

Database Management

Systems 2

2rd Class, CS Dept.
2

nd
 Semester

1

Introduction

A database is a structured collection of data that is organized and

stored in a way that allows easy access and retrieval of information.

Databases are used to store and manage data for a wide variety of

applications, from small-scale personal record keeping to large-scale

enterprise systems. A database is a fundamental component of modern

computing.

Most databases are managed by a database management system

(DBMS), which is a software system that provides tools for creating,

managing, and accessing the database. Some popular DBMSs include

Oracle, MySQL, and Microsoft SQL Server.

Data in a database is typically organized into tables, which consist of

rows and columns. Each row represents a single record or instance of data,

while each column represents a specific attribute or characteristic of that

data.

The elements of database tables

2

Database Instances and Database Schemas

A schema is a description of a particular collection of data, using the

a given data model, simply means the structure or the form of the database

without any data in it. Schema is of three types:

1. Physical schema: how the data stored in blocks of storage is described at

this level.

2. Logical schema: programmers and database administrators work at this

level, at this level data can be described as certain types of data records

gets stored in data structures, however the internal details such as

implementation of data structure is hidden at this level (available at

physical level).

3. View schema: this generally describes end user interaction with database

systems.

Level Database Architecture

3

The actual content of the database, the data, changes often over the years. A

database state at a specific time defined through the currently existing

content and relationship and their attributes is called a database instance.

The following illustration shows that a database scheme could be looked at

like a template or building plan for one or several database instances.

Example of a database schema and instances

Database analysis life cycle

The purpose of any database software is to effectively manage and handle

large sets of data and, for this reason, its development and implementation is

carefully observed and documented so as to avoid any malfunctioning

during its operational period and produce effective database software, the

logical steps followed are that of the database analysis life cycle:

1. Database study - here the designer creates a written specification in

words for the database system to be built. This involves:

4

▪ Analyzing the company situation.

▪ Define problems and constraints.

▪ Define objectives.

▪ Define scope and boundaries.

2. Database Design - conceptual, logical, and physical design steps in

taking specifications to physical implementable designs. This is looked

at more closely in a moment.

3. Implementation and loading - it is quite possible that the database is to

run on a machine which as yet does not have a database management

system running on it at the moment. If this is the case one must be

installed on that machine. Finally, not all databases start completely

empty, and thus must be loaded with the initial data set (such as the

current inventory, current staff names, current customer details, etc).

4. Testing and evaluation - the database, once implemented, must be

tested against the specification supplied by the client. It is also useful to

test the database with the client using mock data, as clients do not always

have a full understanding of what they thing they have specified and how

it differs from what they have actually asked for. In addition, this step in

the life cycle offers the chance to the designer to fine-tune the system for

best performance. Finally, it is a good idea to evaluate the database in-

situ, along with any linked applications.

5. Operation - this step is where the system is actually in real usage by the

company.

6. Maintenance and evolution - designers rarely get everything perfect

first time, and it may be the case that the company requests changes to

5

fix problems with the system or to recommend enhancements or new

requirements.

Database analysis life cycle

6

Overview of programming languages used for databases

Databases are important components of many software applications and

systems, and there are several programming languages that are commonly

used for interacting with them.

Object-oriented model

The object-oriented model is a way of organizing and structuring data based

on the principles of object-oriented programming. In this model, data is

represented as objects. Here are some concepts of the object-oriented model:

1. Objects are instances of classes that represent real-world entities or

concepts. Each object has a set of properties (attributes) that define its

state and behavior.

2. Classes are templates that define the properties and behavior of

objects. They encapsulate data and behavior, and provide a way to

create objects that share common properties and methods.

3. Encapsulation is the principle of hiding the implementation details of

a class, and show only a public interface for interacting with its

objects. It helps to reduce complexity and improve modularity and

maintainability.

4. Inheritance is the principle of defining a new class based on an

existing class, inheriting its attributes and behavior.

5. Polymorphism is the principle of using a single interface to represent

multiple types of objects. It allows objects of different classes to be

7

treated as if they are of the same type, providing flexibility and

extensibility.

6. Methods are functions or procedures that define the behavior of

objects. They can be used to perform actions on the object's data or to

modify its state.

7. Attributes are variables or data members that define the state of

objects. They can be used to store information about the object's

properties.

Object-oriented model

Overview of data interchange formats

Data interchange formats are used to exchange data between different

applications or systems. Here are some of the most commonly used data

interchange formats:

1. JSON (JavaScript Object Notation): JSON is a lightweight, text-

based data interchange format that is widely used for web APIs and

data exchange between applications. It is easy to read and write, and

8

can be easily parsed by most programming languages. JSON supports

simple data types such as strings, numbers, and boolean values, as

well as complex data types such as objects and arrays.

2. XML (Extensible Markup Language): XML is a widely used data

interchange format that is commonly used for document exchange and

data exchange between applications. It is a markup language that uses

tags to define the structure of the data. XML can be used to represent

complex data structures and has support for namespaces and

validation using XML schemas.

3. CSV (Comma Separated Values): CSV is a simple data interchange

format that uses commas to separate fields and new lines to separate

records. It is commonly used for exchanging tabular data between

applications and can be easily imported and exported by spreadsheet

applications.

Data Access Layers and Frameworks

A data access layer (DAL) is a software component that provides a

consistent interface for accessing data from various sources, such as

databases, web services, and file systems, allowing developers to focus on

the application logic rather than the details of the data storage technology. A

DAL can help decouple the application logic from the underlying data

storage technology, which can improve maintainability, scalability, and

performance. Here are some popular data access layers and frameworks:

9

1. Entity Framework (EF): EF is a data access layer that is part of the

Microsoft .NET framework. It provides an object-relational mapping

(ORM) framework that allows developers to work with relational

databases using .NET objects. EF provides automatic generation of

SQL queries.

2. Hibernate: Hibernate is a popular data access layer for Java

applications that provides an ORM framework for working with

relational databases. Hibernate supports mapping of Java objects to

database tables and provides caching and transaction management

features.

Entity Framework

Overview of data visualization and analysis

10

Data visualization and analysis are critical components of data science and

business intelligence.

Data Visualization: is the graphical representation of data and information.

It allows users to visualize complex data sets in a simple and easy-to-

understand format.

Data Visualization

Data Analysis: involves examining data to uncover patterns, relationships,

and insights. It is the process of systematically analyzing data using

statistical and mathematical techniques to extract meaningful insights.

Data visualization and analysis go hand in hand, as visualizing data can help

identify patterns and insights that may not be immediately apparent through

raw data analysis.

There are many visualization languages and tools available to help users

create visual representations of data, such as: MATLAB, Excel, and

Python.

11

Database connectivity

Database connectivity refers to the ability of software applications to access

and manipulate data stored in a database.

The process of establishing database connectivity involves several steps,

which may vary depending on the specific DBMS and programming

language being used, include:

1. Installing the appropriate database driver: The application

must have the correct driver installed for the DBMS it will be

connecting to.

2. Establishing a connection: The application must create a

connection to the database using the driver. This typically

involves specifying the name of the database, the server

address, and the login credentials.

3. Executing SQL commands: Once the connection is

established, the application can send SQL (Structured Query

Language) commands to the database to retrieve or manipulate

data.

4. Handling errors: If there is an error in the connection or in

executing a command, the application must be able to handle

the error gracefully and provide feedback to the user.

ODBC Connectivity

12

ODBC (Open Database Connectivity) is a standard interface for connecting

to databases. ODBC connectivity enables software applications to interact

with data stored in a wide range of databases using a common interface. It

provides a layer of abstraction between the application and the underlying

database, allowing the application to access data without needing to know

the specifics of the database management system.

ODBC Connectivity

ODBC connectivity has several advantages, including:

1. Cross-platform compatibility: Because ODBC is a standard interface,

applications can connect to a wide range of databases across different

platforms without needing to be re-written for each specific database.

13

2. Reduced development time: Using ODBC can simplify development

by providing a standard interface for accessing data, rather than

requiring developers to write code specific to each database.

3. Improved performance: ODBC drivers can often be optimized for

specific databases, which can improve performance compared to using

a generic database driver.

Overall, ODBC connectivity provides a flexible and powerful way to

connect software applications to databases, making it a popular choice for a

wide range of applications.

JDBC Connectivity

JDBC (Java Database Connectivity) is a standard interface for connecting

Java applications to databases. JDBC connectivity enables Java applications

to access and manipulate data stored in databases using SQL statements.

JDBC connectivity provides a robust and reliable way to connect Java

applications to databases.

ADO.NET Connectivity

ADO.NET (ActiveX Data Objects for .NET) is a data access technology

used to interact with relational and non-relational databases in the .NET

Framework. ADO.NET allows developers to access and manipulate data in

databases using a set of classes and interfaces, which are part of the .NET

Framework.

14

ADO.NET provides a flexible and powerful way to connect .NET

applications to databases.

Database Connectivity in Web Applications

Database connectivity is a critical aspect of web application development as

it enables web applications to interact with databases and store or retrieve

data dynamically. In web applications, database connectivity typically

involves a client-server architecture, where the web application acts as the

client and the database server as the server.

Web applications can use a variety of technologies for database connectivity,

including ODBC, JDBC, and ADO.NET, as well as Object-Relational

Mapping (ORM) frameworks like Entity Framework or Hibernate.

In a web application, the database connectivity process involves several

steps:

1. Establishing a connection: The web application

establishes a connection to the database server using

the appropriate connectivity technology, such as

JDBC or ADO.NET. The connection is typically

established using a connection string that contains the

necessary connection information, such as the

database server name, username, and password.

15

2. Sending SQL queries: Once the connection is

established, the web application can send SQL queries

to the database server to retrieve or store data. The

queries can be simple or complex, and they can

involve one or more database tables.

3. Processing the results: Once the database server

processes the SQL queries, it returns the results to the

web application. The web application can then process

the results and display them to the user or store them

in the application's memory for later use.

4. Closing the connection: When the web application is

finished accessing the database, it should close the

connection to the database server to free up resources

and prevent security vulnerabilities.

Client-server architecture

16

Database connectivity in web applications is critical for many web

applications, including e-commerce websites, social media platforms, and

content management systems. It allows developers to create dynamic and

interactive web applications that can store and retrieve data in real-time,

making them more engaging and useful to users.

17

Functional dependencies

Functional dependencies (FDs) are a fundamental concept in relational

database theory. They represent a relationship between the attributes (or

columns) of a table, where the value of one attribute determines the value of

another attribute. Specifically, a functional dependency between two or more

attributes in a table means that the values of the first set of attributes

uniquely determine the values of the second set of attributes.

For example, consider a table called "Employee" with columns

"EmployeeID", "Name", "Salary", and "Department". Suppose we observe

that for each EmployeeID, there is only one Department associated with it.

We can then say that there is a functional dependency between EmployeeID

and Department. We write this as EmployeeID -> Department, where "->"

means "determines".

EmployeeID Name Salary Department

1 John Smith 50000 Sales

2 Jane Doe 75000 Marketing

3 Bob Johnson 60000 Sales

4 Sarah Lee 65000 HR

5 David Kim 80000 Marketing

In a database schema, functional dependencies help us to identify the key

attributes (i.e., the attributes that uniquely identify each row in the table)

18

and the non-key attributes (i.e., the attributes that are dependent on the key

attributes). They also help us to normalize a database schema by removing

redundant data and improving data consistency.

By understanding functional dependencies, database designers can ensure

that their databases are well-structured, efficient, and easy to maintain.

Keys and composite keys

In a relational database, a key is a set of one or more attributes that uniquely

identifies a row (or record) in a table. A key can be a single attribute or a

combination of multiple attributes, also known as a composite key. Keys are

important for maintaining the integrity and consistency of the data in the

database.

A primary key is a special type of key that uniquely identifies each row in a

table. It must be unique and not null for each record, and cannot be

duplicated in any other record in the same table. The primary key is often

used as a foreign key in other tables to establish relationships between them.

A foreign key is a column or combination of columns in a table that refers

to the primary key of another table. It is used to establish a link between two

tables and maintain referential integrity. The foreign key in one table refers

to the primary key in another table, thereby creating a relationship between

the two tables.

Composite keys are used when a single attribute is not sufficient to uniquely

identify a row in a table. In this case, a combination of attributes is used to

create a composite key. For example, in a table of student grades, a

19

composite key could be created using the student ID and the course ID, as

each student can take multiple courses and each course can be taken by

multiple students.

Functional dependencies are closely related to keys, as they define the

relationships between attributes in a table.

Formal notation

Functional dependencies (FDs) can be formally represented using arrow

notation, where the left-hand side (LHS) represents the set of attributes that

determines the right-hand side (RHS). For example, the functional

dependency A -> B. Multiple functional dependencies can be represented

using a comma-separated list, such as A -> B, C -> D. There are three rules

that allow us to derive new FDs from given FDs:

Reflexivity: If X is a set of attributes, then X -> X is true.

Augmentation: If X -> Y, then XZ -> YZ for any set of attributes Z.

Transitivity: If X -> Y and Y -> Z, then X -> Z.

Using these axioms, we can derive additional functional dependencies from

a set of given functional dependencies. For example, suppose we have the

following functional dependencies:

A -> B

B -> C

We can use the augmentation axiom to derive a new functional dependency:

A -> BC

20

We can also use the transitivity axiom to derive another new functional

dependency:

A -> C

This process of deriving new functional dependencies from given ones can

be continued until no newer functional dependencies can be inferred.

These notations are important for designing and optimizing database

schemas, as they provide a formal way to reason about the relationships

between attributes in a table.

Example on Transitivity, let's consider a table called "Employees" with

columns "EmployeeID", "DepartmentID", and "ManagerID". Here, we can

observe that for each EmployeeID, there is only one DepartmentID

associated with it, and for each DepartmentID, there is only one ManagerID

associated with it. Therefore, we can say that there is a functional

dependency between EmployeeID and DepartmentID (EmployeeID ->

DepartmentID), and between DepartmentID and ManagerID (DepartmentID

-> ManagerID). Using transitivity, we can infer that there is also a functional

dependency between EmployeeID and ManagerID (EmployeeID ->

ManagerID).

EmployeeID DepartmentID ManagerID

1 101 3

2 102 4

3 101 3

21

4 102 4

5 103 6

Partial dependencies

Partial dependencies are a property of functional dependencies in a database

that occurs when a non-key attribute is functionally dependent on only a part

of the primary key. In other words, a partial dependency exists when a non-

key attribute is determined by only a subset of the primary key attributes,

rather than the entire primary key.

For example, consider a table called "Orders" with columns "OrderID",

"CustomerID", "CustomerName", and "OrderDate". Here, the primary key is

composed of the "OrderID" and "CustomerID" columns. Suppose we

observe that the attribute "CustomerName" is functionally dependent only

on "CustomerID" and not on "OrderID". This is an example of a partial

dependency because "CustomerName" is dependent on only a part of the

primary key.

OrderID CustomerID CustomerName OrderDate

1 1001 John Smith 2022-01-15

2 1002 Jane Doe 2022-02-20

3 1003 Bob Johnson 2022-03-05

22

4 1001 John Smith 2022-04-10

5 1004 Sarah Lee 2022-05-15

Partial dependencies can cause data redundancy and inconsistencies in the

database, as they can result in multiple rows with the same values for some

attributes but different values for others.

Normalization

Normalization is the process of organizing data in a database to minimize

redundancy and dependency. It involves breaking down a large table into

smaller tables and defining relationships between them to reduce data

duplication and inconsistencies. The goal of normalization is to create a

database schema that is efficient, flexible, and easy to maintain.

Normalization is typically achieved through a series of steps, including first

normal form (1NF), second normal form (2NF), third normal form (3NF),

and so on.

Denormalization

Denormalization is the process of intentionally introducing redundancy into

a database in order to improve query performance or simplify database

maintenance. In other words, denormalization is the opposite of

normalization, which aims to reduce redundancy and improve data

consistency.

The goal of denormalization is to improve database performance by

reducing the number of tables and joins required to answer complex queries.

23

By duplicating data across multiple tables, queries can be simplified and

faster to execute. However, this comes at the cost of increased storage

requirements and the potential for data inconsistencies.

Denormalization is often used in large, complex databases with heavy read

workloads, where query performance is critical. For example, in an e-

commerce system, denormalization might be used to store a user's order

history alongside their user profile, rather than querying multiple tables to

retrieve the same information. This can reduce query complexity and

improve response times.

24

Database Normalization

Database normalization is a process of organizing data in a database in a

way that reduces redundancy and dependency, while ensuring data

consistency and integrity. It involves breaking down a larger table into

smaller tables and defining relationships between them to eliminate data

duplication and inconsistencies.

There are several levels of normalization, including first normal form (1NF),

second normal form (2NF), third normal form (3NF), and higher normal

forms such as Boyce-Codd normal form (BCNF) and fourth normal form

(4NF). Each level of normalization builds upon the previous one and further

reduces data redundancy and dependency.

Problems without Normalization

Without normalization, a database can suffer from several problems,

including:

1. Data Redundancy: the same data may be stored in multiple places

within the database.

2. Update Anomalies: any updates to that data must be made in each

location.

3. Data Inconsistency: updates are not made to all locations.

4. Difficulty in Querying Data: data may be stored in a way that makes it

difficult to retrieve specific information or to query the database

efficiently.

25

First normal form (1NF)

First normal form is an essential property of a relation in a relational

database.

First normal form (1NF) Rules:

 A table should have a primary key that uniquely identifies each

record. Identify each set of related data with a primary key.

 Each column in the table should contain only values of the same data

type.

 There are no repeating groups in the individual tables.

 Each table cell should contain a single value.

Examples

Below is a table that stores the names and telephone numbers of customers.

One requirement though is to retain multiple telephone numbers for some

customers. The simplest way of satisfying this requirement is to allow the

"Telephone Number" column in any given row to contain more than one

value:

Customer

Customer ID
First

Name
Surname Telephone Number

123 Pooja Singh 555-861-2025, 192-122-1111

26

456 San Zhang
(555) 403-1659 Ext. 53; 182-929-

2929

789 John Doe 555-808-9633

An apparent solution is to introduce more columns:

Customer

Customer ID
First

Name
Surname

Telephone

Number1

Telephone

Number2

123 Pooja Singh 555-861-2025 192-122-1111

456 San Zhang
(555) 403-1659

Ext. 53
182-929-2929

789 John Doe 555-808-9633

Technically, this table does not violate the requirement for values to be

atomic. However, informally, the two telephone number columns still form a

"repeating group": they repeat what is conceptually the same attribute,

namely a telephone number.

To bring the model into the first normal form, we split the strings we used to

hold our telephone number information into "atomic" (i.e. indivisible)

27

entities: single phone numbers. And we ensure no row contains more than

one phone number.

Customer

Customer ID First Name Surname Telephone Number

123 Pooja Singh 555-861-2025

123 Pooja Singh 192-122-1111

456 San Zhang 182-929-2929

456 San Zhang (555) 403-1659 Ext. 53

789 John Doe 555-808-9633

Note that the "ID" is no longer unique in this solution with duplicated

customers. An alternative design uses two tables:

Customer Name

Customer ID First Name Surname

123 Pooja Singh

456 San Zhang

789 John Doe

28

Customer Telephone Number

Customer ID Telephone Number

123 555-861-2025

123 192-122-1111

456 (555) 403-1659 Ext. 53

456 182-929-2929

789 555-808-9633

For example, suppose we have a table for tracking sales that contains the

following columns:

Order Number Customer Name Item Item Quantity

001 John Smith Shirt, Pants 1, 2

This table does not satisfy the first normal form, because the Item and Item

Quantity columns contain repeating groups of values. To normalize this

table to the first normal form, we need to split it into two tables: one for

Orders and one for Order Items.

Orders Table:

29

Order Number Customer Name

001 John Smith

Order Items Table:

Order Number Item Item Quantity

001 Shirt 1

001 Pants 2

Now each table contains only atomic values, and there are no repeating

groups or arrays of values. This satisfies the requirements of the first normal

form.

Not in 1NF (Unnormalized table into first normal form)

Example 1:

30

Example 2:

31

Second normal form (2NF)

The second normal form (2NF) is a database normalization rule that helps to

ensure data integrity by removing partial dependencies on a composite

primary key.

A table is said to be in 2NF if it meets the following two requirements:

 It is in First Normal Form (1NF).

 It includes no partial dependencies. All non-key attributes (i.e.,

attributes that are not part of the primary key) are fully functionally

dependent on the entire primary key, and not on a part of it.

Example:

Consider the following table that contains information about students and

their courses:

Student

ID

Course

Code

Course

Name
Instructor Instructor Email Semester

1001 MATH101 Calculus

John

Smith jsmith@example.com Fall 2022

1001 ENGL101 English Jane Doe jdoe@example.com Fall 2022

1002 MATH101 Calculus

John

Smith jsmith@example.com Fall 2022

1002 HIST101 History Sarah Lee slee@example.com Fall 2022

mailto:jsmith@example.com
mailto:jdoe@example.com
mailto:jsmith@example.com
mailto:slee@example.com

32

In this table, the primary key is a composite key consisting of both the

Student ID and the Course Code columns. However, the Instructor and

Instructor Email columns are dependent only on the Course Code and not on

the entire primary key.

To bring this table into 2NF, we need to separate out the Instructor and

Instructor Email columns into a separate table. Here's what the two tables

would look like:

Table 1: Students_Courses

Student ID Course Code Semester

1001 MATH101 Fall 2022

1001 ENGL101 Fall 2022

1002 MATH101 Fall 2022

1002 HIST101 Fall 2022

Table 2: Courses_Instructors

Course Code Course Name Instructor Instructor Email

MATH101 Calculus John Smith jsmith@example.com

ENGL101 English Jane Doe jdoe@example.com

HIST101 History Sarah Lee slee@example.com

mailto:jsmith@example.com
mailto:jdoe@example.com
mailto:slee@example.com

33

(It is still possible for a table in 2NF to exhibit transitive dependency; that is,

one or more attributes may be functionally dependent on nonkey attributes.)

Another Example:

Student_Id Subject_Id Marks Teacher

10 1 70 Java Teacher

10 2 75 C++ Teacher

11 1 80 Java Teacher

The simplest solution is to remove columns teacher from Score table and

add it to the Subject table. Hence, the Subject table will become:

Subject_Id Subject_Name Teacher

1 Java Java Teacher

2 C++ C++ Teacher

3 Php Php Teacher

34

And Score table is now in the second normal form, with no partial

dependency.

Student_Id Subject_Id Marks

10 1 70

10 2 75

11 1 80

35

Third normal form (3NF)

A database is in third normal form if it satisfies the following conditions:

• It is in Second Normal Form

• There is no transitive functional dependency

Transitive dependency

A transitive dependency is an indirect functional dependency, one in which

X→Z only by virtue of X→Y and Y→Z.

Dependency Diagram

 The arrows above entities indicate all desirable dependencies.

 The arrows below the dependency diagram indicate less desirable

dependencies -- partial dependencies and transitive dependencies.

36

Example:

Tournament Winners

Tournament Year Winner Winner Date of Birth

Indiana Invitational 1998 Al Fredrickson 21 July 1975

Cleveland Open 1999 Bob Albertson 28 September 1968

Des Moines Masters 1999 Al Fredrickson 21 July 1975

Indiana Invitational 1999 Chip Masterson 14 March 1977

Because each row in the table needs to tell us who won a particular

Tournament in a particular Year, the composite key {Tournament, Year} is a

minimal set of attributes guaranteed to uniquely identify a row. That is,

{Tournament, Year} is a candidate key for the table.

37

The breach of 3NF occurs because the non-prime attribute Winner Date of

Birth is transitively dependent on the candidate key {Tournament, Year} via

the non-prime attribute Winner. The fact that Winner Date of Birth is

functionally dependent on Winner makes the table vulnerable to logical

inconsistencies, as there is nothing to stop the same person from being

shown with different dates of birth on different records.

In order to express the same facts without violating 3NF, it is necessary to

split the table into two:

Tournament Winners

Tournament Year Winner

Indiana

Invitational
1998

Al

Fredrickson

Cleveland Open 1999
Bob

Albertson

Des Moines

Masters
1999

Al

Fredrickson

Indiana

Invitational
1999

Chip

Masterson

Winner Dates of Birth

Winner Date of Birth

Chip

Masterson
14 March 1977

Al

Fredrickson
21 July 1975

Bob

Albertson

28 September

1968

Update anomalies cannot occur in these tables, because unlike

before, Winner is now a primary key in the second table, thus allowing only

one value for Date of Birth for each Winner.

38

