosed in quotes:

Example

SELECT * FROM Customers

WHERE CustomerID=1;

2

The SQL ORDER BY Keyword

The ORDER BY keyword is used to sort the result-set in ascending or

descending order.

The ORDER BY keyword sorts the records in ascending order by default.

To sort the records in descending order, use the DESC keyword.

SELECT column1, column2, ...

FROM table_name

ORDER BY column1, column2, ... ASC|DESC;

Example

The following SQL statement selects all customers from the "Customers"

table, sorted by the "Country" column:

SELECT * FROM Customers

ORDER BY Country;

DESC Example

The following SQL statement selects all customers from the "Customers"

table, sorted DESCENDING by the "Country" column:

SELECT * FROM Customers

ORDER BY Country DESC;

Several Columns Example

The following SQL statement selects all customers from the "Customers"

table, sorted by the "Country" and the "CustomerName" column. This means

that it orders by Country, but if some rows have the same Country, it orders

them by CustomerName:

SELECT * FROM Customers

ORDER BY Country, CustomerName;

3

The SQL INSERT INTO Statement

The INSERT INTO statement is used to insert new records in a table.

It is possible to write the INSERT INTO statement in two ways:

1. Specify both the column names and the values to be inserted:

INSERT INTO table_name (column1, column2, column3, ...)

VALUES (value1, value2, value3, ...);

2. If you are adding values for all the columns of the table, you do not need

to specify the column names in the SQL query. However, make sure the

order of the values is in the same order as the columns in the table. Here, the

INSERT INTO syntax would be as follows:

INSERT INTO table_name

VALUES (value1, value2, value3, ...);

Example

The following SQL statement inserts a new record in the "Customers" table:

INSERT INTO Customers (CustomerName, ContactName, Address, City,

PostalCode, Country)

VALUES ('Cardinal', 'Tom B. Erichsen', 'Skagen 21', 'Stavanger', '4006',

'Norway');

INSERT INTO Customers (CustomerName, City, Country)

VALUES ('Cardinal', 'Stavanger', 'Norway');

4

The SQL UPDATE Statement

The UPDATE statement is used to modify the existing records in a table.

UPDATE table_name

SET column1 = value1, column2 = value2, ...

WHERE condition;

Note: Be careful when updating records in a table! Notice the WHERE

clause in the UPDATE statement. The WHERE clause specifies which

record(s) that should be updated. If you omit the WHERE clause, all records

in the table will be updated!

Example

UPDATE Customers

SET ContactName = 'Alfred Schmidt', City= 'Frankfurt'

WHERE CustomerID = 1;

UPDATE Multiple Records

It is the WHERE clause that determines how many records will be updated.

The following SQL statement will update the ContactName to "Juan" for all

records where country is "Mexico":

Example

UPDATE Customers

SET ContactName='Juan'

WHERE Country='Mexico';

5

The SQL DELETE Statement

The DELETE statement is used to delete existing records in a table.

DELETE FROM table_name WHERE condition;

Note: Be careful when deleting records in a table! Notice the WHERE

clause in the DELETE statement. The WHERE clause specifies which

record(s) should be deleted. If you omit the WHERE clause, all records in

the table will be deleted!

Example

The following SQL statement deletes the customer "Alfreds Futterkiste"

from the "Customers" table:

DELETE FROM Customers WHERE CustomerName='Alfreds Futterkiste';

Delete All Records

It is possible to delete all rows in a table without deleting the table. This

means that the table structure, attributes, and indexes will be intact:

DELETE FROM table_name;

Example

DELETE FROM Customers;

6

The SQL MIN() and MAX() Functions

The MIN() function returns the smallest value of the selected column.

The MAX() function returns the largest value of the selected column.

SELECT MIN(column_name)

FROM table_name

WHERE condition;

SELECT MAX(column_name)

FROM table_name

WHERE condition;

MIN() Example

The following SQL statement finds the price of the cheapest product:

SELECT MIN(Price) AS SmallestPrice

FROM Products;

MAX() Example

The following SQL statement finds the price of the most expensive product:

SELECT MAX(Price) AS LargestPrice

FROM Products;

7

The SQL COUNT(), AVG() and SUM() Functions

The COUNT() function returns the number of rows that matches a specified

criterion.

SELECT COUNT(column_name)

FROM table_name

WHERE condition;

The AVG() function returns the average value of a numeric column.

SELECT AVG(column_name)

FROM table_name

WHERE condition;

The SUM() function returns the total sum of a numeric column.

SELECT SUM(column_name)

FROM table_name

WHERE condition;

COUNT() Example

The following SQL statement finds the number of products:

SELECT COUNT(ProductID)

FROM Products;

AVG() Example

The following SQL statement finds the average price of all products:

SELECT AVG(Price)

FROM Products;

8

Note: NULL values are ignored.

SUM() Example

The following SQL statement finds the sum of the "Quantity" fields in the

"OrderDetails" table:

SELECT SUM(Quantity)

FROM OrderDetails;

Note: NULL values are ignored.

