
C++ Functions

Lecture 1

1

University of Anbar
College of Computer Science and Information Technology

Department of Computer Science

Object Oriented Programming

Second Class

Dr. Ruqayah R. Al-Dahhan

1st Semester

2

Lecture 1

The conditional operator

Functions:

• default parameters

• overloading

• reference parameters

Object Oriented Programming

3

• Modularity; object maintained independently of the other

objects.

• Information-hiding; through methods, the details remain hidden.

• Code re-use; re-use of object in the new program.

• Debugging ease; easier to spot problematic parts of program

Benefits

4

The conditional operator

A 'ternary' operator - it takes three arguments:

expr1 ? expr2 : expr3

If expr1 is true then expr2 is evaluated

otherwise expr3 is evaluated.

Remember logical expressions evaluate to a true or false

5

The conditional operator

It allows a shorthand form of an if statement:

if (y < z) {

x = y;

} else {

x = z;

}

can also be written:

x = (y < z) ? y : z;

Sometimes this makes for more compact or

efficient code.

6

Functions
As a matter of style, every function ought to have its prototype
declared before main() and its definition after main().

At any rate functions must have at least their prototypes set up

before they are used. So the compiler recognises their signatures.

(signature = type, name and argument number and types)

In C++ the use of void is optional in a function that has no

arguments:
int fct() { return global*2; }

Instead of :

int fct(void){return global*2; }

7

Default parameters

int power(int n, int k = 2) {

//k has a default value of 2

if (k == 2) { return n*n; }

return power(n,k-1)*n;

}

we can call this function in two different ways:

j = power(5,3); // 5 cubed

j = power(5); // 5 squared

8

Default parameters

Remarks:

Only trailing arguments may be defaulted.

More than one argument can be defaulted:

void fct(int j=4, int k=5, int m=7);

So we can call

fct(); or fct(1); or fct(1,2); or fct(1,2,3);

9

Overloading
int max(int m, int n) { // max of two ints

return (m>n)?m:n;

}

What about the max of two floats?

max is already in use -

float fmax(float x, float y) {

return (x>y)?x:y;

}

But it adds to the clutter of our program to have a different name.

10

Overloading

C++ allows functions with arguments of differing types, to

have the same name.

We call this function overloading.

int max(int m, int n) {

return (m>n)?m:n;

}

float max(float x, float y) { //is OK

return (x>y)?x:y;

}

11

Overloading

An overloaded function must have parameters that differ in

some way. Differing only by return type is not allowed.

Otherwise the compiler would be unable to distinguish

which version we mean because of the type promotion

rules.

int triple(int a){

return 3*a;

}

float triple(int a) {//Not allowed!!

return 3.0*a;

}

12

Overloading
One function can have more arguments than another, or

the types of the arguments can be different.

The compiler chooses which function to use by matching

the arguments.

13

Example #4

Function Overloading
• Write functions to return with the maximum number of two

numbers

inline int max(int x, int y)

{

if (x>y) return x; else return y;

}

inline double max(double x, double y)

{

if (x>y) return x; else return y;

}

An

overloaded

function is a

function that

is defined

more than

once with

different data

types or

different

number of

parameters

14

Call-by-reference
In C++, functions can use call-by-reference. (A different use

of the ampersand & symbol - here it says this argument is

call-by-reference) In the following the printout is j = 6

int main() {

int j = 4;

changeIt(j); // j will be passed by ref

normal(j); // j passed as a copy

cout << “j = “ << j << endl; // j is now 6

} void changeIt(int &p) {

p = p + 2;

}

void normal(int p){

p =7; // only acts on passed copy

}

15

Call-by-reference

p is called ‘reference parameter’. It refers back to the

original variable - so the function can alter its parameter.

void changeIt(int &p) {

p = p + 2;

}

16

Call-by-reference

We can create ‘reference variables’ similarly:

int main() {

int m;

int &q = m;

…

q is now just another name for the variable m.

And we can use it to manipulate the actual variable

m.

17

What is the output?

#include<iostream>

using namespace std;

main(){

int x=65, y=23, H;

H=(x>y)?x+4:y-3;

cout<<H;

}

Question

18

Inline Functions

• Sometimes, we use the keyword inline to define user-
defined functions

– Inline functions are very small functions, generally, one or
two lines of code

– Inline functions are very fast functions compared to the
functions declared without the inline keyword

• Example

inline double degrees(double radian)

{

return radian * 180.0 / 3.1415;

}

19

Example #1

• Write a function to test if a number is an odd

number

inline bool odd (int x)

{

return (x % 2 == 1);

}

20

Example #2

• Write a function to compute the distance between two

points (x1, y1) and (x2, y2)

Inline double distance (double x1, double y1,

double x2, double y2)

{

return sqrt(pow(x1-x2,2)+pow(y1-y2,2));

}

21

Example #3

• Write a function to compute n!

int factorial(int n)

{

int product=1;

for (int i=1; i<=n; i++) product *= i;

return product;

}

22

Example #4

Function Overloading
• Write functions to return with the maximum number of two

numbers

inline int max(int x, int y)

{

if (x>y) return x; else return y;

}

inline double max(double x, double y)

{

if (x>y) return x; else return y;

}

An

overloaded

function is a

function that

is defined

more than

once with

different data

types or

different

number of

parameters

23

Summary

Overload - to specify more than one function of the same name,

but with varying numbers and types of parameters.

Reference - another name for a variable. Access to a variable via a

reference is like manipulating the variable itself.

24

Lecture 2

•Structure

•Classes

1st Semester

25

#include <iostream.h>

struct Point{

int x;

int y;

};

void outputAPoint(Point); // function prototype

int main(){

Point one, two;

one.x = 1;

one.y = 2;

two.x = 3;

two.y = 4;

outputAPoint(one);

outputAPoint(two);

return 0;

}

void outputAPoint(Point p){

cout << "Point :" << p.x << "," << p.y << endl;

}

• C++ Struct syntax is

simpler

• Example Output:
Point : 1,2

Point : 3,4

26

Classes

A class is a user-defined type that

contains data as well as the set of

functions that manipulate that data.

27

C++ implements classes by

extending the idea of

structures.

The name of a struct is

automatically a new type.

We can use the keyword

class instead of struct -

they are almost the same

struct Point {

int x,y;

};

…

Point w;

Classes

28

Classes

In C++ a structure not only groups data, it also

groups operations that can be performed on
data.

struct Point {

int x,y;

void print(){

cout << “(” << x << “,” << y <<“)”;

}

};

We describe print as being a member function of the class

Point

29

Classes

w.print() invokes the print function of the

Point structure (or class)

int main(){

Point w;

w.x = 2;

w.y = 5;

w.print();

}

30

Classes

C++ limits the visibility of data and functions by allowing

public and private parts to a structure.

By default all elements of a struct are public.

Programs that use variables of this type are allowed to access

all data and all functions of the structure.

w.y = 5; // accessible to the calling code

w.print();

Sometimes we do not want all the innards of a class to be

accessible by calling code - we may want to hide part or all of
it.

31

Classes

Declarations within the private section of a structure

are only visible to the structure itself.

struct Point {

public:

void print(void) {

cout << “(“ << x << “,” << y << “)”;

}

private:

int x,y;

};

We can no longer access the data items x and y

directly from calling code!
But we are allowed to print them using print()!

32

struct Point {

public:

void print() {

cout << “(“ << x << “,” << y << “)”;

}

void init(int u, int v) {

x = u;

y = v;

}

private:

int x,y;

};

int main() {

Point w; // declares w to be of type Point

w.init(2,5); // allowed, since init is public

w.print(); // also allowed

//w.x=90; compile ERROR sincex is private

}

33

Classes

Now the structure is very secure! - no one can alter

the data of the structure without using the functions

that are supplied by the structure itself:

int main() {

Point w;

w.init(2,5);

w.print();

//w.x=90; ERROR x is private in Point

}

34

Data Hiding or Encapsulation

• Why would you want to hide data from the rest of your
program?

• Perhaps to protect it from accidental misuse elsewhere
in the program

• Example a Date class might group day, month, and
year. These need to be kept consistent - we do not want
part of the user program accidentally setting day to
something incorrect such as -1 or even something
inconsistent such as 30 when the month is February.

• Encapsulation lets us restrict the ways our data variables
are manipulated elsewhere in the program.

35

Classes
Stopping un-authorised access to data is ‘good

practice’ and is one of the benefits of using

C++.

The keywords public and private can be

used many times within a structure.

It is usual to put all public members first and

private members last.

Always use private and public - do not

leave them as defaults.

36

C++ introduces a new keyword: class

A class is exactly the same as a struct

except that all members are private unless

specified otherwise.

Most people use class rather than struct.

Classes

37

Classes

struct Point {

int x,y; //public

void print();//public

public:

void init(int, int);

private:

int distance;

};

class Point {

int x,y; //private

void print();//private

public:

void init(int, int);

private:

int distance;

};

38

Summary
A class is a way of implementing a data type

and associated functions and operators that

operate on that data.

Classes have public and private members that

provide data hiding.

39

Lecture 3

•Classes

•Classes that use variables of

other classes

•Objects

•Static members of classes

1st Semester

40

Functions defined within a class or struct are

inline by default.

inline functions should be small, and those that are

defined within a class should be one or two lines at

most.

We can define class member functions outside the

class definition. They are then no longer inline by

default. Only the function prototype needs to be included
within the class.

Classes

41

class Point {

public:

void print(); // prototype inside class

private:

int x,y;

};

void Point::print() { // embodiment elsewhere

cout << “(” << x << “,” << y << “)”;

}

The scope resolution operator :: is used to define functions

outside the class declaration.

Classes

42

Classes
class Point {

public:

void print(); // not inline

void init(int u, int v){ // inline
x = u;y = v;

}

private:

int x,y;

};

void Point::print() {

cout << “(“ << x << “,” << y << “)”;

}

43

Classes

A class is a user-defined type that contains data as

well as the set of functions that manipulate the data.

We often have a collection of “accessor” methods or

functions - sometimes known as “get” and “set”

methods or functions.

Note: Data members of a class cannot be initialized

when they are declared inside the class.

These data members should be initialized using
specific functions: “set” functions (like init() in the

Point class).

44

Member functions can also be overloaded.

class Point {

public:

void init(int u, int v) {

x = u; y = v;

}

void print();

void print(int s);

private:

int x,y;

};

Classes

45

void Point::print() {

cout << “(” << x << “,” << y << “)”;

}

void Point::print(int s) {

cout << s;

print();

}

Classes

46

int main(){

Point w;

w.init(4,7);

w.print();

cout << endl;

w.print(1);

}

Output: (4,7)

(4,7)

Classes

47

Within the second form of the print function, there is a

call to the other function print (it has different

arguments).

void Point::print(int s) {

cout << s;

print(); //No scope operator is required here.

}

Class scope

48

If there is a global function print, not contained

within any class, and we want to call it within a

class member function, then we use the scope

operator on its own - external scope.

void print() {

cout << “ The global print function”;

}

void Point::print(int s) {

cout << s;

::print();
}

Class scope

49

char c;

class Y {

public:

char c;

};

class X {

public:

char c;

Y y;

};

Classes can contain other classes.

int main () {

X x;

c = ‘A’;

x.c = ‘B’;

x.y.c = ‘C’;

}

50

Objects

C++ programming

•is object-oriented- the

programming unit is the class.

An instance of a type is called

an object.

//j an integer object

int j;

//w is a point object

point w;

51

Objects
A class is a blueprint for all its objects.

function members

data members

class point{

public:

private:

int x,y;

};

void print();

void print(char *s);

void init(int u,int v);

member

access

specifiers

52

Static members of classes

If a variable within a class is declared
static, then there is only one instance of

that variable in the program.

A static variable is common to all class

variables.

(Unlike normal instance variables which

are separate for each instantiation)

53

Static members of classes

class P {

public:

static char c;

};

char P::c = ‘W’;

int main () {

P x,y;

cout << x.c;

x.c = ‘A’;

cout << y.c;

}

Correct -

but missleading:
x.c and y.c are the

same thing.

54

Static members of classes

It is better to refer to the static member
as P::c

int main () {

P x;

P::c = ‘A’;

cout << P::c;

}

55

Summary
A class in C++ is a form of struct whose default access

specification is private.

Classes have public and private members that provide

data hiding.

The scope resolution operator :: allows member function of

various classes to have the same names as used globals.

Static data members are shared by all variables of that

class type.

Private members Name, Student _No, Fees

Public Functions Read(): set the private variables

Show(): display the variables

Check(): check the fees if they are grater

than 300$ then write “private”, otherwise

print “Suitable”

Define Anbar and Baghdad as objects

56

Q:Define a university class as follows:

57

Lecture 4

Constructors

Destructors

Copy constructor

1st Semester

Constructors
• Classes can have a special member function - a

constructor - that is called when an object is created.

class Point {

public:

Point(int i, int j);

int x,y; };

Point::Point(int i, int j)

{ x = i; y = j;}

• The constructor function has the same name as the

class name, it has no return type. It is often just inline.
58

Object initialization

• We now create a new point with:

Point p(4,5);

• This method has a problem though - we can’t

ask for an uninitialized point:

Point t;

produces an error-Point now needs two

arguments.

59

Object initialization

• We use function overloading to have several versions of the

Point constructor function:

class Point {

public:

Point();

Point(int i, int j);

private:

int x,y; };

Point::Point(){x = 0; y = 0;}

Point::Point(int i, int j)

{x = i; y = j;}
60

Object initialization

Point t; //now valid: x,y are 0,0

• A constructor with no arguments is called the

default constructor.

• If a class does not contain any constructor the

compiler inserts a system default constructor

(function).

61

62

Destructors

When an object is destroyed - the object’s

destructor is called.

If we don’t free that memory before the

object disappears, then the memory will

never be freed - a memory leak. Can

cause programs to crash

63

Destructors

Destructors are used to release any resources

allocated by the object.

Destructors are a "prepare to die" member function.

They are often abbreviated "dtor".

Constructors are “ctor”.

64

Destructors - same name as class with ~ prefix

class Str {

public:

Str();

~Str();

private:

char s;

};

Str::Str()

{s = ‘ ‘; ………..}

Str::~Str() {cout<<“delete s”;

…………….}

65

Destructors

A destructor:

• called by the system for you when an object is

destroyable (eg about to go out of scope)

• has the same name as the class;

• with a ~ at the front;

•does not have return values;

•cannot have arguments.

66

When are constructors/destructors called?

Constructors and destructors are called

automatically.

The order in which they are called depends

on the order in which execution enters

and leaves the scope in which objects are

instantiated and the type of storage for

objects.

General rule: destructor calls are made in

the reverse order of the constructor calls.

67

class C {

public:

C(int); //constructor

~C(); //destructor

private:

int data;

};

C::C(int value){

data = value;

cout<<“\nCtor called: "<< data;

}

C:: ~C(){

cout<<“\nDtor called: "<< data;

}

68

void createF();

C one(1); //global object

int main(){

cout <<"Main starts here."<<endl;

C two(2); //local object

cout<<"After two(local)in main."<<endl;

createF(); //f call

}

void createF(){

cout <<endl<<" F STARTS HERE. "<<endl;

C ten(77); //local object

cout<< "LAST IN F. "<<endl<<endl;

}

69

Output:

Ctor called: 1

Main starts here.

Ctor called: 2

After two (local) in main.

F STARTS HERE.

Ctor called: 77

LAST IN F.

Dtor called: 77

Dtor called: 2

Dtor called: 1

70

When are constructors/destructors called?

For stack objects defined: Constructors called:

In global scope

Destructor called:

Before any other function

(including main)

When main terminates,

or exit is called

Local objects When the object

enters scope.

When the object

leaves scope

local objects Once, when the object enters

scope the first time.

When main terminates,

or exit is called

71

Problems when passing objects:
Objects can be passed as function arguments.

class Str{

public:

Str(){

p = new char[128]; assert(p!=0);

//…

}

~Str(){ delete[] p }

void print(){ //...}

private:

char* p;

};

void display(Str s);

72

Problems when passing objects:
int main(){

Str a;

a.print();

//...

if (value > 100) {display(a);}

a.print();

}

void display(Str s){s.print();}

Assume that the value stored in a was “aaaaaaaaaa”

Output:

Data is aaaaaaaaaa

Data is aaaaaaaaaa

Data is ¿?A ¿?A aa

73

Problem:

The destructor called when “display(a)”

finishes damages the original object a.

How to solve it?

1. Use call by reference: display(&a);

so no copying is done

OR

2. Write a copy constructor for the class which

does a proper (deep) copy

74

If we pass an object as an argument to a function

Str p;

display(p);

The object is copied to the called routine.

The copy constructor of the class is called to perform the

copy.

When the class does not provide its copy constructor the

copy constructor provided by the system is used, but this is

not appropriate for classes with pointer data members!

System copy constructor only does a shallow job!

Copy constructor

75

The copy constructor has the form:

Str::Str(Str &x)

The original object is referred to by x. Str has to copy it

into the new object.

Str::Str(Str &x){

//……..

}

This performs a deep copy.

Copy constructor

76

1. When a copy of an object is required, such as in call-by-value.
Str p;

display(p);

2.When returning an object by value from a function.
Point findMiddlePt (Point p1,Point p2){

Point temp ;

//---do something

return temp;

}

3. When initializing an object to be a copy of another object of the same

class.
Str x;

//...other statements here

Str y(x); //y declared and initiated to x

or
Str y = x;//y declared and initiated to x

When is a copy constructor called?

77

#include <iostream.h>

#include <cstring.h>

#include <assert.h>

void display(Str s); // prototype

class Str{

public:

Str(char c = ' '){

p = new char[MAXLEN];

assert(p!=0);

p[0] = c;

p[1] = '\0';

}

~Str(){ delete[] p; }

Str(const Str &src){ // copy constructor
p = new char[MAXLEN]; // makes p point to separate memory

assert(p != 0);

strncpy(p, src.p, MAXLEN); // do a deep copy of the string

}

void print(){ cout << "Contents:" << p << endl;}

char* p;

const static int MAXLEN = 128;

};

void display(Str s){ // s is a partial (shallow) copy (has same internal p
value)

s.print();

// s is now freed up automaticaly - but this can damage a

}

int main(){

Str a('A'); // a now in scope

a.print();

int value = 101;

cerr << "Debug line 1" << endl;

if (value > 100){

display(a); // passes a copy of a

}

cerr << "Debug line 2" << endl;

a.print();

cerr << "Debug line 3" << endl;

return 0;

}

• Example Output:

Contents:A

Debug line 1

Contents:A

Debug line 2

Contents:A

Debug line 3

78

A constructor constructs objects of its class type. This

process may involve data members and allocating free
store, using operator new.

A default constructor is a constructor requiring no

arguments .

A copy constructor is used to copy one value into another

when:

• a type variable is initialized by a type value;

• a type value is passed as an argument to a function;

• a type value is returned from a function.

Summary

A destructor “release any resources allocated by the object,

typically by using delete.

Q:Complete the below program:

#include <iostream>

using namespace std;

class Test {

int number;

public:

Test(int);

Test();

int Check(); // check if the number is positive or

negative};

*Add a destructor function to print message

“It is Done”.
79

80

Lecture 5

Friend functions / classes

1st Semester

81

Friend functions/classes:

friends allow functions/classes access

to private data of other classes.

82

Friend functions

A 'friend' function has access to all

'private' members of the class for which

it is a 'friend'.

To declare a 'friend' function, include its

prototype within the class, preceding it

with the C++ keyword 'friend'.

83

class Demo {

friend void Change(Demo obj);

public:

Demo(double x0=0.0, int y0=0){x=x0; y=y0;}

void print();

private:

double x; int y;

};

void Demo::print(){

cout<<endl<<"This is x "<< x << endl;

cout<<"This is y "<< y << endl;

}

void Change(Demo obj) {

obj.x += 100;

obj.y += 200;

cout<<"This is obj.x "<< obj.x << endl;

cout<<"This is obj.y "<< obj.y << endl;

}

84

class T {

public:

friend void a();

int m();

private: // ...

};

void a() {// can access

// private data in T...}

class S {

public:

friend int T::m();

//...

};

class X {

public:

friend class T;

//...

};

Global function a() can access

private data in T

m() can access private data in S

all functions of T can access private

data in X

friends should be used with caution:

they by-pass C++’s data hiding

principle.

It is the responsibility of the code for

which access is to be given to say

who its friends are - ie who does

it trust!

include <iostream>

Using namespace std;

class ABC; // Formal

declaration

class XYZ

{ int x ;

public :

void setvalue (int i) { x = i; }

friend void max (XYZ, ABC);

};

class ABC

{ int a ;

public :

void setvalue (int i) { a = i; }

friend void max (XYZ, ABC);

};

void max (XYZ m, ABC n)

{

if (m.x > = n.a)

cout << m.x;

else

cout << n.a ;

}

main ()

{ ABC abc ;

abc.setvalue (10) ;

XYZ xyz;

xyz.setvalue (20);

max (xyz, abc);

}

include <iostream>

using namespace std;

const int m = 50;

class items {

int itemCode [m];

float itemPrice [m];

int count ;

public:

void CNT () { count = 0 ; }

void getitem () ;

void displaySum () ;

void remove () ;

void displayItems ();

};

void items :: getitem ()

{ cout << " Enter Item code ";

cin >> itemCode [count] ;

cout << " Enter Item cost ";

cin >> itemPrice [count];

count++ ;

}

void items :: displaySum (void)

{ float sum = 0 ;

for (int i=0; i<count; i++)

sum = sum + itemPrice [i] ;

cout << "\n total value : " <<

sum << "\n ";}

void items :: remove (void)

{ int a;

cout << " Enter item code : " ;

cin >> a;

for (int i=0; i< count ; i++)

if (itemCode [i] == a)

itemPrice [i] =

0 ;

}

void items :: displayItems (void)

{ cout << " \n code price \n " ;

for (int i=0; i<count; i++)

{

main ()

{ items order ;

order.CNT () ;

int x ;

do

{ cout <<" you can do the

following: "

<< " Enter appropriate

number \n " ;

cout << " \n 1: Add an item " ;

cout << " \n 2: Display total

value" ;

cout << " \n 3: Delete an item " ;

cout << " \n 5: Quit " ;

cout << " \n \n What is your

option ? " ;

cin >> x ;

switch (x)

{ case 1: order.getitem () ; break;

case 2: order.displaySum () ;

include <iostream>

using namespace std;

const int m = 50;

class items {

int itemCode [m];

float itemPrice [m];

int count ;

public:

void CNT () { count = 0 ; }

void getitem () ;

void displaySum () ;

void remove () ;

void displayItems ();

};

void items :: getitem ()

{ cout << " Enter Item code ";

cin >> itemCode [count] ;

cout << " Enter Item cost ";

cin >> itemPrice [count];

count++ ;

}

void items :: displaySum (void)

{ float sum = 0 ;

for (int i=0; i<count; i++)

sum = sum + itemPrice [i] ;

cout << "\n total value : " <<

sum << "\n ";}

void items :: remove (void)

{ int a;

cout << " Enter item code : " ;

cin >> a;

for (int i=0; i< count ; i++)

if (itemCode [i] == a)

itemPrice [i] =

0 ;

}

void items :: displayItems (void)

{ cout << " \n code price \n " ;

for (int i=0; i<count; i++)

{

main ()

{ items order ;

order.CNT () ;

int x ;

do

{ cout <<" you can do the

following: "

<< " Enter appropriate

number \n " ;

cout << " \n 1: Add an item " ;

cout << " \n 2: Display total

value" ;

cout << " \n 3: Delete an item " ;

cout << " \n 5: Quit " ;

cout << " \n \n What is your

option ? " ;

cin >> x ;

switch (x)

{ case 1: order.getitem () ; break;

case 2: order.displaySum () ;

include <iostream>

using namespace std;

const int m = 50;

class items {

int itemCode [m];

float itemPrice [m];

int count ;

public:

void CNT () { count = 0 ; }

void getitem () ;

void displaySum () ;

void remove () ;

void displayItems ();

};

void items :: getitem ()

{ cout << " Enter Item code ";

cin >> itemCode [count] ;

cout << " Enter Item cost ";

cin >> itemPrice [count];

count++ ;

}

void items :: displaySum (void)

{ float sum = 0 ;

for (int i=0; i<count; i++)

sum = sum + itemPrice [i] ;

cout << "\n total value : " <<

sum << "\n ";}

void items :: remove (void)

{ int a;

cout << " Enter item code : " ;

cin >> a;

for (int i=0; i< count ; i++)

if (itemCode [i] == a)

itemPrice [i] =

0 ;

}

void items :: displayItems (void)

{ cout << " \n code price \n " ;

for (int i=0; i<count; i++)

{

main ()

{ items order ;

order.CNT () ;

int x ;

do

{ cout <<" you can do the

following: "

<< " Enter appropriate

number \n " ;

cout << " \n 1: Add an item " ;

cout << " \n 2: Display total

value" ;

cout << " \n 3: Delete an item " ;

cout << " \n 5: Quit " ;

cout << " \n \n What is your

option ? " ;

cin >> x ;

switch (x)

{ case 1: order.getitem () ; break;

case 2: order.displaySum () ;

include <iostream>

using namespace std;

class employee

{ char name [30] ;

float age ;

public :

void getData (void);

void putData (void);

};

void employee :: getData (void)

{ cout << " Enter name : " ;

cin >> name ;

cout << " Enter age: " ;

cin >> age ; }

void employee :: putData (void)

{

cout << " name : " << name << " \n " ;

cout << " Age : " << age << " \n" ;

}

const int size = 3 ;

main ()

{ employee manager [size] ;

for (int i= 0; i < size ; i ++)

{

manager [i].getData () ;

}

cout << " \n " ;

for (int i = 0; i < size; i ++)

{

cout << " \n manager " << i+1 << " \n

";

manager [i].putData () ; } }

Example1#include <iostream>

using namespace std;

class integer

{

int m , n ;

public :

integer (int , int) ; // constructor

declared

void display()

{

cout << "m = " << m << "\n";

cout << "n = " << n << "\n";

}

};

integer :: integer (int x , int y)

{ m = x ; n = y ;}

90

void main()

{

integer int1 (0 , 100); // implicit call

integer int2 = integer(25 , 75); //explicit call

cout <<"\n OBJECT1"<<"\n";

int1.display();

cout <<"\n OBJECT2"<<"\n";

int2.display();

}

Example2
#include <iostream.h>

class complex

{

float x , y;

public:

complex() { } //satisfy

compiler

complex (float a) {x = y = a ;}

complex (float real , float imag)

{x = real ; y = imag; }

friend complex sum (complex ,

complex);

friend void show (complex);

};

91

complex sum (complex c1 , complex c2)

{

complex c3 ;

c3.x = c1.x + c2.x;

c3.y = c1.y + c2.y;

return c3;

}

void show (complex c)

{cout << c.x << "+j " << c.y << "\n"; }

main()

{

complex A (2.7 , 3.5);

complex B (1.6);

complex C;

C = sum (A , B);

cout << "A = " ; show (A);

cout << "B = " ; show (B);

cout << "C = " ; show (C);

}

Copy Constructor
#include<iostream>

using namespace std;

class code{

int id;

public:

code(){ }

code(int a)

{id = a;}

code (code &x) //x alias for

object A .

{ id = x.id; }

void display()

{ cout<<id; }

};

92

main()

{

code A(100); // Object A is

created and initialized

code B(A); // Copy

Constructor Called

code C = A;

code D;

D=B;

cout<<"\n id of A: ";A.display();

cout<<"\n id of B: ";B.display();

cout<<"\n id of C: ";C.display();

cout<<"\n id of D: ";D.display();

}

93

A constructor constructs objects of its class type. This

process may involve data members and allocating free
store, using operator new.

A default constructor is a constructor requiring no arguments

.

A copy constructor is used to copy one value into another

when:

• a type variable is initialized by a type value;

• a type value is passed as an argument to a function;

• a type value is returned from a function.

Summary

A destructor “release any resources allocated by the object,

typically by using delete.

