
18.404/6.840 Lecture 4

Last time:
- Finite automata → regular expressions
- Proving languages aren’t regular
- Context free grammars

Today: (Sipser §2.2)

- Context free grammars (CFGs) – definition
- Context free languages (CFLs)
- Pushdown automata (PDA)
- Converting CFGs to PDAs

1

Context Free Grammars (CFGs)

Recall that a CFG has terminals, variables, and rules.

Grammars generate strings
1. Write down start variable
2. Replace any variable according to a rule

Repeat until only terminals remain
3. Result is the generated string
4. 𝐿(𝐺) is the language of all generated strings
5. We call 𝐿(𝐺) a Context Free Language.

Example of 𝐺1 generating a string

S → 0S1

S → R
R → ε

𝐺1

S

0 S 1

0 S 1

R
ε

S

0S1

00S11

00R11

0011

𝐿 𝐺1 = 0𝑘1𝑘 𝑘 ≥ 0}

Tree of
substitutions
“parse tree”

Resulting
string

∈ 𝐿 𝐺1

S → 0S1 | R
R → ε

Shorthand:

2

CFG – Formal Definition

Defn: A Context Free Grammar (CFG) 𝐺 is a 4-tuple (𝑉, Σ, 𝑅, 𝑆)

𝑉 finite set of variables

Σ finite set of terminal symbols

𝑅 finite set of rules (rule form: 𝑉 → 𝑉 ∪ Σ ∗)

𝑆 start variable

For 𝑢, 𝑣 ∈ 𝑉 ∪ Σ ∗ write

1) 𝑢 ⇒ 𝑣 if can go from 𝑢 to 𝑣 with one substitution step in 𝐺

2) 𝑢 ⇒ 𝑣 if can go from 𝑢 to 𝑣 with some number of substitution steps in 𝐺

𝑢 ⇒ 𝑢1 ⇒ 𝑢2 ⇒ ⋯ ⇒ 𝑢𝑘 = 𝑣 is called a derivation of 𝑣 from 𝑢.

If 𝑢 = 𝑆 then it is a derivation of 𝑣.

𝐿 𝐺 = 𝑤 𝑤 ∈ Σ∗ and 𝑆 ⇒ 𝑤}

Defn: 𝐴 is a Context Free Language (CFL) if 𝐴 = 𝐿(𝐺) for some CFG 𝐺.

∗

∗

Check-in 4.13

CFG – Example

𝑉 = {E, T, F}
Σ = {+, ×, (,), a}
𝑅 = the 6 rules above
𝑆 = E

Observe that the parse tree contains additional information,
such as the precedence of × over + .

If a string has two different parse trees then it is derived ambiguously
and we say that the grammar is ambiguous.

E → E+T | T

T → T×F | F
F → (E) | a

𝐺2 Parse
tree

∈ 𝐿 𝐺2

Generates a+a×a, (a+a)×a, a, a+a+a, etc.

E

E+T

T+T×F

F+F×a

a+a×a

E

E + T

T T × F

F F a

a a a

Resulting
string

Check-in 4.24

Both 𝐺2 and 𝐺3 recognize the same language, i.e., 𝐿 𝐺2 = 𝐿 𝐺3 .
However 𝐺2 is an unambiguous CFG and 𝐺3 is ambiguous.

Ambiguity

E → E+T | T

T → T×F | F
F → (E) | a

𝐺2
E → E+E | E×E | (E) | a

𝐺3

E

E E

E E

a + a × a

E E

E E

E
5

Pushdown Automata (PDA)

Example: PDA for 𝐷 = 0𝑘1𝑘 𝑘 ≥ 0

1) Read 0s from input, push onto stack until read 1.

2) Read 1s from input, while popping 0s from stack.

3) Enter accept state if stack is empty. (note: acceptance only at end of input)

c
d
d

(pushdown)
stack

Finite
control

a b a b a a…
input appears on a “tape”

Schematic diagram for DFA or NFA

Schematic diagram for PDA

Operates like an NFA except can write-add or read-remove symbols
from the top of stack.

push pop

“head”

6

PDA – Formal Definition

Defn: A Pushdown Automaton (PDA) is a 6-tuple (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐹)

Σ input alphabet

Γ stack alphabet

𝛿: Q × Σ𝜀 × Γ𝜀 → 𝒫(𝑄 × Γ𝜀)

𝛿 𝑞, a, c = 𝑟1, d , 𝑟2, e

Example: PDA for 𝐵 = {𝑤𝑤ℛ| 𝑤 ∈ 0,1 ∗ }

1) Read and push input symbols.
Nondeterministically either repeat or go to (2).

2) Read input symbols and pop stack symbols, compare.
If ever ≠ then thread rejects.

3) Enter accept state if stack is empty. (do in “software”)

Accept if some thread is in the accept state
at the end of the input string.

The nondeterministic forks replicate the stack.

This language requires nondeterminism.
Our PDA model is nondeterministic.

0 1 1 1 1 0Sample input:

7

Converting CFGs to PDAs

Theorem: If 𝐴 is a CFL then some PDA recognizes 𝐴

Proof: Convert 𝐴’s CFG to a PDA

IDEA: PDA begins with starting variable and guesses substitutions.
It keeps intermediate generated strings on stack. When done, compare with input.

Problem! Access below the top of stack is cheating!

Instead, only substitute variables when on the top of stack.

If a terminal is on the top of stack, pop it and compare with input. Reject if ≠.

…
PDAE → E+T | T

T → …
F → … CFG

E

E

E + T

T T × F

F F a

a a a

E

E+T

T+T×F

F+F×a

a+a×a

E → E+T | T

T → T×F | F
F → (E) | a

𝐺2

E
+
T

T
+
T

T
+
T
×

F

a + a × aInput:

8

Theorem: If 𝐴 is a CFL then some PDA recognizes 𝐴

Proof construction: Convert the CFG for 𝐴 to the following PDA.

1) Push the start symbol on the stack.

2) If the top of stack is

Variable: replace with right hand side of rule (nondet choice).

Terminal: pop it and match with next input symbol.

3) If the stack is empty, accept.

Example:

E

E + T

T T × F

F F a

a a a

E

E+T

T+T×F

F+F×a

a+a×a

E E
+
T

F
+
T

Converting CFGs to PDAs (contd)

T
+
T

a
+
T

+
T

T T
×
F

a + a × a

E → E+T | T

T → T×F | F
F → (E) | a

𝐺2

9

Theorem: 𝐴 is a CFL iff* some PDA recognizes 𝐴
Done.
In book. You are responsible for knowing
it is true, but not for knowing the proof.

* “iff” = “if an only if” means the implication goes both ways.
So we need to prove both directions: forward (→) and reverse (←).

Equivalence of CFGs and PDAs

Check-in 4.3

Check-in 4.3
Is every Regular Language also
a Context Free Language?

(a) Yes

(b) No

(c) Not sure

10

Recap

Recognizer Generator

Regular
language

DFA or NFA
Regular

expression

Context Free
language

PDA
Context Free

Grammar

Regular
languages

Context Free
languages

11

Quick review of today

1. Defined Context Free Grammars (CFGs)
and Context Free Languages (CFLs)

2. Defined Pushdown Automata(PDAs)

3. Gave conversion of CFGs to PDAs.

12

MIT OpenCourseWare
https://ocw.mit.edu

18.404J Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

18.404/6.840 Lecture 5

Last time:
- Context free grammars (CFGs)
- Context free languages (CFLs)
- Pushdown automata (PDA)
- Converting CFGs to PDAs

Today: (Sipser §2.3, §3.1)

- Proving languages not Context Free
- Turing machines
- T-recognizable and T-decidable languages

1

Equivalence of CFGs and PDAs

Recall Theorem: 𝐴 is a CFL iff some PDA recognizes 𝐴

Done.
Need to know the fact, not the proof

Corollaries:
1) Every regular language is a CFL.
2) If 𝐴 is a CFL and 𝐵 is regular then 𝐴 ∩ 𝐵 is a CFL.
Proof sketch of (2):
While reading the input, the finite control of the PDA for 𝐴 simulates the DFA for 𝐵.

Note 1: If 𝐴 and 𝐵 are CFLs then 𝐴 ∩ 𝐵 may not be a CFL (will show today).
Therefore the class of CFLs is not closed under ∩.

Note 2: The class of CFLs is closed under ∪,∘,∗ (see Pset 2).

2

Proving languages not Context Free

Let 𝐵 = 0𝑘1𝑘2𝑘 𝑘 ≥ 0}. We will show that 𝐵 isn’t a CFL.

Pumping Lemma for CFLs: For every CFL 𝐴, there is a 𝑝
such that if 𝑠 ∈ 𝐴 and 𝑠 ≥ 𝑝 then 𝑠 = 𝑢𝑣𝑥𝑦𝑧 where

1) 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∈ 𝐴 for all 𝑖 ≥ 0
2) 𝑣𝑦 ≠ ε
3) 𝑣𝑥𝑦 ≤ 𝑝

Informally: All long strings in 𝐴 are pumpable and stay in 𝐴.

𝑧𝑥 𝑦
𝑠 =

𝑢 𝑣

≤ 𝑝

≥ 𝑝

∈ 𝐴

𝑧𝑥 𝑦𝑢 𝑣𝑣 𝑦 ∈ 𝐴

3

Pumping Lemma – Proof

Pumping Lemma for CFLs: For every CFL 𝐴, there is a 𝑝
such that if 𝑠 ∈ 𝐴 and 𝑠 ≥ 𝑝 then 𝑠 = 𝑢𝑣𝑥𝑦𝑧 where

1) 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∈ 𝐴 for all 𝑖 ≥ 0
2) 𝑣𝑦 ≠ ε
3) 𝑣𝑥𝑦 ≤ 𝑝

𝑧𝑥 𝑦
𝑠 =

𝑢 𝑣

EProof by picture:

𝑧𝑦𝑢 𝑣

E

R

R

𝑥 𝑦𝑣

R

Generates 𝑢𝑣𝑣𝑥𝑦𝑦𝑧
= 𝑢𝑣2𝑥𝑦2𝑧

𝑧𝑢

E

R

𝑥

Generates 𝑢𝑥𝑧
= 𝑢𝑣0𝑥𝑦0𝑧

Long 𝑠 →
tall parse tree

“cutting and pasting” argument

R

R

4

Pumping Lemma – Proof details

For 𝑠 ∈ 𝐴 where 𝑠 ≥ 𝑝, we have 𝑠 = 𝑢𝑣𝑥𝑦𝑧 where:

1) 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∈ 𝐴 for all 𝑖 ≥ 0 …cutting and pasting
2) 𝑣𝑦 ≠ ε …start with the smallest parse tree for 𝑠
3) 𝑣𝑥𝑦 ≤ 𝑝 …pick the lowest repetition of a variable

E

E + T

Let 𝑏 = the length of the longest right hand side of a rule (E → E+T)

= the max branching of the parse tree

Let ℎ = the height of the parse tree for 𝑠.

A tree of height ℎ and max branching 𝑏 has at most 𝑏ℎ leaves.
So 𝑠 ≤ 𝑏ℎ.

Let 𝑝 = 𝑏 𝑉 + 1 where 𝑉 = # variables in the grammar.

So if 𝑠 ≥ 𝑝 > 𝑏 𝑉 then 𝑠 > 𝑏|𝑉| and so ℎ > 𝑉 .

Thus at least 𝑉 + 1 variables occur in the longest path.
So some variable 𝑅 must repeat on a path.

𝑧𝑥 𝑦𝑠 = 𝑢 𝑣

E

R

R

use 𝑠 > 𝑏 𝑉

set 𝑝 = 𝑏 𝑉 + 1

want
ℎ > 𝑉

5

Example 1 of Proving Non-CF

Let 𝐵 = 0𝑘1𝑘2𝑘 𝑘 ≥ 0}
Show: 𝐵 is not a CFL

Proof by Contradiction:
Assume (to get a contradiction) that 𝐵 is a CFL .
The CFL pumping lemma gives 𝑝 as above. Let 𝑠 = 0𝑝1𝑝2𝑝 ∈ 𝐵.
Pumping lemma says that can divide 𝑠 = 𝑢𝑣𝑥𝑦𝑧 satisfying the 3 conditions.
Condition 3 (𝑣𝑥𝑦 ≤ 𝑝) implies that 𝑣𝑥𝑦 cannot contain both 0s and 2s.
So 𝑢𝑣2𝑥𝑦2𝑧 has unequal numbers of 0s, 1s, and 2s.
Thus 𝑢𝑣2𝑥𝑦2𝑧 ∉ 𝐵, violating Condition 1. Contradiction!
Therefore our assumption (𝐵 is a CFL) is false. We conclude that 𝐵 is not a CFL .

≤ 𝑝
𝑧𝑢 𝑦𝑥𝑣

𝑠 = 00⋯0011⋯1122⋯22

Pumping Lemma for CFLs: For every CFL 𝐴, there is a 𝑝
such that if 𝑠 ∈ 𝐴 and 𝑠 ≥ 𝑝 then 𝑠 = 𝑢𝑣𝑥𝑦𝑧 where

1) 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∈ 𝐴 for all 𝑖 ≥ 0
2) 𝑣𝑦 ≠ ε
3) 𝑣𝑥𝑦 ≤ 𝑝

Check-in 5.16

Example 2 of Proving Non-CF

Let 𝐹 = 𝑤𝑤 𝑤 ∈ Σ∗} . Σ = {0,1}.
Show: 𝐹 is not a CFL.

Assume (for contradiction) that 𝐹 is a CFL.
The CFL pumping lemma gives 𝑝 as above. Need to choose 𝑠 ∈ 𝐹. Which 𝑠?

Try 𝑠1 = 0𝑝10𝑝1 ∈ 𝐹. But 𝑠1 can be pumped and stay inside 𝐹. Bad choice of 𝑠.

Try 𝑠2 = 0𝑝1𝑝0𝑝1𝑝 ∈ 𝐹.
Show 𝑠2 cannot be pumped 𝑠2 = 𝑢𝑣𝑥𝑦𝑧 satisfying the 3 conditions.
Condition 3 implies that 𝑣𝑥𝑦 does not overlap two runs of 0s or two runs of 1s.
Therefore, in 𝑢𝑣2𝑥𝑦2𝑧, two runs of 0s or two runs of 1s have unequal length.
So 𝑢𝑣2𝑥𝑦2𝑧 ∉ 𝐹 violating Condition 1. Contradiction! Thus 𝐹 is not a CFL.

Pumping Lemma for CFLs: For every CFL 𝐴, there is a 𝑝
such that if 𝑠 ∈ 𝐴 and 𝑠 ≥ 𝑝 then 𝑠 = 𝑢𝑣𝑥𝑦𝑧 where

1) 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∈ 𝐴 for all 𝑖 ≥ 0
2) 𝑣𝑦 ≠ ε
3) 𝑣𝑥𝑦 ≤ 𝑝

𝑠1 = 000⋯001000⋯001

𝑧𝑢 𝑦𝑥𝑣

𝑠2 = 0⋯01⋯10⋯01⋯1

𝑧𝑢 𝑦𝑥𝑣

7

Turing Machines (TMs)

1) Head can read and write

2) Head is two way (can move left or right)

3) Tape is infinite (to the right)

4) Infinitely many blanks “˽“ follow input

5) Can accept or reject any time (not only at end of input)

Finite
control

a b a b b . . .

read/write input tape

head

˽ ˽

8

TM – example

TM recognizing 𝐵 = a𝑘b𝑘c𝑘 𝑘 ≥ 0

1) Scan right until ˽ while checking if input is in a∗b∗c∗, reject if not.

2) Return head to left end.

3) Scan right, crossing off single a, b, and c.

4) If the last one of each symbol, accept.

5) If the last one of some symbol but not others, reject.

6) If all symbols remain, return to left end and repeat from (3). accept

head

Finite
control

input tape

a a a b b cc cb ˽ ˽

Check-in 5.2

Check-in 5.2

How do we get the effect of “crossing off” with a Turing machine?

a) We add that feature to the model.

b) We use a tape alphabet Γ = {a, b, c, a, b, c, ˽ }.

c) All Turing machines come with an eraser.

9

TM – Formal Definition

Defn: A Turing Machine (TM) is a 7-tuple (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞acc , 𝑞rej)

Σ input alphabet

Γ tape alphabet (Σ ⊆ Γ)

𝛿: Q × Γ → 𝑄 × Γ × {L, R} (L = Left, R = Right)

𝛿 𝑞, a = (𝑟, b, R)

On input 𝑤 a TM 𝑀 may halt (enter 𝑞acc or 𝑞rej)
or 𝑀 may run forever (“loop”).

So 𝑀 has 3 possible outcomes for each input 𝑤:

1. Accept 𝑤 (enter 𝑞acc)

2. Reject 𝑤 by halting (enter 𝑞rej)

3. Reject 𝑤 by looping (running forever)

Check-in 5.3

Check-in 5.3

This Turing machine model is deterministic.
How would we change it to be nondeterministic?

a) Add a second transition function.

b) Change 𝛿 to be 𝛿: Q × Γ → 𝒫(𝑄 × Γ × {L, R})

c) Change the tape alphabet Γ to be infinite.

10

TM Recognizers and Deciders

Let 𝑀 be a TM. Then 𝐿 𝑀 = 𝑤 𝑀 accepts 𝑤}.

Say that 𝑀 recognizes 𝐴 if 𝐴 = 𝐿(𝑀).

Defn: 𝐴 is Turing-recognizable if 𝐴 = 𝐿(𝑀) for some TM 𝑀.

Defn: TM 𝑀 is a decider if 𝑀 halts on all inputs.

Say that 𝑀 decides 𝐴 if 𝐴 = 𝐿(𝑀) and 𝑀 is a decider.

Defn: 𝐴 is Turing-decidable if 𝐴 = 𝐿(𝑀) for some TM decider 𝑀.

T-recognizable

T-decidable

CFLs

regular

11

Quick review of today

1. Proved the CFL Pumping Lemma as a tool for
showing that languages are not context free.

2. Defined Turing machines (TMs).

3. Defined TM deciders (halt on al l inputs).

4. T-recognizable and T-decidable languages.

12

MIT OpenCourseWare
https://ocw.mit.edu

18.404J Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

