
18.404/6.840 Intro to the Theory of Computation

Instructor: Mike Sipser

TAs:
- Fadi Atieh, Damian Barabonkov,

- Alex Dimitrakakis, Thomas Xiong,
- Abbas Zeitoun, and Emily Liu

1

Computability Theory 1930s – 1950s

- What is computable… or not?

- Examples:
program verification, mathematical truth

- Models of Computation:
Finite automata, Turing machines, …

Complexity Theory 1960s – present

- What is computable in practice?

- Example: factoring problem

- P versus NP problem

- Measures of complexity: Time and Space

- Models: Probabilistic and Interactive computation

18.404 Course Outline

2

Course Mechanics

Zoom Lectures
- Live and Interactive via Chat

- Live lectures are recorded for later viewing

Zoom Recitations
- Not recorded

- Two convert to in-person

- Review concepts and more examples

- Optional unless you are having difficulty
Participation can raise low grades

- Attend any recitation

Text
- Introduction to the Theory of Computation

Sipser, 3rd Edition US. (Other editions ok but
are missing some Exercises and Problems).

Homework bi-weekly – 35%

- More information to follow

Midterm (15%) and Final exam (25%)

- Open book and notes

Check-in quizzes for credit – 25%

- Distinct Live and Recorded versions

- Complete either one for credit within 48 hours

- Initially ungraded; full credit for participation

3

Course Expectations

Prerequisites

Prior substantial experience and comfort with
mathematical concepts, theorems, and proofs.
Creativity will be needed for psets and exams.

Collaboration policy on homework

- Allowed. But try problems yourself first.

- Write up your own solutions.

- No bibles or online materials.

4

Role of Theory in Computer Science

1. Applications

2. Basic Research

3. Connections to other fields

4. What is the nature of computation?

5

Input: finite string
Output: Accept or Reject

Computation process: Begin at start state,
read input symbols, follow corresponding transitions,
Accept if end with accept state, Reject if not.

Examples: 01101 → Accept
00101 → Reject

𝑀1 accepts exactly those strings in 𝐴 where
𝐴 = {𝑤| 𝑤 contains substring 11}.

Let’s begin: Finite Automata

𝑀1

𝑞1 𝑞2 𝑞3
1

0,1

0

10

States: 𝑞1 𝑞2 𝑞3

Transitions:

Start state:

Accept states:

1

Say that 𝐴 is the language of 𝑀1 and that 𝑀1 recognizes 𝐴 and that 𝐴 = 𝐿(𝑀1).

6

Finite Automata – Formal Definition

Defn: A finite automaton 𝑀 is a 5-tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

𝑄 finite set of states

Σ finite set of alphabet symbols

𝛿 transition function 𝛿: 𝑄 × Σ → 𝑄

𝑞0 start state

𝐹 set of accept states

𝛿 (𝑞, 𝑎) = 𝑟 means 𝑞 𝑟a
𝑀1

𝑞1 𝑞2 𝑞3
1

0,1

0

1
0

𝑀1 = (𝑄, Σ, 𝛿, 𝑞1, 𝐹)

𝑄 = {𝑞1, 𝑞2, 𝑞3}

Σ = {0, 1}

𝐹 = {𝑞3}

0 1

𝑞1 𝑞1 𝑞2

𝑞2 𝑞1 𝑞3

𝑞3 𝑞3 𝑞3

𝛿 =

Example:

7

Finite Automata – Computation

Strings and languages

- A string is a finite sequence of symbols in Σ

- A language is a set of strings (finite or infinite)

- The empty string ε is the string of length 0

- The empty language ø is the set with no strings

Defn: 𝑀 accepts string 𝑤 = 𝑤1𝑤2 … 𝑤𝑛 each 𝑤𝑖 𝜖 Σ
if there is a sequence of states 𝑟0, 𝑟1, 𝑟2, , … , 𝑟𝑛 𝜖 𝑄
where:

- 𝑟0 = 𝑞0
- 𝑟𝑖 = 𝛿(𝑟𝑖−1, 𝑤𝑖) for 1 ≤ 𝑖 ≤ 𝑛
- 𝑟𝑛 𝜖 𝐹

Recognizing languages

- 𝐿(𝑀) = {𝑤| 𝑀 accepts 𝑤}

- 𝐿(𝑀) is the language of 𝑀

- 𝑀 recognizes 𝐿(𝑀)

Defn: A language is regular if some
finite automaton recognizes it.

8

Regular Languages – Examples

𝐿 𝑀1 = {𝑤| 𝑤 contains substring 11} = 𝐴

Therefore 𝐴 is regular

More examples:

Let 𝐵 = 𝑤 𝑤 has an even number of 1s}
𝐵 is regular (make automaton for practice).

Let 𝐶 = 𝑤 𝑤 has equal numbers of 0s and 1s}
𝐶 is not regular (we will prove).

𝑀1

𝑞1 𝑞2 𝑞3
1

0,1

0

10

Goal: Understand the regular languages

9

Regular Expressions
Regular operations. Let 𝐴, 𝐵 be languages:

- Union: 𝐴 ∪ 𝐵 = 𝑤 𝑤 ∈ 𝐴 or 𝑤 ∈ 𝐵}

- Concatenation: 𝐴 ∘ 𝐵 = 𝑥𝑦 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵} = 𝐴𝐵

- Star: 𝐴∗ = 𝑥1… 𝑥𝑘 each 𝑥𝑖 ∈ 𝐴 for 𝑘 ≥ 0}
Note: ε ∈ 𝐴∗ always

Example. Let 𝐴 = {good, bad} and 𝐵 = {boy, girl}.

- 𝐴 ∪ 𝐵 = {good, bad, boy, girl}

- 𝐴 ∘ 𝐵 = 𝐴𝐵 = {goodboy, goodgirl, badboy, badgirl}

- 𝐴∗ = {ε, good, bad, goodgood, goodbad, badgood,
badbad, goodgoodgood, goodgoodbad, … }

Regular expressions

- Built from Σ, members Σ, ∅, ε [Atomic]

- By using ∪,∘,∗ [Composite]

Examples:

- 0 ∪ 1 ∗ = Σ∗ gives all strings over Σ

- Σ∗1 gives all strings that end with 1

- Σ∗11Σ∗ = all strings that contain 11 = 𝐿 𝑀1

Goal: Show finite automata equivalent to regular expressions
10

Closure Properties for Regular Languages

Theorem: If 𝐴1, 𝐴2 are regular languages, so is 𝐴1 ∪ 𝐴2 (closure under ∪)

Proof: Let 𝑀1 = (𝑄1, Σ, 𝛿1 , 𝑞1 , 𝐹1) recognize 𝐴1
𝑀2 = (𝑄2, Σ, 𝛿2 , 𝑞2 , 𝐹2) recognize 𝐴2

Construct 𝑀 = (𝑄, Σ , 𝛿 , 𝑞0, 𝐹) recognizing 𝐴1 ∪ 𝐴2

𝑀 should accept input 𝑤 if either 𝑀1 or 𝑀2 accept 𝑤.

𝑀2

𝑟

𝑀1

𝑞 𝑀

𝑞, 𝑟

Components of 𝑴:

𝑄 = 𝑄1 × 𝑄2

= 𝑞1, 𝑞2 𝑞1 ∈ 𝑄1 and 𝑞2 ∈ 𝑄2}

𝑞0 = (𝑞1, 𝑞2)

𝛿 𝑞, 𝑟 , 𝑎 = 𝛿1 𝑞, 𝑎 , 𝛿2 𝑟, 𝑎

𝐹 = 𝐹1 × 𝐹2

𝐹 = 𝐹1 × 𝑄2 ∪ 𝑄1 × 𝐹2
NO! [gives intersection]

?
11

Closure Properties continued

Theorem: If 𝐴1, 𝐴2 are regular languages, so is 𝐴1𝐴2 (closure under ∘)

Proof: Let 𝑀1 = (𝑄1, Σ, 𝛿1 , 𝑞1 , 𝐹1) recognize 𝐴1
𝑀2 = (𝑄2, Σ, 𝛿2 , 𝑞2 , 𝐹2) recognize 𝐴2

Construct 𝑀 = (𝑄, Σ , 𝛿 , 𝑞0, 𝐹) recognizing 𝐴1𝐴2

𝑀2𝑀1

𝑀 should accept input 𝑤

if 𝑤 = 𝑥𝑦 where
𝑀1 accepts 𝑥 and 𝑀2 accepts 𝑦.

𝑀

𝑤
𝑥 𝑦

Doesn’t work: Where to split 𝑤?
12

Quick review of today

1. Introduction, outl ine, mechanics, expectations

2. Finite Automata, formal definition, regular languages

3. Regular Operations and Regular Expressions

4. Proved: Class of regular languages is closed under ∪

5. Started: Closure under ∘ , to be continued…

13

MIT OpenCourseWare
https://ocw.mit.edu

18.404J Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

18.404/6.840 Lecture 2

Last time: (Sipser §1.1)

- Finite automata, regular languages

- Regular operations ∪,∘,∗
- Regular expressions
- Closure under ∪

Today: (Sipser §1.2 – §1.3)

- Nondeterminism
- Closure under ∘ and ∗
- Regular expressions → finite automata
Goal: Show finite automata equivalent to regular expressions

1

Problem Sets

- 35% of overall grade

- Problems are hard! Leave time to think about them.

- Writeups need to be clear and understandable, handwritten ok.
Level of detail in proofs comparable to lecture: focus on main ideas.
Don’t need to include minor details.

- Submit via gradescope (see Canvas) by 2:30pm Cambridge time.
Late submission accepted (on gradescope) until 11:59pm following day:

1 point (out of 10 points) per late problem penalty.
After that solutions are posted so not accepted without S3 excuse.

- Optional problems:
Don’t count towards grade except for A+.
Value to you (besides the challenge):
Recommendations, employment (future grading, TA, UROP)

- Problem Set 1 is due in one week.

2

Closure Properties for Regular Languages

Theorem: If 𝐴1, 𝐴2 are regular languages, so is 𝐴1𝐴2 (closure under ∘)

Recall proof attempt: Let 𝑀1 = (𝑄1, Σ, 𝛿1 , 𝑞1 , 𝐹1) recognize 𝐴1
𝑀2 = (𝑄2, Σ, 𝛿2 , 𝑞2 , 𝐹2) recognize 𝐴2

Construct 𝑀 = (𝑄 , Σ, 𝛿 , 𝑞0, 𝐹) recognizing 𝐴1𝐴2

𝑀2𝑀1

𝑀 should accept input 𝑤

if 𝑤 = 𝑥𝑦 where
𝑀1 accepts 𝑥 and 𝑀2 accepts 𝑦.

𝑀
𝑤

𝑥 𝑦

Doesn’t work: Where to split 𝑤?

Hold off. Need new concept.

3

Nondeterministic Finite Automata

Nondeterminism doesn’t correspond
to a physical machine we can build.
However, it is useful mathematically.

𝑁1

𝑞1 𝑞2 𝑞4
b a,ε

b

aa

𝑞3

New features of nondeterminism:
- multiple paths possible (0, 1 or many at each step)

- ε-transition is a “free” move without reading input
- Accept input if some path leads to accept

Example inputs:
- ab accept
- aa reject
- aba accept
- abb reject

Check-in 2.1

Check-in 2.1

What does 𝑁1 do on input aab ?
(a) Accept
(b) Reject
(c) Both Accept and Reject

4

NFA – Formal Definition

Ways to think about nondeterminism:

Computational: Fork new parallel thread and
accept if any thread leads to an accept state.

Mathematical: Tree with branches.
Accept if any branch leads to an accept state.

Magical: Guess at each nondeterministic step
which way to go. Machine always makes the
right guess that leads to accepting, if possible.

𝑁1

𝑞1 𝑞2 𝑞4
b a,ε

b

aa

𝑞3

Defn: A nondeterministic finite automaton (NFA)
𝑁 is a 5-tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

- all same as before except 𝛿

- 𝛿: 𝑄 × Σε → 𝓟 𝑄 = 𝑅 𝑅 ⊆ 𝑄}

- In the 𝑁1 example: 𝛿 𝑞1, a = {𝑞1, 𝑞2}
𝛿 𝑞1, b = ∅

Σ ∪ {ε}
power set

5

Converting NFAs to DFAs

Theorem: If an NFA recognizes 𝐴 then 𝐴 is regular

Proof: Let NFA 𝑀 = (𝑄, Σ, 𝛿, 𝑞0 , 𝐹) recognize 𝐴

Construct DFA 𝑀′ = (𝑄′, Σ, 𝛿′, 𝑞0
′ , 𝐹′) recognizing 𝐴

(Ignore the ε-transitions, can easily modify to handle them)

IDEA: DFA 𝑀′ keeps track of the subset of possible states in NFA 𝑀.

Construction of 𝑴′:

𝑄′ = 𝓟 𝑄

𝛿′ 𝑅, 𝑎 = 𝑞 𝑞 ∈ 𝛿(𝑟, 𝑎) for some 𝑟 ∈ 𝑅}

𝑞0
′ = {q0}

𝐹′ = 𝑅 ∈ 𝑄′ 𝑅 intersects 𝐹}

𝑀
𝑞3

𝑞7

NFA

𝑀′

{𝑞3,𝑞7}

DFA

𝑅 ∈ 𝑄′

Check-in 2.2

Check-in 2.2

If 𝑀 has 𝑛 states, how many
states does 𝑀′ have by this
construction?
(a) 2𝑛
(b) 𝑛2

(c) 2𝑛

6

Return to Closure Properties

Recall Theorem: If 𝐴1, 𝐴2 are regular languages, so is 𝐴1 ∪ 𝐴2
(The class of regular languages is closed under union)

New Proof (sketch): Given DFAs 𝑀1 and 𝑀2 recognizing 𝐴1 and 𝐴2
Construct NFA 𝑀 recognizing 𝐴1 ∪ 𝐴2

𝑀2

𝑀1

ε

ε

𝑀
Nondeterminism

parallelism
vs

guessing

7

Closure under ∘ (concatenation)

Theorem: If 𝐴1, 𝐴2 are regular languages, so is 𝐴1𝐴2

Proof sketch: Given DFAs 𝑀1 and 𝑀1 recognizing 𝐴1 and 𝐴2
Construct NFA 𝑀 recognizing 𝐴1𝐴2

𝑀2𝑀1
ε

ε

𝑀

𝑀 should accept input 𝑤

if 𝑤 = 𝑥𝑦 where
𝑀1 accepts 𝑥 and 𝑀2 accepts 𝑦.

Nondeterministic 𝑀′ has the option
to jump to 𝑀2 when 𝑀1 accepts.

𝑤 =
𝑥 𝑦

8

Closure under ∗ (star)

Theorem: If 𝐴 is a regular language, so is 𝐴∗

Proof sketch: Given DFA 𝑀 recognizing 𝐴

Construct NFA 𝑀′ recognizing 𝐴∗

ε

ε

𝑀

𝑀′

ε

Make sure 𝑀′ accepts ε

𝑀′ should accept input 𝑤

if 𝑤 = 𝑥1𝑥2 … 𝑥𝑘

where 𝑘 ≥ 0 and 𝑀 accepts each 𝑥𝑖

𝑤 =
𝑥1 𝑥2 𝑥3 𝑥4

Check-in 2.3

If 𝑀 has 𝑛 states, how many states
does 𝑀′ have by this construction?
(a) 𝑛
(b) 𝑛 + 1
(c) 2𝑛

Check-in 2.3

9

Regular Expressions → NFA

Theorem: If 𝑅 is a regular expr and 𝐴 = 𝐿 𝑅 then 𝐴 is regular

Proof: Convert 𝑅 to equivalent NFA 𝑀:

Example:

Convert a ∪ ab ∗ to equivalent NFA

a:

b:

ab:

a ∪ ab:

a ∪ ab ∗:

If 𝑅 is atomic:

𝑅 = 𝑎 for 𝑎 ∈ Σ

𝑅 = ε

𝑅 = ∅

If 𝑅 is composite:

𝑅 = 𝑅1 ∪ 𝑅2

𝑅 = 𝑅1 ∘ 𝑅2

𝑅 = 𝑅1
∗

Equivalent 𝑀 is:
𝑎

}Use closure constructions

a

a b

b

ε

a

a bε
ε

ε

ε
a

a bε
ε

ε
ε

ε

10

Quick review of today

1. Nondeterministic f inite automata (NFA)

2. Proved: NFA and DFA are equivalent in power

3. Proved: Class of regular languages is closed under ∘,∗

4. Conversion of regular expressions to NFA

Check-in 2.4

Recitations start tomorrow online (same link as for lectures).
They are optional, unless you need more help.
You may attend any recitation(s).
Which do you think you’ll attend? (you may check several)
(a) 10:00 (b) 11:00 (c) 12:00
(d) 1:00 (e) 2:00 (f) I prefer a different time (please

post on piazza, but no promises)
Check-in 2.4

11

MIT OpenCourseWare
https://ocw.mit.edu

18.404J Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

18.404/6.840 Lecture 3

Last time:
- Nondeterminism
- NFA → DFA
- Closure under ∘ and ∗
- Regular expressions → finite automata

Today: (Sipser §1.4 – §2.1)

- Finite automata → regular expressions
- Proving languages aren’t regular
- Context free grammars

We start counting Check-ins today.
Review your email from Canvas.

Homework due Thursday.

1

DFAs → Regular Expressions

Recall Theorem: If 𝑅 is a regular expressipn and 𝐴 = 𝐿 𝑅 then 𝐴 is regular

Proof: Conversion 𝑅 → NFA 𝑀 → DFA 𝑀′

Today’s Theorem: If 𝐴 is regular then 𝐴 = 𝐿 𝑅 for some regular expr 𝑅

Proof: Give conversion DFA 𝑀 → 𝑅

WAIT! Need new concept first.

Regular
expression 𝑅

𝑀

Finite
automaton

Recall: we did a ∪ ab ∗ as an example

2

Generalized NFA

For convenience we will assume:
- One accept state, separate from the start state

- One arrow from each state to each state, except
a) only exiting the start state
b) only entering the accept state

We can easily modify a GNFA to have this special form.

Defn: A Generalized Nondeterministic Finite Automaton (GNFA) is
similar to an NFA, but allows regular expressions as transition labels

𝐺1

𝑞1

aba∗b∗

b

a

𝑞3

a ∪ b aab

𝑞2

∅

𝑞4

ε

ε

3

Lemma: Every GNFA 𝐺 has an equivalent regular expression 𝑅

Proof: By induction on the number of states 𝑘 of 𝐺

Basis (𝑘 = 2):

Let 𝑅 = 𝑟

Induction step (𝑘 > 2): Assume Lemma true for 𝑘 − 1 states and prove for 𝑘 states

IDEA: Convert 𝑘-state GNFA to equivalent 𝑘 − 1 -state GNFA

𝑟𝐺 = Remember: 𝐺 is in special form

GNFA → Regular Expressions

𝑘 states

GNFA

𝑘 − 1 states

GNFA

4

𝑘 − 1 states
𝑘 states

𝑥

𝑥𝑞𝑖 𝑞𝑗

𝑞𝑖 𝑞𝑗

𝑟1

𝑟2

𝑟3

𝑟4
𝑟1 𝑟2

∗𝑟3 ∪ 𝑟4

𝑘-state GNFA → (𝑘—1)-state GNFA

1. Pick any state 𝑥 except
the start and accept states.

2. Remove 𝑥.

3. Repair the damage by
recovering all paths that
went through 𝑥.

4. Make the indicated change
for each pair of states 𝑞𝑖 , 𝑞𝑗 .

Thus DFAs and regular expressions are equivalent.

5

Non-Regular Languages

How do we show a language is not regular?

- Remember, to show a language is regular, we give a DFA.

- To show a language is not regular, we must give a proof.

- It is not enough to say that you couldn’t find a DFA for it,
therefore the language isn’t regular.

Two examples: Here Σ = {0,1}.

1. Let 𝐵 = 𝑤 𝑤 has equal numbers of 0s and 1s}
Intuition: 𝐵 is not regular because DFAs cannot count unboundedly.

2. Let 𝐶 = 𝑤 𝑤 has equal numbers of 01 and 10 substrings}
0101 ∉ 𝐶 0110 ∈ 𝐶

Intuition: 𝐶 is not regular because DFAs cannot count unboundedly.
However 𝐶 is regular! Sometimes intuition works, but it can also be wrong.

Moral: You need to give a proof.

]]

]

]

]

6

Method for Proving Non-regularity

Pumping Lemma: For every regular language 𝐴,
there is a number 𝑝 (the “pumping length”) such that
if 𝑠 ∈ 𝐴 and 𝑠 ≥ 𝑝 then 𝑠 = 𝑥𝑦𝑧 where

1) 𝑥𝑦𝑖𝑧 ∈ 𝐴 for all 𝑖 ≥ 0 𝑦𝑖 = 𝑦𝑦⋯𝑦
2) 𝑦 ≠ ε
3) 𝑥𝑦 ≤ 𝑝

Informally: 𝐴 is regular → every long string in 𝐴 can be pumped and the result stays in 𝐴.

Proof: Let DFA 𝑀 recognize 𝐴. Let 𝑝 be the number of states in 𝑀. Pick 𝑠 ∈ 𝐴 where 𝑠 ≥ 𝑝.

}

𝑖

𝑥

𝑦

𝑧

𝑀

𝑞𝑗

𝑠 =
𝑥 𝑦 𝑧

𝑞𝑗 𝑞𝑗

𝑀 will repeat a state 𝑞𝑗 when reading 𝑠

because 𝑠 is so long.

The path that 𝑀 follows
when reading 𝑠.

𝑥 𝑦 𝑦 𝑧

𝑞𝑗 𝑞𝑗 𝑞𝑗 is also accepted

7

Example 1 of Proving Non-regularity

Let 𝐷 = 0𝑘1𝑘 𝑘 ≥ 0}
Show: 𝐷 is not regular

Proof by Contradiction:
Assume (to get a contradiction) that 𝐷 is regular.
The pumping lemma gives 𝑝 as above. Let 𝑠 = 0𝑝1𝑝 ∈ 𝐷.
Pumping lemma says that can divide 𝑠 = 𝑥𝑦𝑧 satisfying the 3 conditions.

But 𝑥𝑦𝑦𝑧 has excess 0s and thus 𝑥𝑦𝑦𝑧 ∉ 𝐷 contradicting the pumping lemma.
Therefore our assumption (𝐷 is regular) is false. We conclude that 𝐷 is not regular.

Pumping Lemma: For every regular language 𝐴, there is a 𝑝
such that if 𝑠 ∈ 𝐴 and 𝑠 ≥ 𝑝 then 𝑠 = 𝑥𝑦𝑧 where

1) 𝑥𝑦𝑖𝑧 ∈ 𝐴 for all 𝑖 ≥ 0 𝑦𝑖 = 𝑦𝑦⋯𝑦
2) 𝑦 ≠ ε
3) 𝑥𝑦 ≤ 𝑝

≤ 𝑝
𝑧𝑥 𝑦

𝑠 = 000⋯000111⋯111

8

≤ 𝑝
𝑧𝑥 𝑦

Example 2 of Proving Non-regularity

Let 𝐹 = 𝑤𝑤 𝑤 ∈ Σ∗} . Say Σ∗ = {0,1}.
Show: 𝐹 is not regular

Proof by Contradiction:
Assume (for contradiction) that 𝐹 is regular.
The pumping lemma gives 𝑝 as above. Need to choose 𝑠 ∈ 𝐹. Which 𝑠?

Try 𝑠 = 0𝑝0𝑝 ∈ 𝐹. But that 𝑠 can be pumped and stay inside 𝐹. Bad choice.

Try 𝑠 = 0𝑝10𝑝1 ∈ 𝐹. Show cannot be pumped 𝑠 = 𝑥𝑦𝑧 satisfying the 3 conditions.
𝑥𝑦𝑦𝑧 ∉ 𝐹 Contradiction! Therefore 𝐹 is not regular.

𝑠 = 000⋯001000⋯001

≤ 𝑝
𝑧𝑥 𝑦

Pumping Lemma: For every regular language 𝐴, there is a 𝑝
such that if 𝑠 ∈ 𝐴 and 𝑠 ≥ 𝑝 then 𝑠 = 𝑥𝑦𝑧 where

1) 𝑥𝑦𝑖𝑧 ∈ 𝐴 for all 𝑖 ≥ 0 𝑦𝑖 = 𝑦𝑦⋯𝑦
2) 𝑦 ≠ ε
3) 𝑥𝑦 ≤ 𝑝

𝑠 = 000⋯000000⋯000

𝑦 = 00

9

Example 3 of Proving Non-regularity

Variant: Combine closure properties with the Pumping Lemma.

Let 𝐵 = 𝑤 𝑤 has equal numbers of 0s and 1s}
Show: 𝐵 is not regular

Proof by Contradiction:

Assume (for contradiction) that 𝐵 is regular.

We know that 0∗1∗ is regular so 𝐵 ∩ 0∗1∗ is regular (closure under intersection).

But 𝐷 = 𝐵 ∩ 0∗1∗ and we already showed 𝐷 is not regular. Contradiction!

Therefore our assumption is false, so 𝐵 is not regular.

10

Context Free Grammars

}(Substitution) Rules

Rule: Variable → string of variables and terminals
Variables: Symbols appearing on left-hand side of rule
Terminals: Symbols appearing only on right-hand side
Start Variable: Top left symbol

Grammars generate strings
1. Write down start variable
2. Replace any variable according to a rule

Repeat until only terminals remain
3. Result is the generated string
4. 𝐿(𝐺) is the language of all generated strings.

3 rules
R,S
0,1
S

Example of 𝐺1 generating a string

S → 0S1

S → R
R → ε

𝐺1

S

0 S 1

0 S 1

R
ε

S

0S1

00S11

00R11

0011

𝐿 𝐺1 = 0𝑘1𝑘 𝑘 ≥ 0}

In 𝐺1:

Tree of
substitutions

Resulting
string

∈ 𝐿 𝐺1

11

Quick review of today

1. Conversion of DFAs to regular expressions
Summary: DFAs, NFAs, regular expressions are al l equivalent

2. Proving languages not regular by using the pumping lemma
and closure properties

3. Context Free Grammars

12

MIT OpenCourseWare
https://ocw.mit.edu

18.404J Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

