

Course Weekly Outline
Course Name: Data Structures

Course Instructor Dr. Mohammed Salah Ibrahim

E-mail moh.salah@uoanbar.edu.iq

Title Teacher

Course Coordinator Dr. Mohammed Salah Ibrahim

Course Objective

1- Learning different data structures

2- Understand why this data structure is better than the other one.

3- Learning how to choose the best data structure for your

algorithm.

4- learn how to deal with your problem, building its algorithm

and fitting the best data structures to it.

Course Description

This course covers all data structure types. It starts with

defining algorithms and their complexity from the time

and space prospection. Then, a list of data structure and

their description is presented. The course describes

every data structure in detail. In addition to that, it gives

the reason to why we need this data structure and where

to use it. This course includes many projects that give

more understanding to the data structure studied. These

projects talks about real life problems that we ask

student to use one of the data structure that has been

presented in the course to solve it.

Textbook
Introduction to Algorithm, third Edition, Thomas H. Cormen

Algorithms, fourth edition, Robert Sedgewick and Kevin Wayne

References

Introduction to Algorithm, third Edition, Thomas H. Cormen

Algorithms, fourth edition, Robert Sedgewick and Kevin Wayne

Course Assessments
Term Tests Laboratory Quizzes Project Final Exam

%20 %10 %5 %15 %50

General Notes

University: Anbar

College: CS & IT

Department: Computer Science

Stage: 2

Instructor name: Mohammed Salah Ibrahim

Academic status:

Qualification:

Place of work:

Republic of Iraq

The Ministry of Higher Education &

Scientific Research

mailto:moh.salah@uoanbar.edu.iq

Course Weekly Outline

W
eek

Date Topics Covered
Lab. Experiment

Assignments
Notes

1 Introduction to Data Structures

2 Algorithms and Complexity

3

Arrays and Pointers
Accountant application

using arrays

4 Linked List 1

5

Linked List 2
Student information

system using linked list

6 First exam

7

Stack
Color cubes games

using Stack

8

Queue
A snake game using

queu

9 Tree 1

Republic of Iraq

The Ministry of Higher Education &

Scientific Research

University: Anbar

College: CS & IT

Department:

Stage:

Instructor name:

Academic status:

Qualification:

Place of work:

 Instructor Signature: Dean Signature:

10 Tree 2

11 Graph 1

12

Graph 2

Social Media

connections using

Graph data structure

13 Hashing 1

14

Hashing 2

Simple search engine

application using

hashtable data structure

15 Second try exam

Data Structure
Lecture 1: Introduction
Prepared by

Dr. Mohammed Salah Al-Obiadi

Variables and
Data Types

• Variable is any entity that can take on different values.

• Consider the below equation:

• This equation has variables x and y, which hold values
(data).

• Data Type is a set of data with predefined values.

• The variables x and y in the above equation can take any
values such as

• Integer numbers (10, 20), Real numbers (0.23, 5.5),
or Boolean (0 or 1).

• There are two types of data types:

• System-defined data types.

• User-defined data types.

System-defined
data types:

• These are the data types that are defined by system are called primitive
data types.

• Examples of such data types are int, float, char, double, bool, etc.

• Each data type has some bytes to store data.

• For example:

• int may take 2 bytes or 4 bytes of memory.

• float may take 3 bytes or 4 bytes of memory.

• char may take 1 byte of memory.

• Symbols in ASCII codes like +, -, *, /, @,#, etc… take 1 byte
of memory. (See Appendix A for the list of ASCII codes)

• If we have x+y, and x is int and y is float. Assume int takes 2 bytes,
and float takes 3 bytes, then the equation x+y take 2+1+3=6 bytes
of memory.

• Note that the symbol ‘+’ has 1 byte in the memory.

User defined
data types

• If the system-defined data types are not enough, then most
programming languages allow the users to define their own
data types.

• Good examples of user defined data types are: structures in
C/C + + and classes in Java.

• Here is an example of new defined data type called
“newType”:

Data Structures

Data structure is a particular way of storing and organizing data in a
computer so that it can be used efficiently.

General data structure types include arrays, files, linked lists, stacks, queues,
trees, graphs and so on.

Data structures are classified into two types:

1- Linear data structures: elements can be accessed in a sequential order
(e.g. Arrays, Linked Lists, Stacks and Queues).

2- Non – linear data structures: elements can be accessed in a random order
(e.g. Trees, tables, sets, graphs).

Operations Performed in Data Structure

1- Traversing 2- Insertion 3- Deletion

4- Merging 5- Sorting 6- Searching

Appendix A:

Data Structure
Lecture 2:
Algorithms and
Complexity

Prepared by

Dr. Mohammed Salah Al-Obiadi

What is an Algorithm?

• Steps of preparing a frying egg.

1. Get the frying pan.

2. Get the oil.

a. Do we have oil?

i. If yes, put it in the pan.

ii. If no, do we want to buy oil?

a. If yes, then go out and buy.

b. If no, no egg today.

3. Turn on the stove, etc...

An algorithm is the step-by-step clear instructions to solve a given

problem.

Criteria for judging
Algorithms

• There are two main criteria for
judging Algorithms:

1. Correctness: does the
algorithm give solution to the
problem in a finite number of
steps?

2. Efficiency: how much
resources (in terms of memory
and time) does it take to
execute the program.

Complexity of
an Algorithm

1. Space Complexity of a program
is the amount of memory it needs
to run to completion.

2. Time complexity of a program is
the amount of computer time it
needs to run to completion. The
time complexity is of two types
such as

a) Compilation time

b) Runtime

Asymptotic
Notations:
Big-O Notation

• Big-O Notation [Upper Bounding Function]: The
O(g(n)) represents the upper bound computation a
program can cause to the computer. f(n) = O(g(n)) (
read as f of n is big oh of g of n)

• Example-1 Find upper bound for:

• f(n) = 3n + 8

• solution f(n) = O(n)

• f(n) = n2 + 1

• Solution f(n) = O(n2)

• f(n) = 16n3 + 45n2 +12n

• Solution f(n) = O(max(n3 , n2, n)) = O(n3)

• f(n) = n4 + 100n2 + 50

• Solution f(n) = O(max(n4 , n2)) = O(n4)

• f(n) = 410

• Solution f(n) = O(1)

Example a program of O(1):

• Problem: To find out the greater between two numbers

bool max_value (int a, int b) // function that accept two

numbers

{

if (a> b) // Compare the two numbers

return true; // if first is greater return true

else

return false. // otherwise return false

}

• This function does not have any loop and will not cost the computer a lot of
computations, so it’s f(n)=O(1) means a constant computations.

Example a program of O(n):
• Problem: Program to search a number from a list of numbers

bool search (int arr [], int number, int n)

{

bool found=false;

for (int i=0; i<n; i++)

{

if (arr[i] ==number)

{

found=true;

break;

} // end of if

} // end of for

return found;

} // end of function

• This function has a for loop that require n time implementations from the computer, so it’s f(n)=O(n).

Example a program of O(n2):

Problem: Write a program to sort the series of numbers using Bubble sort

void array (int arr [], int n)

{

int i, j;

for (i=0; i<n; i++) // start of outer loop

{

for (j=1; j<n-i; j++) // inner loop

{

if (arr [j+1] > arr[j]) // comparing the elements

{ // swapping if the adjacent is larger

temp=arr [j+1];

arr [j+1] =arr[j];

arr[j] =temp;

} // end of if

} //end of inner for loop

} // end of outer for loop

• This function has two for loops that require n x n time implementations from the computer, so it’s f(n)=O(n x n)=O(n2).

Time
Compexity

Chart

Data Structure
Lecture 3: Arrays
and Pointers
Prepared by

Dr. Mohammed Salah Al-Obiadi

Arrays data structures

• Arrays are widely used in any programming language.

• It is extremely useful in cases where we need to store the
similar set of elements.

• It helps in reducing the program complexity.

• increases the programmer’s productivity.

• Arrays can be categorized into the following:

• Single Dimensional array.

• Double Dimensional array.

• Multidimensional array.

• We will not study the Multidimensional array.

Why we use Arrays
• Consider that we need to store grades of five students.

• In a normal way, we have to define five variables of the same type:

int main ()

{

int marks1, marks2, marks3, marks4, marks5;

cout<<”enter marks1”;

cin>>marks1;

cout<<”enter marks2”;

cin>>marks2;

cout<<”enter marks3”;

cin>>marks3;

cout<<”enter marks4”;

cin>>marks4;

cout<<”enter marks5”;

cin>>marks5;

return 0;

}

• Complexity of the above program will grow further upon increment of subjects.

• Consider we have 200 students, how the program will look like? What is the solution?

• Here the solutions lie with the usage of arrays.

Array can be
defined as:

A data
structure

used to store
set of similar
data types.

Elements are
stored in

continuous
memory

locations.

Index, or
subscript

starts with 0.

Size of the
array should
be constant.

One-
Dimensional
Array

Declaration:

• Data type variable_name[bound] ;

Examples:

• Int arr[10]; // an integer array with 10
elements.

• Char arr[20]; // a character array with
20 elements.

• float arr[15]; // a flaot array with 20
elements

Array
Element in
Memory

The array elements are stored in a consecutive manner inside the
memory.

For Example: int x[7];

Let the x[0] be at the memory address 568, then the entire array
can be represented in the memory as:

Two-Dimensional
Array

Declaration:

• Data type variable_name[rows] [columns] ;

Examples:

• Int arr[4][6]; // an integer 2-D array
with 4 rows and 6 columns.

• Char arr[20][20]; // a character 2-D
array with 20 rows and 20 columns.

• float arr[5][10]; // a float 2-D array
with 5 rows and 10 columns

Examples of Two-
dimensional
arrays

int x[3][4]={

{1, 2, 3, 4},

{5, 6, 7, 8},

{2, 4, 6, 3},

};

char x[3][4]={

{'h', 'a', 'f’, '7'},

{'u', 'f’, 'z’, 'l'},

{'y’, '8’, 'j’, 'm'},

};

POINTERS

Holding of addresses of another variable is needed in
various instances that include:

1- To access
the array
element

2- To change
the value of

variable from
function

3- In dynamic
allocation of

memory.

4- In complex
programming,

such as link
list, tree, B

tree etc.

Pointer is a variable that is capable to
hold the address of another variable.

How to know
a variable is a
pointer?

Pointers are preceded with the
symbol *.

For instance:

• int *x, It means that this pointer can hold the
address of integer type variable.

• char *c, , It means that this pointer can hold
the address of char type variable.

• float *w, It means that this pointer can hold
the address of float type variable.

Example of Declaring pointer

int x=8;

int *p;// variable that is pointer of int type

p=&x; //p now holds the address of variable x

cout<<p; // print the address of x;

cout<<*p; // print the value pointed by p;

Explaining Example of Declaring pointer

• Initially, the variable ‟x‟ is declared

• Assumes that it has been allocated the address location 1000.

• when int *p is declared, it is also allocated the address 925.

• When p=&x, this means that p holds the address of variable x which is 1000.

• Printing p will print address while printing *p will print x value.

8 1000

x

1000

p

925

Pointer to pointer

• Sometimes, we need to store the address of a pointer.

• This can be accomplished with the help of pointer to pointer.

• Pointer to pointer is a variable that holds the address of another variable that is
pointer type.

• Declaring pointer to pointer is different from the normal pointer type.

• In pointer to pointer notation two asterisk (**) are preceded before the identifier.

• Example:-

• int **pp;

• int *p;

• pp=&p;

1000 925

p

925

pp

4545

Data Structure
Lecture 4: Linked List
Prepared by

Dr. Mohammed Salah Al-Obiadi

What is a Linked List?

A linked list is a data structure used for storing collections of data.

1. Successive elements are connected by pointers.

2. The last element points to NULL.

3. Can grow or shrink in size during execution of a program.

4. Can be made just as long as required (until systems memory exhausts).

5. Does not waste memory space. It allocates memory as list grows.

A linked list has the following properties:

Data Next

start Node 1

Data Next

Node 2

Data Next

Node 3

Data Next

Node 4

Null

Linked List vs Arrays?

Array Linked list

Array elements store in a contiguous memory location. Linked list elements can be stored anywhere in the memory

Array works with a static memory and cannot be changed at
the run time.

The Linked list works with dynamic memory means memory
size can be changed at the run time.

Array elements are independent of each other. Linked list elements are dependent on each other. As each
node contains the address of the next node.

Array takes more time while performing any operation like
insertion, deletion, etc.

Linked list takes less time while performing any operation
like insertion, deletion, etc.

Accessing any element in an array is faster as the element in
an array can be directly accessed through the index.

Accessing an element in a linked list is slower as it starts
traversing from the first element of the linked list.

In the case of an array, memory is allocated at compile-time. In the case of a linked list, memory is allocated at run time.

Memory utilization is inefficient in the array. For example, if
the size of the array is 6, and array consists of 3 elements
then the rest of the space will be unused.

Memory utilization is efficient as the memory can be
allocated or deallocated at the run time.

Arrays take O(1) for access to an element. Linked lists take O(n) for access to an element.

Operation on Linked List

1- Traversal: To traverse all the nodes one after another.

2- Insertion: To add a node at the given position.

3- Deletion: To delete a node.

4- Searching: To search an element(s) by value.

5- Updating: To update a node.

6- Sorting: To arrange nodes in a linked list in a specific order.

7- Merging: To merge two linked lists into one.

Types of Link List

1- Single Link List

2- Double Link List

3- Circular Link List

4- Doubly Circular linked list

Single Link List

Generally “linked list”
means a single linked

list.

This list consists of a
number of nodes in

which each node has
a next pointer to the
following element.

The link of the last
node in the list is

NULL, which indicates
the end of the list.

Data Next

start Node 1

Data Next

Node 2

Data Next

Node 3

Data Next

Node 4

Null

STRUCTURE OF THE NODE OF A LINKED LIST

Struct tagname

{

Data type member1;

Data type member2;

…………………….

……………………

…………………..

Data type membern;

Struct tagname *var;

};

Example:

struct link

{

int info;

struct link *next;

};

LOGIC FOR CREATION
struct link start, *node;

We can’t guarantee addresses will be in a
continues form, so we need pointers to
keep addresses.

Algorithm For Creation Of Single Link List

Struct link start, *node

create(start,node) [start is the structure type of variable][node is the structure type of pointer]

step-1 : node = &start

step-2 : node → next = new link() //allocate memory of size struct link for the node

node = node → next

input : node → info

node → next = null

step-3 : repeat step-2 to create more nodes

step-4 : return

Algorithm For Traversing Of Single Link List

struct link start, *node;

traverse(start,node) [start is the structure type of variable] [node is the structure type of pointer]

step-1 : node = start.next

step-2 : repeat while (node!=null)

write : node → info

node = node → next

end of loop

step-3 : return

Insertion Into Linked List

The insertion process with link list can be discussed in
four different ways:

1. Insertion at Beginning.

2. Insertion at End.

3. Insertion when node number is known.

4. Insertion when information is known.

Algorithm For Insertion At Beginning

struct start, *first, *node,* newnode

insbeg(start,first,node, newnode) [start is the structure variable] [node and first is the structure pointer]

step-1 : first = &start //first saves start’s address

node = start.next

step-2 : newnode = new link()

input : newnode → info

first → next = newnode

newnode → next := node

step-3 : return

Algorithm For Insertion At Last

struct start, *last, *node,* newnode

inslast(start,last,node,newnode)

step-1 : last = &start //last’s pointer saves start’s address

node = start.next

step-2 : repeat while(node != null)

node = node → next

last = last → next

step-3 : newnode →next=new link() //allocate a memory to newnode

input : newnode → info

last → next = newnode

newnode → next = null

step-4 : return

Data Structure
Lecture 5: Linked List
Prepared by

Dr. Mohammed Salah Al-Obiadi

Algorithm For
Insertion Of Node
When Node
Number Is Known
(insert in previous position)

struct start, *previous, *node, *newnode

insnode(start, previous,node,no,newnode) [no is the node number]

step-1 : previous := &start

node := start.next

count :=1

step-2 : repeat while(node != null)

if(count = no) then:

newnode → next = new link() \\allocate space in memory

input : newnode → info

previous → next = newnode

newnode →next = node

return

else :

node = node → next

previous = previous → next

count:=count+1

step-3 : return

Example: insert a new node at node number 3

Data Next

start Node 1

Data Next

Node 2

Data Next

Node 3

Data Next

Node 4

Null

Data Next

New Node

*node number 3*previous

Algorithm For
Insertion Of
Node When
Information Is
Known

insertnode(start, previous,node,data,newnode) [data is information to insert]

step-1 : previous := &start

node := start.next

step-2 : repeat while(node != null)

if(node → info = data) then:

newnode →next= new link()

input : newnode → info /*insert data*/

previous → next = newnode

newnode →next = node

return

else:

node = node → next

previous = previous → next

step-3 : return

Example: insert a new node at info =7

5 Next

start Node 1

2 Next

Node 2

4 Next

Node 3

7 Next

Node 4

Null

45 Next

New Node

*node info=7*first

Algorithm For Deletion From Beginning

delbeg(start,first, node)

step-1 : first := &start

node := start.next

step-2 : first → next = node → next

free(node)

step-3 : return

Example of Deleting a node in the beginning

Data Next

start Node 1

Data Next

Node 2

Data Next

Node 3

Data Next

Node 4

Null

Algorithm For
Deletion Of Node
When Node
Number Is Known

delnode(start,previous,node,no) [no is the node number]

step-1 : previous := &start

node := start.next

count :=1

step-2 : repeat while(node != null)

if(count = no) then:

previous → next =node → next

free(node)

return

else :

node = node → next

previous := previous → next

count:=count+1

step-3 : return

Example: delete a node at node number 3

Data Next

head Node 1

Data Next

Node 2

Data Next

Node 3

Data Next

Node 4

Null

node number 3 previous

Algorithm For
Deletion Of
Node When
Information Is
Known

delinfo(start,previous,node,data) [data is the information to insert]

step-1 : previous = &start

node = start.next

step-2 : repeat while(node != null)

if(node → info = data) then:

previous → next =node → next

free(node)

return

else :

node = node → next

previous = previous → next

step-3 : return

Example: delete a node at info =4

5 Next

start Node 1

2 Next

Node 2

4 Next

Node 3

7 Next

Node 4

Null

node info=4 previous

Data Structure
Lecture 6: Stack

Prepared by

Dr. Mohammed Salah Al-Obiadi

STACK

• Stack is a linear data structure.

• Follows the principle of LIFO (Last in First Out).

• Any data structure use the LIFO principle, it can
be called as STACK.

Operations Performed
With STACK

1- PUSH: which
adds an element to
the collection.

2- POP: which
removes the most
recently added
element.

Overflow
conditions

• During the PUSH (add) operation,
we have to check the condition
for overflow

• Condition for OVERFLOW

• Top = size −1 (for the STACK starts
with 0)

• Example of stack of size 6.

• Now the stack has 6 items so
we can’t add any item.

Item 5

Item 4

Item 3

Item 2

Item 1

Item 0

Item 6: We can’t add
Item 6 because Stack

is full

Top

Underflow
conditions

• During the POP (delete)
operation, we have to check the
condition for underflow.

• Condition for

• Top =-1 (for the STACK starts with 0)

• Example of stack of size 6.

• Now the stack is empty and
Top=-1, so we can’t remove
any item.

Stack is empty.
There is nothing to

delete

Top-1

Can we do PUSH(76)??

No, because OVERFLOW (top = size −1 Condition for OVERFLOW)

Can we do POP??

No, because the stack is underflow (top = −1 Condition for underflow)

Algorithm For Push Operation

PUSH(stack[size], no, top) [no is the number to insert] [top is the position of the stack]

step-1 : if (top = size - 1) then :

write : “overflow”

return

step-2 : top : = top +1

stack[top] := no

step-3 : return

Algorithm For POP Operation

pop(stack[size], top) [stack[size] is the stack] [top is the position of the stack]

Step-1 : if (top = - 1) then :

write : “underflow”

return

Step-2 : write : stack[top]

top := top -1

Step-3 : return

Algorithm For Traverse Operation

Traverse(stack[size], top)

Step-1 : if (top = - 1) then :

write : “stack is empty”

return

Step-2 : set i : = 0

Step-3 : repeat for i = top to 0 by -1

write : stack[i]

Step-4 : return

Algorithm For Update Operation

Can you do it?

Applications of STACK

1- Checking of the parenthesis of an expression

2- Reversing of a string

3- In Recursion

4- Evaluation of Expression

Data Structure
Lecture 7: Queue

Prepared by

Dr. Mohammed Salah Al-Obiadi

Queue

In a stack, insertion and removal of the item was permitted only from one end.

Item inserted at last removed first from the stack.

How to ensure that the items are removed in the order they have inserted?? Solution
is the Queue.

Queue is a data structure that can be considered as open from both the ends.

Queue follows the principle of FIFO (First In First Out).

Insertion is accomplished from one end known as rear.

Removal of the item is taking place on the other end known as front.

Queue

commonly
implemented
operations

1- Insert.

• During the INSERT operation
we have to check the
condition for OVERFLOW

2- Delete.

• During the DELETE operation
we have to check the
condition for UNDERFLOW.

Types of
Queue

1- Linear Queue

2- Circular Queue

3- D - Queue (Double ended queue)

4- Priority Queue.

Linear Queue
• A linear queue is a linear data structure that serves the request first,

which has been arrived first.

• Overflow: insert an element with a filled QUEUE.

• Condition for OVERFLOW

• Rear = size -1

• UNDERFLOW: delete an element from an empty QUEUE.

• Condition for UNDERFLOW

• Front = -1 (for the QUEUE starts with 0)

• CONDITION FOR EMPTY QUEUE

• Front = -1 and Rear = -1

Example: insert

Example: Delete

Algorithm For Insert Operation

• Insert(queue[size], front, rear, no)

• Step 1 : if (rear = size – 1) then :

• write : “overflow”

• return

• Step 2 : if (rear = -1) then :

• front := 0

• rear :=0

• else:

• rear :=rear+1

• Step 3: queue[rear] :=no

• Step 4: return

Algorithm For Delete Operation

• Delet(queue[size], front, rear)

• Step 1 : if (front = -1) then :
• write : “underflow”

• return

• Step 2 : write: queue[front]

• Step 3 : if (front ==rear) then :
• front := -1

• rear :=-1

• else :
• front := front +1

• Step 4: return

Algorithm For Traverse Operation

• Traverse(queue[size], front, rear)

• Step 1 : if (front = -1) then :
• write : “ queue is empty ”

• return

• Step 2 : set i:=0

• Step 3 : repeat for i = front to rear
• write : queue[i]

• Step 4: return

Algorithm For Update Operation

• Update(queue[size], no, front, rear)

• Step-1 : if (rear = - 1) then :

• write : “stack is empty”

• return

• Step-2 : set i: =0

• Step-3 : repeat for i = front to rear

• if (no = queue[i]) then:

• queue[i] = new no

• return

• if i=rear then:

• write : “update not completed”

• Step-4 : return

Applications of Queue

1- Operating systems schedule jobs (with equal priority) in the order of arrival (e.g., a print queue).

2- Simulation of real-world queues such as lines at a ticket counter or any other first come first-served scenarios.

3- Multiprogramming.

4- Asynchronous data transfer (file IO, pipes, sockets).

5- Waiting times of customers at call center.

6- Determining number of cashiers to have at a supermarket.

Data Structure
Lecture 8: Tree

Prepared by

Dr. Mohammed Salah Al-Obiadi

TREE

• A TREE is a dynamic data structure that represents the
hierarchical relationships between individual data items.

• It’s a data structure in which the elements are arranged in the
parent and child relationship manner.

• In a tree, nodes are organized in a hierarchical way in such a
way that:

• Root is the beginning of the tree.

• Branches are Lines that connecting the nodes.

• Leaf nodes are nodes that have no children.

Figure 1 shows Example of a Tree

Tree Terminologies

Node: Each element of a tree is called as node. In the previous figure there are 14 nodes.

Root is the beginning of the tree. In figure 1: A is the root node.

Parent: Parent of a node is the immediate predecessor of a node. In figure 1: B is the parent of E and F.

Child: Each immediate successor of a node is known as child. In figure 1: B, C, D are children of A.

Siblings: The child nodes of a given parent node are called siblings. In figure 1: H, I, J are siblings.

Degree of a Node: The number of sub-trees of a node in a given tree. In figure 1:

• The degree of node A is 3

• The degree of node B is 2

• The degree of node G is 1

• The degree of node F is 0

Tree Terminologies

Degree of Tree: The maximum degree of nodes in a given tree. In the figure the maximum degree of nodes A
and D is 3. So the degree of Tree is 3.

Terminal Node: A node with degree zero is called terminal node or a leaf.

Level: The entire tree structured is leveled in such a way that the root is always at the level 0, then its
immediate children are at level 1, and their immediate children are at level 2 and so on up

Path: Path is the sequence of consecutive edges from the source node to the destination node path
between A and M is (A,D),(D,I),(I,M).

Height: The height of node n is the length of the longest path from n to leaf. The height of B is 2 and F is 0.

BINARY
TREE

• A binary tree is a special
form of a tree in which
every node of the tree can
have at most two children.

OR

• In a binary tree the
degree of each node is
less than or equal to 2.

Types of Binary Tree

1. Full Binary Tree

2. Perfect Binary Tree

3. Pathological Binary Tree

Full Binary Tree
In a Full Binary Tree the out degree of every node is either 2 or Nil.

Perfect Binary Tree
Perfect Binary Tree is a Binary Tree in which all nodes have 2 children and all the
leaf nodes are at the same depth or same level.

Pathological Binary Tree

Array Representation of a Tree

• The ROOT node is always kept as the FIRST element of the array i.e/ in the 0-
Index the root node will be store. Then, in the successive memory locations the
left child and right child are stored.

• Example:

Linked List Representation of a Tree (Double Linked List)

Operations Performed With the Binary Tree

➢Creation

➢Insertion

➢Deletion

➢Searching

➢Copying

➢Merging

➢Updating

Algorithm for Creation of Binary Tree

Create (node, info) [node is the structure having both left and right pointer. info is data]
Step-1 : if (node = null) then:

Node := new Node() allocate a memory to node
Node → info := info
Node → left := null
Node → right := null
return

Step-2 : if node → info>= info then:
create(node → left, info)

else:
create(node → right, info)

Step-3 : return(node)

Data Structure
Lecture 8: Tree 2

Prepared by

Dr. Mohammed Salah Al-Obiadi

Traversing With Tree

• The tree traversing is the way to visit all the nodes of the tree on a specific order.

• The Tree traversal can be accomplished in four different ways:

• Inorder Traversal

• Pre Order Traversal.

• Post Order Traversal

• Level Order Traversal

Inorder traversal

• Traverse the Left Subtree in INORDER(Left)

• Visit the Root node

• Traverse the Right Subtree in INORDER(Right)

Preorder Traversal

• Visit the Root Node

• Traverse the Right Subtree in PREORDER(Left)

• Traverse the Right Subtree in PREORDER(Right)

Postorder Traversal

• Traverse the Right Subtree in POSTORDER(Left)

• Traverse the Right Subtree in POSTORDER(Right)

• Visit the Root Node

Level Order Traversal

• In this type of traversal the elements will be visited according to level wise but it
is not so far used.

Examples

1. Inorder : D B H E A F C I G

2. Preorder : A B D E H C F G I

3. Post Order : D H E B F I G C A

4. Level Order : A B C D E F G H I

Conversion Of A Tree From Inorder And Preorder

• INORDER : D B H E A F C I G

• PREORDER : A B D E H C F G I

• Choose the ROOT from the preorder and from inorder find the nodes in left and right and this process will
continue up to all the elements are chosen from the preorder/inorder.

• STEP1: From preorder A is the root and from inorder we will find that in the left of A (D,B,H,E) and in the
right (F,C,I,G):

• STEP2: Again from Preorder ‘B’ will be chosen as PARENT and from Inorder in the left of B (D) and in the
right (H,E):

• STEP3: From Preorder ‘E’ will
chosen as the PARENT and from
inorder on its left ‘H’ is present:

• STEP4: From Preorder we will
choose ‘C’ as the PARENT and from
inorder we observe that in the left of
‘C’ (F) will placed and in the right
(I,G)

• STEP5: From the PREORDR we
observe that ‘G’ is the parent and from
the INORDER I will be used as the Left
child of ‘G’.

Conversion Of A Tree From Inorder And Postorder

• INORDER : D B H E A F C I G

• POST ORDER : D H E B F I G C A

• Choose the ROOT from the postorder (from the right) and from
inorder find the nodes in left and right and this process will continue up
to all the elements are chosen from the postorder/inorder.

• STEP1 : From the right of POSTORDER ‘A’ will

be chosen as the ROOT and from INORDER we

observe that in the left of A (D,B,H,E,A) and in the

right (F,C,I,G) will be there.

• STEP2: From the POSTORDER ‘C’ will be chosen

as the PARENT and from INORDER we observe

that in the right of ‘C’ (I,G) and to the left (F) will

be used.

• STEP3: From the right of POSTORDER ‘G’ will be chosen as the
PARENT and from inorder to the left of ‘G’ (I) will be used.

• STEP4: From the right to postorder ‘B’ will be chosen as the PARENT
and from the INORDER to we observe that to the right of ‘B’ (H,E,A)
and to the left (D) will be used.

• STEP5: From the right to postorder we will choose ‘E’ as PARENT and from the Inorder to the left of ‘E’ (H)
will be used.

Applications of Binary Tree

• Expression Tree

• Binary Search Tree

• Height Balanced Tree (AVL Tree)

• Threaded Binary Tree

• Heap Tree

• Huffman Tree

• Decision Tree

• Red Black Tree

Expression Tree

• An expression tree is a Binary Tree which stores/represents the mathematical
(arithmetic) expressions.

• The leaves of an expression tree are operands, such as constants or variable names
and all the internal nodes are the operators.

• Formally we can define an expression Tree as a special kind of binary tree in
which:

• Each leaf is an operand. Examples: a, b, c, 6, 100

• The root and internal nodes are operators. Examples: +, -, *, /, ^

• Subtrees are subexpressions with the root being an operator.

EXAMPLE

• Represent an Expression Tree

• A + (B*C) – (D^E) / F + G * H

• choose an operator in such a way that the terms
in parenthesis will be in a side

• Choose a operator having higher precedence.

Data Structure
Lecture 10: Graph

Prepared by

Dr. Mohammed Salah Al-Obiadi

Graph

• GRAPH is a non-linear data structure in which
the elements are arranged randomly inside the
memory and are interconnected with each
other

• A graph G is an ordered pair of sets (V,E) where

• V is the set of vertices and

• E is the edges which connect the vertices.

Applications of Graph

• Google maps uses graphs for building transportation systems.

• In Facebook, users are considered to be the vertices and if they are
friends then there is an edge running between them.

• In World Wide Web, web pages are considered to be the vertices. There
is an edge from a page u to other page v if there is a link of page v on
page u.

• Path Optimization Algorithms, Path optimizations are primarily
occupied with finding the best connection that fits some predefined
criteria.

• Recommendation Search Engines: google uses graph to represent pages
and their importance.

Graph Terminologies

• Directed Graph: A graph in which every edge is directed is
called undirected graph.

• Undirected Graph: A graph in which every edge is
undirected

Graph Terminologies

WEIGHTED GRAPH: A graph is said to be weighted if its edges
have been assigned some non-negative value as weight.

Path is the sequence of consecutive edges from the source
node to the destination node.

CYCLIC GRAPH A graph that has cycles is called as cyclic graph.

ACYCLIC GRAPH A graph that has no cycle is known as acyclic
graph.

SOURCE A node which has no incoming edges, but has
outgoing edges

A is a source

Graph Terminologies

SINK A node, which has no outgoing edges but has incoming
edges

DEGREE In an undirected graph the number of edges
connected to a node is called the degree of that node. In
graph-3 the degree of the node A is 3 and the degree of the
node B is 2.

REGULAR GRAPH A graph is regular if every node is
adjacent to the same number of nodes

B is a Sink node

Representation
of Graph

The major components of the graph are node and
edges.

Like tree the graph can also be represented in two
different ways such as

• ARRAY REPRESENTATION

• LINKED REPRESENTATION

Overall, there are four major approaches to
represent the graph as

• Adjacency Matrix

• Adjacency Lists

• Adjacency Multilists

• Incedince Matrix

Adjacency Matrix

• The nodes that are adjacent to one another are represented as
matrix.

• The adjancy matrix of the graph G is a two-dimensional array of size
n * n(Where n is the number of vertices in the graph) with the
property that A[I][J] = 1, if the edge (VI, VJ) is in the set of edges and
A[I][J] = 0 if there is no such edge

Example:

V1 V2 V3 V4 V5 V6

V1 0 0 0 0 0 0

V2 1 0 0 0 0 0

V3 0 0 0 0 0 0

V4 1 1 0 0 0 0

V5 0 0 1 1 0 1

V6 0 0 0 0 1 0

If the graph was Undirected:

V1 V2 V3 V4 V5 V6

V1 0 1 0 1 0 0

V2 1 0 0 1 0 0

V3 0 0 0 0 1 0

V4 1 1 0 0 1 0

V5 0 0 1 1 0 1

V6 0 0 0 0 1 0

Traversal of Graph

• The Graph Traversal is of two types such as

• Breadth First Search (BFS).

• Depth First Search (DFS).

Data Structure
Lecture 11: Hashing

Prepared by

Dr. Mohammed Salah Al-Obiadi

Hash Table
• Hashing is a technique used

for storing and retrieving
information as quickly as
possible.

• It is used to perform optimal
searches and is useful in
implementing symbol tables.

• Arrays, linked list, trees
requires O(N) or log(N) to,
search, traverse, add or
delete, while with hashtable
it requires only O(1) time to
do these operations.

• A hash table is a array with
mapping function.

Why hash table is important

• If we have a set of names Ahmed, Yaser, Yasien, Mina, Mustafa, Lina.

• Let's suppose that you put these names in an array or a linked list.

• Let’s suppose that you are looking for the name Lina.

• Then, you will need to match all the array or linked list elements to find that name
because it’s the last name in the list.

• This name costs loop of 6 to find it and if the list of names = n, then it costs O(n) to find it.

• With hash table, you give the name Lina, and you get it immediately in O(1). How is that?
We will see in the next slides.

Time Complexity in Big O notation

Components of Hashing

• Hashing has four key components:
1.Hash Table
2.Hash Functions
3.Collisions
4.Collision Resolution Techniques

Hash Table

• Hash table or hash map is a data structure that stores the keys and their associated values.

• Hash table is a kind of array.

• It uses a hash function to map keys to their associated values.

• The terms widely used with hash table are Key, value. See Figure down.

Key here can

be number,

name, text,

picture!!

Hash
Functions

The hash function is used to transform the key into the
index.

The hash function should map each possible key to a
unique slot index.

A hash function that maps each item into a unique slot
is referred to as a perfect hash function.

A hash function can lead to collisions.

Collisions happen when a hash function for two keys
produce same index.

Our goal is to create a hash function that minimizes the
number of collisions

How to choose your hash function?

• Example of phone number 436-555-4601.

• Consider the hash function h(x) = sum of numbers % hashtable size.

• The % is the mode or division reminder and x is the phone number.

• Suppose hashtable size=10.

• So, h(436-555-4601)= (4+3+6+5+5+5+4+6+0+1) %10 = 4

• Another phone (479-345-6537)

• h(479-345-6537)= (4+7+9+3+4+5+6+5+3+7) %10 = 3

0 1 2 3 4 5 6 7 8 9

436-555-4601

0 1 2 3 4 5 6 7 8 9

479-345-6537 436-555-4601

0 1 2 3 4 5 6 7 8 9

• h(564-767-6537)= (5+6+4+7+6+7+6+5+3+7) %10 = 6

• h(565-387-9865)= (5+6+5+3+8+7+9+8+6+5) %10 = 2

• h(343-387-9865)= (3+4+3+3+8+7+9+8+6+5) %10 =6, here we have collision because index 6 already full.

• Problems with hashtable:
1. Number of elements can be larger than hashtable size.
2. An input that can lead to same index which is called collision

479-345-6537 436-555-4601 564-767-6537

0 1 2 3 4 5 6 7 8 9

565-387-9865 479-345-6537 436-555-4601 564-767-6537

0 1 2 3 4 5 6 7 8 9

Characteristics of Good Hash Functions

Minimize
collision

1

Be easy and
quick to
compute

2

Distribute key
values evenly in
the hash table

3

Use all the
information
provided in the
key

4

Collisions

Collision Resolution Techniques

• Collision resolution is The process of finding an alternate location.

• There are a number of collision resolution techniques:

• Direct Chaining: An array of linked list application

• Separate chaining

• Open Addressing: Array-based implementation

• Linear probing (linear search)

• Quadratic probing (nonlinear search)

• Double hashing (use two hash functions)

Linear
probing

The interval between probes is fixed at 1.

In linear probing, we search the hash table
sequentially, starting from the original hash location.

If a location is occupied, we check the next location.

rehash(key) = (n + 1)% tablesize

Where n is the current location found for key

Quadratic
Probing

Linear probing can lead to cluster of keys together.

The problem of Clustering can be eliminated if we use
the quadratic probing method

In quadratic probing, we start from the original hash
location n.

If a location is occupied, we check the next location.

rehash(key) = (n + k2)% tablesize

Where n is the current location found for key

If a location is occupied, we check the locations i + 12 ,
i +22, i + 32, i + 42

Example of
Quadratic
Probing

• Let us assume that the table size is 11 (0..10)

• Insert keys

▪ 31 mod 11 = 9

▪ 19 mod 11 = 8

▪ 2 mod 11 = 2

▪ 13 mod 11 = 2 → 2 + 12 mod 11 = 3

▪ 25 mod 11 = 3 → 3 + 12 mod 11 =4

▪ 24 mod 11 = 2 → 2 + 12 mod 11 , 2 + 22 = 6

▪ 21 mod 11 = 10

▪ 9 mod 11 = 9 → 9 + 12, 9 + 22 mod 11, 9 + 32

mod 11=7

	Course Weekly Outline
	Data Structure lecture 1
	Data Structure lecture 2
	Data Structure lecture 3
	Data Structure lecture 4
	Data Structure lecture 5
	Data Structure lecture 6
	Data Structure lecture 7
	Data Structure lecture 8
	Data Structure lecture 9
	Data Structure lecture 10
	Data Structure lecture 11

