Lec.1/ Matrices, Inverse matrices by elementary row

* Matrices
* When a system of equations has more than two equations, it is more
convenient to use matrices and vectors in solution.

* The size of the matrix is described by the number of its rows and
columns. A matrix of n rows and m columns is represented by (n x m)
matrix.

11 Qg2 ** Qum
A1 Uz - Uy, )

0A= . . ‘e . ’ I=1J2J 15 ]=1r2:r , M
An1 Ap2 = Apm nxm

* Types of matrices:

* Square matrix: it is a matrix that includes number of rows equals to
number of columns (n=m).

1 3 0
-A=B ;‘ B = [3 2 1‘
2x2 1 8 03x3

* Diagonal matrix: it is a square matrix which all of its elements are zeros
except the elements on the main diagonal.

4 0 O
*A=10 7 O

0 0 2



* Identity matrix: it is a diagonal matrix but the elements on the main
diagonal are equal to 1 and it is denoted by |

1 0 0
o [, = ’O 1 O}
0 0 1
* Transpose matrix: Transpose of A is denoted by A7 which means
writing the rows of A as columns in A”.
,_ 9 1
9 7 5 7 2]
5 43y

e A= AT =

1 2 4ly37

. IVIhatrlx addition: if A = [au] B = [bu] and both A&B are m x n matrices,
then

*A+B = [afj] + [bij] = [a +er]
* Ex:

o 21+ sl=

Note: for any scalar ( number) c, it can multiply the matrix A by c as follows:

CA = C[a,'_j] = [Ca,'_j]
Ex:

o 1= 7
* Note:

* The matrix with only one column, m x 1 in size is called a column
vector, while with only one row, 1 x n in size is called a row vector.

* Matrix multiplication: let A be m x k matrix and B be k x n matrix then
C=AB is an m x n matrix, where

* (i = t 1 it bt}

.i:1I2?““!m1 J:1?2?“"In



3 7 1

-2 1 —3]2x3’

_[16 14]
—13  10J5y
19 33 11

=|-6 3 -9
5 6 4

B =

]3x3




Solution of system of linear equations using

Gauss Jordan elimination method

In the Gaussian elimination method, we write simpler equivalent
augmented matrices, where each row of an augmented matrix
represents an equation that can perform the row operations on the
augmented matrix.

Steps:
1) Construct the augmented matrix (A:B).

2) Applying row operations including ( adding or subtracting two
rows, interchange two rows, multiplying any row by any constant
except zero.

Let A be a matrix, X a column vector, B a column vector then the
system of linear equations is denoted by AX = B

The solution to a system of linear equations starts by the augmented
matrix as shown for the following system:

x—2y= -5
3x+y=206

Note: Number of variables equals to the number of equations

Depends on the coefficients of x, y and the constants on the right-hand
side of the equation. The matrix of coefficients for this system is 2 x 2
matrix

[1 —2]
13 1
* If we insert the constants from the right-hand side of the system into

matrix of coefficients, we get the 2x3 matrix.

HE

* We use a vertical line between the coefficients and the constants to

|

represent the equal signs. This matrix is augmented matrix of the system
also it can be written as:

s 1ibl= [l



Application of Gauss Jordan elimination method to solve the system (AX = B)
Ex1: use Gaussian elimination method to solve the following system of equations

x—3y=11

2x+y=1

Sol: (note: no. of variables = no. of equations =2)
The augmented matrix:

. [1 -3 | 11]
2 11 1 0.
Now we want to get this matrix [ | .,| by applying row operations as follows:
1 -3,11 0 177 1 -3, 11 1
°[2 1|1] 9R2:_2R1+R29[0 7|—21] > Ry = 3R
1 -3 11] 1 0, 2
. > R{ = 3R, +R, > | ]
[0 13 1 2t Ry 415

* The solution to the systemis (x =2 and y =-3)

* To check the result, substitute the values of x & y in any equation,
suchasin(x —3y = 11)

2—3(-3)= 11

2+9=11

11 =11 2 LHS=R.H.S

Ex2: use Gaussian elimination method to solve the following system of equations
2x —y+z= —3
x+y—z=206
3x—y—z=+4

2 -1 1 -3

1
1 1 -—-1] 6 ] - we want to get this matrix [Cl
3 -1 -1 4 0

1 1 -1 6‘

o = O

==
N =X

Rie R, 2|2 -1 1 |-3

3 -1 -1 4 {1 -1 &
R,= —3R, +R; & R, = —2R, +R, > [0 -3 3 | —15
0 —4 2 —14




. 1 1 -1 6
0O —4 2 —14 1 1 0 1
'R’1=—R2+R1&Ré= 4R, + R; =2 [0 1 —1|5‘
1 0 0 1 7 0 0 -2 6
*Ry=—-R;> [0 1 -1] 5
0O 0 1 —3
1 0 0 17
'R5=R3+R29 0 1 0] 2
0O 0 1 -=-3.

* The solution to the systemis(x=1, y=2andz=-3)

* To check the result, substitute the values of x=1, y=2 & z=-3 in any
equation, such as in equation (2x —y +z = —3)

2(1) = 1(2) + (=3) = -3
2-2-3=-3

—3=-3 2 LHS=R.H.S

* Homework 2: Solve the following equations by Gauss-Jordan
Elimination Method, and check the results.

1) 2x—y =18
3x +y =2

2) 3x—-2vy+8z=9

—2x+2y+z=3
x+2y—3z=28



Lec.1/ Matrices, Inverse matrices by elementary row

* Determinant

* Determinant is a value that can be calculated from the elements of a
square matrix. The determinant of a matrix A is denoted det(A), or
the symbol for determinant is two vertical lines either side, |A| means
the determinant of A.

* |t used to find the inverse of a matrix and useful in calculus for several
applications.

* |t used to check whether or not a matrix can be inverted, where if det
(A)=0 then there is no inverse.

* The calculation of determinant is as follows:

For 2x2 matrix,

[a11 312] detliall a12]__ ‘311 12
Apq  Qpa A1 Ay Ap1 QA2

Ex1: find the determinant of A

Az[—lz g] - ‘—12 ;

For 3x3 matrix,

| = 411022 — Q420421

= 1(5)-3(-2)= 5+6=11

To each element of a 3x3 matrix there corresponds a 2x2 matrix that is
obtained by deleting the row and column of that element. The
determinate of the 2x2 matrix is called the minor of that element.

ay; Qq2 dq3
a1 Q2 dz3

. det‘az1 Az dz3
az; «azz dass

i1 Qg2 913]
azq Az dsz3

A2 A3

az1 az3|
d3p d3z3

azq a22|
31 dsz3

ars |
Blasz; as;

=a11| |—a12|



* Ex2: find the determinant of A

3 8 1 2 -1 6 —1 6 2
. — = 3 —8
_61 _24 11 |—4 1 | ‘—1 1 |+ |—1 —4|

o = 3(2-4) -8(6-1) +(-24+2) = -68

* Notice the + - + pattern for the numbers of the first row.

* Finding the inverse of matrices by elementary row method: Also called the
Gauss Jordan elimination method.

* Construct the augmented matrix (4 : I)

* Using row operations: Change the rows using (1) adding or subtracting the
row by another row, 2) multiplying the row by a constant and 3) swapping
rows) until convert matrix A into the Identity Matrix 1, (I: 4~1)

Note:

1) Augmented matrices appear in Linear algebra as two appended matrices
and are useful for solving systems of linear equations.

2) It can check the result through multiplying the or.fgmal matrix by the
inverse matrix to get the identity matrix (AA™1 =1)

Ex1: Find A~! using elementary row method (Gaussian elimination)

a=[F s 1 O]9R1=§R19\1 1|1 0]

. 2|2
1 47l 4l 1 1 120 1
1 1 1
" N 1 2, 2 0 P2 > 1 L 2 0
. RZ — RZ _Rl ) vi | -1 ’ Rz— _RZ 2 |_1 2
7
0L =1 01— =
2 2 7 7
4 1] 4 -1
_ 1 1 0,7 7 a_ |7 7
TRi=RogRe gl 2l 2 ATEL
4 171 7 | 7 7
a1 2 11|37 F|_ 11 0
a4 I9[1 4] -t 2 lo 1]
7 7



Ex2: find A~ 1

=

- - ' =0 O
I

;|HDD co ~

2 =1 3
cA=|[1 o0 =2
4 0 2
2 -1 3 1 0 0 ) 1
-[1 0o —-2]0 1 0]9}?1:55’191
4 0 2 0 0 1 4
. —1 3 1
L & 3 3
*>R;=R; —Ri> |g L1 7|1
2 2 2
4 0 2 0
—1 3 1
1 - 3 3
* >R3=R3; —4R, | 1 7| 1
2 2 2
0 2 —4 -2
S
" PR2=2R; 1o 1 —71-1 2
0 2 —4 -2 0
1
'aRl:ERZ_FRlJRE__ZRZ_FRE
. 10 -2 ©0 1
-« >R;=—Rz|l0 1 -7 1 2
10 —2
0 0 1 0 —
*>R, =2Rs+ Ry, Ry=R,+ 7R3
— 1 1_
0 5 5
-4 7
. _1= —]_ —_— _—
A 5 10
-2 1
0 — —_
: 5 10-

o= O

= o O

| |I
cnlNcn Rl

oo

H
|Ho|~q e

=
2



» Homework: find A™1 using Gaussian elimination and check the result

O R R

N

3
-2
0

0
-1
-1

Ans: A~1

Ans: A1

[ 3

-2

| 1
[ 2

-1

L 4

-2
2
-1
3
—2
6

I
%]
.O IHHI

—3
2
-7
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Crout's Method (LU Decomposition method)

It is a distinct method of solving a system of linear equations of the form Ax=b,
where the matrix A is decomposed into a product of a lower triangular matrix L
and an upper triangular matrix U, that is A=LU

Explicitly, we can write it as

all a12 a.13 ..... aln |11 0 o ... 0 1 U12 U13 .....
ay; Ay Axz ... an | |l lp 0 .. 010 @ uy ..
a.nl a.n2 an3 ----- ann Inl In2 In3 ..... Inn O 0 0 .....

Therefore, by LU-decomposition, the system of linear equations Ax=b can be

solved in three steps:
V. Construct the lower triangular matrix L and upper triangular matrix U.

Al Using forward substitution, solve Ly =b
Il Solve U=, backward substitution.
We further elaborate the process by considering a 3x3 matrix A. We consider

solving the system of equation of the form Ax=D, where,

a1 Q12 93 X by
A = a21 3.22 3.23 ’ )~( = X2 and b = bz .
dz; dzp dz3 X3 bs

The matrix A is factorized as a product of two matrices L (lower triangular

matrix) and U (upper triangular matrix) as follows:

by O 0\l up Ug) (a1 &2 &3
loy lpp 0 |0 1 Uy |=|ap axpn az

l31 3o agy asp as3

U A
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11 l11U15 l11U3 @ a2 A3
N @ lp1Ugp + 127 lp1Up3 +loUps = @" dyy a3
l31tho +130  I3gthg +135Up3 +133 @ agy a3

This implies
1 =211, by =ay, l3; =ag;;
dp .
lUpp =31, = Upp = T, =—,
11 911
3 _ &3 .
Uiz =ay3 => U3 = I —
11 91

lo1Uin + 1o =89y = |y =895 —lr1Uyy;

1
lo1Ui3 + Iy Upg =893 = Upz = I—(azs — 13 );
22
l31U1o + 130 =83y = I3 =agy — 31Uy ;
l33U13 +130U3p + 133 = a33 = l33 = agz — I3qUy3 — I3oUn3

Once all the value of [;j's and uj's are obtained, we can write
AX=Dbas LUX=Db

LetUx—ythen Ly=Db
i1 Y1 by
= |l Y2 |=| by
I3 Y3 bs
l1y1 by
= lo1ys +120Y5 =| by
l31Y1 +132Y2 +133Y3 bs

1 1
:>y1—|i Y2—| (by =I5y, ) and Y3—|—(b3—|31Y1—|32Y2)
11 22 33
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By forward substitution we obtain, U x=y

Loup Wgy(x) (N
=10 1 Uxg| X |=| Y2
0 0 1 )\xs Y3
By back substitution we get,
X3=Y3
X +U3X3 = Yo = X3 = Yo —U3X3
Xp +UppXp +U3X3 = Y1 = Xg = Y1 —UppXp — U3X3

Example 4. Solve the following system of linear equations, by Crout's method:

10%; +3X, +4Xx3 =+15 L U D

2% —10x, +3x3 =37
3% +2X, —10%3 =-10

Solution: In matrix form, the given system of equation can be written as

10 3 4\ % 15
2 10 3 || X |=| 37
3 2 -10){x3 -10
which is of the form Ax=Db. Let A =LU, which implies

10 3 4 Ill 0 0 1 U12 U13
2 —10 3 = |21 |22 O 0 1 U23
3 2 -10) Uy lp Ixj)lo 0 1

lp h1U1o i1t
=1 lp1  IpUpp +1p R ALY
31 l31Upp +13p  3qths +130Up3 + 133
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:>|11 210, |21:2, |31:3; Ulzi, U13:i'

10 10°
3 106
loiUip + 1oy ==10= 15y ==10-2x — = —"—"—;
21th2 t122 22 10 10
3—2x:£
yitin + bolos =35 Uy =~ 10) _ 11,
21U13 T looU23 = 23 = 106 =53’
10
3 11
l3iUpp +lpp =2 = lgp =2 —lgqUyy =2—-3x—=—;
31th2 T132 32 31th2 1010

33Uz +l39Upg + I35 = =10 = l33 = =10 - I3y U3 — I35Up3

_ 10_3x 2 1, 11 1163
10 10 53 106

Therefore, we get,

1 3 4
10 0 0 10 10
L= LOG 0 and U=(0 1 -1l
10 53
3 E -1163 0 O 1

10 106

Now, let U x=y, then Ly=Db implies

K 1006 0 15
, 1 -ues| Ve (O

10 106



10y, =15y =>

2y —@y =37T=y :ﬂ
.. . 1 10 2 2 53
This implies
11 1163
y1+5y2_—106 y3=-10=y3=1
%
2
Thus, y =| = | and U X =y gives
1
3 4 3
10 10 X Vi 2 o |
o 1 i, o _| =170 |, which implies
2 1= Y2 |=| —=——
23 53
0 0 1 X3 Y3 1
X1+—X2—ix :E
10 10 2
L 1 170
2 53°% 53
X3:1
By back substitution, we get,
X3=1
11x1 170
Xy = = -
53 53
3 3 4 3 3 4
X == =Xy ——Xg=——-—x(-3) - —x1=2
175 0 00y 0¥

Therefore, the required solution by Crout's method (LU decomposition method) is
Xg =2, Xo=-3, X3=1.



Example 5. Solve the following system of linear equations by Crout's Method (LU
factorization or decomposition method):

9% +3X, +3%X3 +3X, =24
3% +10X, —2X3 — 2%, =17
3% —2X, +18x%3 +10x, =45
3% — 2%y +10%3 +10x4 =29

Solution: The given system of equation can be written in matrix form as

3 3 3)x) (24
10 -2 -2 x| |17

9
3

3 2 18 10| xg| |45
3 -2 10 10)(x,) (29

9 3 3 3 by 0O 0 01 up Wiz Uy
Let 3 10 -2 -2 _ by I, 0 0 |0 1 uyg Uy
3 -2 18 10 l31 l3p 13 0 (|0 0 1 |ugy
3 -2 10 10 g1 lap a3 Igs)JO O O 1

Comparing, we get,

L i 1
I11U12 =3= U12 :g. Slmllarly, U13 = ul4 = g’

lp1U1 + 150 =10= 1y, =10—|21u12:10_3><%:9

lo1th3 +1yoUp3 = =2 = Upg = . T~ 3
22
—2—lyuyy 1

l31Upp +13p = 2= 135 =2~ I3y, =3

lo1thg +lppUpy =2 = Uy, =

l31th3 +l3oUn3 + 133 =18 = I33 =18 — I35ty 3 — I3oUs3 =16



l31U14 + l3oUng +l33U3q =10 = Ugy = I
33

lgUpp +1g0 = 2= g0 = -2 lgqup =3

41013 + l4pUpz + 143 =10 = I43 =10 —lggUy3 — I oup3 =8
l41U14 + l42Up4 +143U34 + 144 =10

= lgg =10—lg3U14 —lgoU24 —ly3uzs =4

Therefore, we get

114 1 1
9 0 0 O 3 3 3
3 9 0 0 0 1 =t =L
= and U = 3 3
3 -3 8 4 00 0 1

Forward substitution gives
Iy =24=y; = %
3y +9y, =171=y, =1
3y; =3y, +16y3=45=y; :g
3y, =3y, +8y3+4y, =29=y, =1

VZ
1 _ .
Thus, y = % and U X=y gives

1
LB B Kl(a) (n
0 1 % “ilx _| Y2
00 1 ¥|x Y3
O 0 O 1 )\ Xy Yaq

1

10— 1I31tg —l3pUpg _ 1

2

SN I N




By back substitution we get,
X4:1
X +1x —E:>x =2
3F5%=5 3
1 1
Xo—=Xg—=Xg =1=> X, =2
273587 3% 2

x+1x +£x +1x —§:>x—1
1T 37T T M T 1

Therefore, the required solution by Crout's method is

=1 X,=2, X3=2, X, =1



578  CHAPTER10  NUMERICAL METHODS (6 }

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

Numerical techniqgues more commonly involve an iterative method. For example, in
calculus you probably studied Newton's iterative method for approximating the zeros of a
differentiable function. In this section you will look at two iterative methods for approxi-
mating the solution of a system of n linear equations in n variables.

The first iterative technique is called the Jacobi method, after Carl Gustav Jacob Jacobi
(1804-1851). This method makes two assumptions: (1) that the system given by

al].+ X T X, = by
a21)(1"'322."' ot A X, = b,

auX T X T+ Ay = by

has a unique solution and (2) that the coefficient matrix A has no zeros on its main diago-
nal. If any of the diagonal entries a,,, 8,,, . . . , &,, &€ zero, then rows or columns must be
interchanged to obtain a coefficient matrix that has nonzero entries on the main diagonal.

To begin the Jacobi method, solve the first equation for x,, the second equation for X,,
and so on, as follows.

1
Xy =.(b1 — QX — QX — T T AgpXy)
1
X5 =.(b2 — Ay X T Xy — T AgnXy)
1
Xn :;(bn —8yXy ~ X — T @yn1X-1)
Then make an inifial a@pproximation of the solution,
(Xl, Xoy Xgy o v+ s Xn), Initial approximation

and substitute these values of x; into the right-hand side of the rewritten equations to obtain
the first approximation. After this procedure has been completed, one iteration has been


Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Pencil

Dell
Pencil


EXAMPLE 1

Solution

SECTION 10.2  ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS 579

performed. In the same way, the second approximation is formed by substituting the first
approximation’s x-values into the right-hand side of the rewritten egquations. By repeated
iterations, you will form a sequence of approximations that often converges to the(actual
solution. This procedure is illustrated in Example 1.

Applying the Jacobi Method

Use the Jacobi method to approximate the solution of the following system of linear
equations.

5% — 2%, + 33 = —1
=3, + X%+ X3= 2
2% — X, — TXg= 3
Continue the iterations until two successive approximations are identical when rounded to
three significant digits.

To begin, write the system in the form

_ 1,2, 3
Xy = —5 1t 5% — 5%
_ 2,3, _1
X5 g T 9% — 3%
3,2, _1
Xg = =7 17X — 7X,.

Because you do not know the actual solution, choose
X, =0, X, = 0, X =0 Initial approximation
as a convenient initial approximation. So, the first approximation is
: + 2(0) — §0) = —0.200
X, = 5+350) —30~ 0222
2+ 20 — 7(0) = —0.429.

Continuing this procedure, you obtain the sequence of approximations shown in Table 10.1.

X = —%

Xg = —

TABLE 10.1

O\‘\
\)& lf‘{\ V\@ 0 1 2 3 4 5 6 7

Xy 0.000 —0.200 0146 0192 0181 0.185 [0.186 (0.186
X5 0.000 0222 0203 0328 0332 0329 0331 (0331

X3 0000 —0429 —-0517 —0416 —0421 -—0.424 (=0423 (0423
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580

CHAPTER 10 NUMERICAL METHODS

Because the last two columns in Table 10.1 are identical, you can conclude that to three
significant digits the solution is

x, = 0186, x,= 0331, x,= —0423.

EXAMPLE 2

Solution

For the system of linear equations given in Example 1, the Jacobi method is said to
converge. That is, repeated iterations succeed in producing an approximation that is correct
to three significant digits. Asis generally true for iterative methods, greater accuracy would
reguire more iterations.

The Gauss-Seidel Method

You will now look at a modification of the Jacobi method called the Gauss-Seidel method,
named after Carl Friedrich Gauss (1777-1855) and Philipp L. Seidel (1821-1896). This
modification is no more difficult to use than the Jacobi method, and it often requires fewer
iterations to produce the same degree of accuracy.

With the Jacobi method, the values of x; obtained in the nth approximation remain
unchanged until the entire (n + 1)th approximation has been calculated. With the Gauss-
Seidel method, on the other hand, (you use the new values of eachiX) as soon as they are
known. That is, once you have determinedix, |from the first equation, its value is then used
in the second equation to obtain the new x,. Similarly, the new x; and x, are used in
the third equation to obtain the new x5, and so on. This procedure is demonstrated in
Example 2.

Applying the Gauss-Seidel Method

Use the Gauss-Seidel iteration method to approximate the solution to the system of
equations given in Example 1.

The first computation is identical to that given in Example 1. That is, using (X, X5, Xg) =
(0, 0, 0) as'the initial approximation, you obtain the following new value for x;.
X = —%+ £0) — 0) = —0.200

Now that you have a new value for x,, however, use it to compute a new value for x,. That
is,

X, = 5 + 3(—0.200) — §(0) =~ 0.156.
Similarly, use x;, = —0.200 and x, = 0.156 to compute a new value for x;. That is,
X; = —3 + %(—0.200) — %(0.156) ~ —0.508.

So the first approximation is x; = —0.200, x, = 0.156, and x; = —0.508. Continued
iterations produce the sequence of approximations shown in Table 10.2.
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SECTION 10.2  ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS 581

\od ()K( . TABLE10.2
A
\‘3\0 x'>°4\ —O 0 1 2 3 4 5
\&40 X, 0000 -0200 0167 0191 (0186 (0.186
X 0000 0156 033 0333 (0331 0331
X3 0000 —0508 —0429 —0422 (=0423 =0423

Note that after only five iterations of the Gauss-Seidel method, you achieved the same
accuracy as was obtained with seven iterations of the Jacobi method in Example 1.

EXAMPLE 3

Solution

Neither of the iterative methods presented in this section always converges. That is, it is
possible to apply the Jacobi method or the Gauss-Seidel method to a system of linear equa-
tions and obtain a divergent sequence of approximations. In such cases, it is said that the
method diver ges.

An Example of Divergence

Apply the Jacobi method to the system
Xp — 5% = —4
™%, — X, = 6,

using the initial approximation (x;, X,) = (0, 0), and show that the method diverges.

As usual, begin by rewriting the given system in the form
X, = —4 + 5%
X, = —6 + 7X;.
Then the initia approximation (0, 0) produces
X, = —4+50) = —4
X, = —6+7(0) = —6

as the first approximation. Repesated iterations produce the sequence of approximations
shown in Table 10.3.

TABLE 10.3

n 0 1 2 3 4 5 6 7

X; 0 -4 =34 —174 —1244 —6124 —42874 —214374
X5 0 -6 -3 —244  —1244 —8574 —42,874 —300,124
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582  CHAPTER 10

NUMERICAL METHODS

For this particular system of linear equations you can determine that the'actual solution
is X, =1 and x, = 1. So you can see from Table 10.3 that the approximations given by
the Jacobi method become progressively worse instead of better, and you can conclude that
the method diverges.

Definition of Strictly

Diagonally Dominant
Matrix

EXAMPLE 4

The problem of divergence in Example 3 is not resolved by using the Gauss-Seidel
method rather than the Jacobi method. In fact, for this particular system the Gauss-Seidel
method diverges more rapidly, as shown in Table 10.4.

TABLE 10.4

n 0 1 2 3 4 5

Xy 0 —4 —174 —6124 —214,374 —7,503,124
X5 0 —-34 —1224 —42,874 —1500,624 —52,521,874

With an initial approximation of (x;,X,) = (0, 0), neither the Jacobi method nor the
Gauss-Seidel method converges to the solution of the system of linear equations given in
Example 3. You will now look at a specia type of coefficient matrix A, called a strictly
diagonally dominant matrix, for which it is guaranteed that both methods will converge.

Ann x n matrix A is strictly diagonally dominant if the absolute value of each entry
on the main diagonal is greater than the sum of the absolute values of the other entries
in the same row. That is,

lag,| > [ag,| + |ags| + -+ + |ay,]
|ags| > @] + aps| + - + [ag|

|ann| > [am| + |ap| + - + [aq_4l-

Strictly Diagonally Dominant Matrices

Which of the following systems of linear equations has a strictly diagonally dominant
coefficient matrix?

@ 3% — x=-4
2%, + 5%, = 2
(b) 4%, + 2%, — X3 = —1
Xq + 2%, = —4
33X, — % + X= 3


Dell
Highlight

Dell
Highlight


SECTION 10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS 583
Solution (&) The coefficient matrix
3 -1
A=
>
is strictly diagonally dominant because 3| > |—1| and |5] > |2|.
(b) The coefficient matrix

4 2 -1
A=]1 0 2
3 -5 1

is not strictly diagonally dominant because the entries in the second and third rows
do not conform to the definition. For instance, in the second row a,, = 1, a,, = 0,
a,; = 2, anditisnot truethat |a,,| > |a,| + |ay|. Interchanging the second and third
rowsin the origina system of linear equations, however, produces the coefficient matrix

4 2 -1
A’=|3 =5 1],
1 0 2

and this matrix is strictly diagonally dominant.

Theorem 10.1

Convergence OF

the Jacobi and

The following theorem, which is listed without proof, states that strict diagonal domi-
nance is sufficient for the convergence of either the Jacobi method or the Gauss-Seidel
method.

If Aisdtrictly diagonally dominant, then the system of linear equations given by Ax = b
has a unique solution to which the Jacobi method and the Gauss-Seidel method will con-
verge for any initial approximation.

Gauss-Seidel Methods

In Example 3 you looked at a system of linear equations for which the Jacobi and Gauss-
Seidel methods diverged. In the following example you can see that by interchanging the
rows of the system given in Example 3, you can obtain a coefficient matrix that is strictly
diagonally dominant. After this interchange, convergence is assured.

EXAMPLE 5 Interchanging Rows to Obtain Convergence

Interchange the rows of the system
X, = D% = —
X, — X = 6

to obtain one with a strictly diagonally dominant coefficient matrix. Then apply the Gauss-
Seidel method to approximate the solution to four significant digits.
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Solution

Begin by interchanging the two rows of the given system to obtain
™, — X= 6
X — X, = —4

Note that the coefficient matrix of this system is strictly diagonally dominant. Then solve
for x, and x, as follows.

_ 6 1
X =71+ 7%
_ 4 1
X, =5 T 5%

Using the initial approximation (x,, X,) = (0, 0), you can obtain the sequence of approxi-
mations shown in Table 10.5.

TABLE 10.5

n 0 1 2 3 4 5
Xy 0.0000 0.8571 0.9959 0.9999 1.000 1.000
Xo 0.0000 0.9714 0.9992 1.000 1.000 1.000

So you can conclude that the solution isx, = 1 and x, = 1.

Do not conclude from Theorem 10.1 that strict diagonal dominance is a hecessary con-
dition for convergence of the Jacobi or Gauss-Seidel methods. For instance, the coefficient
matrix of the system

=4, + 5%, =1
X, + 2%, =3
is not a strictly diagonally dominant matrix, and yet both methods converge to the solution

X, =1 and x, = 1 when you use an initial approximation of (x;, ;) = (0,0). (See
Exercises 21-22.)



SECTION 10.2 [ | EXERCISES

In Exercises 1-4, apply the Jacobi method to the given system of
linear equations, using the initial approximation (x;, X,, - . - , X,) =

(0,0, ..., 0). Continue performing iterations until two successive
approximations are identical when rounded to three significant digits.

1.3 — x=2 2. =4, + 2%, = —6

X, + 4%, =5 X — %= 1
3 2% - X = 2 4.8 + X+ Xg= 7

X — 3+ Xg=—2 Xp — X+ 2%, = —2

=X+ X, — X3 = — 3%, +4x; = 11

5. Apply the Gauss-Seidel method to Exercise 1.
6. Apply the Gauss-Seidel method to Exercise 2.
7. Apply the Gauss-Seidel method to Exercise 3.
8. Apply the Gauss-Seidel method to Exercise 4.

In Exercises 9-12, show that the Gauss-Seidel method diverges for
the given system using theinitial approximation (X;, Xy, - . ., X,) =
0,0,...,0).

9. X —2%=-1 10. —x, +4x, =1

2%+ X, = 3 Xy — 2%, =2

11 2%, — 3%, = -7 12 X + 3, — X =95
X, + 3% — 10, = 9 X, — X =5
3X, + x= 13 X, + 2% =1

In Exercises 13-16, determine whether the matrix is strictly diago-
nally dominant.

2 1 -1 -2
P [

2 6 0 7 5 -1
5. 2 -3 2 6. |1 -4 1

0 6 13 0 2 -3

17. Interchange the rows of the system of linear equations in
Exercise 9 to obtain a system with a strictly diagonally domi-
nant coefficient matrix. Then apply the Gauss-Seidel method
to approximate the solution to two significant digits.

18. Interchange the rows of the system of linear equations in
Exercise 10 to obtain a system with a strictly diagonally dom-
inant coefficient matrix. Then apply the Gauss-Seidel method
to approximate the solution to two significant digits.

SECTION 10.2  EXERCISES 585

19. Interchange the rows of the system of linear eguations in
Exercise 11 to obtain a system with a strictly diagonally dom-
inant coefficient matrix. Then apply the Gauss-Seidel method
to approximate the solution to two significant digits.

20. Interchange the rows of the system of linear equations in
Exercise 12 to obtain a system with a strictly diagonally dom-
inant coefficient matrix. Then apply the Gauss-Seidel method
to approximate the solution to two significant digits.

In Exercises 21 and 22, the coefficient matrix of the system of linear
equations is not strictly diagonally dominant. Show that the Jacobi
and Gauss-Seidel methods converge using an initial approximation
of (X, Xy -« -, X)) =(0,0,..., 0).

21, —4x, + 5%, =1 22. 4%, + 2%, — 2% =0
X, + 2%, =3 Xp— Ky — Xg=7
X — X +4x;=5

25 In Exercises 23 and 24, write a computer program that applies the

Gauss-Siedel method to solve the system of linear equations.

23. 4+ X —  Xg = 3
X, 6% — 2%+ X, — Xg = -6
X, + 5Xg — Xzt Xg = -5

2X, + 5% — Xg - X — X= 0

—X3— Xt 6X5— Xg - X= 12

—X3 — Xg + 5Xg =-12

—X%, + 44X, — Xg= —2

—Xy— X X, + 5% = 2

P =18
X T A Xy X =18
X+ Mg — X Xg = 4

X3t WXy X5 X = 4

Xt - X~ X =26

X5+ dXg— X, — Xg=16
—Xg + 4%, — X3 =10
—X; + 4%y = 32



It is based on linearization of the nonlinear continuous function f(x). That is,

the zero of f(x) is approximated by the zero of the tangent line of f(x).
Graphical Derivation of Newton-Raphson Method

Assume we have the nonlinear continuous function y = f(x) = 0 shown in

Fig.T and it is required to find its root (r). Let xo be the initial estimate of r

dy f(xp)
tElII B _- — = ’ X=X —

x| ey f( 0) P
Solve for x4

- T
Follow the same procedure to find x2

f(x1)
L 2k e

In general use the first approximation to get a second, the second to get a

third, and so on, using the following numerical scheme

f(x)

Xit1 = Xj — m i= 0,1,2,.. f’(xi] 0 (1)

The stopping criterion is: |Xi=1— X| € Tx where Ty is the tolerance for x
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1. Open Methods: Sometimes we need to find the root of an equation near
a point x. Use xp = X.

2. Bracketing methods: Sometimes we need to find the root(s) of an
equation in an interval [a, b]. Examine the sign of f(x) at the ends of the

interval [a, b]. There are two cases:

e [ff(a)f(b) <0, then there is one root or odd number of roots.

N b N N b
Ny N4 N Ay

one root three roots

e |[ff(a)f(b) > 0, then there are no roots, even number of roots, or

multiple equal roots.

LILEI Y

¥y = f(x)

(xg, f(xg)
Tangent line

ff(x = xp)

(24, T(x4))
r = Exact root

T
*q@--eet
 J
®
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Y y
fia)* f(b)™
f(o)*
fla),
a b * a b x
no roots / no roots \
Y y
ﬁ!)‘ /(b)‘
a\r rz/ b X
~_ 4a b / X 1\/
_ even number of roots
f(a)” f(b)
no roots between a and b
y y
i f(b)*
f(a) f(b)* f(a)
\n r/\r; r4/ X a b X
a b ri=re=--
multiple equal roots
even number of roots

Example 1: Use NR method to find the real root of x> —x — 1 = 0 correct to

5 decimal places (dp) in the interval [-4, 4]. Choose Ax = 1.
Solution
Determine the position of the root

X | —4 -3 —2 =1 0] 1 2 3 4

f(x}=x3—x—1| - - - - -~ ur o+ o+ s

Determine the initial point xo. The best initial point is the point that makes

the value of f(x) closer to zero.

x | 1000 2000 1506 = 01 + x22)
f{x}=x3—x—1| 1 5 0.875




Fix) (x)® —x; —1
A RIS S

Xivy1 = X

i ®i (= old) Kieq (X MEwW) Ei = |%+1— il MNotes
0  1.50000(x0) 1.34783(x4) Eo=0.15217 =T« -

1 1.34783(x1) 1.32520(xz) E1=0.02263 =T« E1< Eoock
2 1.32520(x2) 1.32472(x3) Ez=0.00048 =T« Ez-< E10k
3 1.32472(x3) 1.32472(x4) Ez= 0.00000 =T« Ez- Ezok

Therootis r = 1.32472 and T, = 1 32472y = 0.00001 to 5dp

Example 2: Use NR method to estimate the positive abscissa (x-
coordinate) of the intersection point of fi(x) = sin x and f2(x) = %2 correct to

4dp.
Solution

The intersection point (points) of f1(x) and f2(x) is the exact root (roots) of

the equation fix) = f1(x)— f2(x) = 0 and vice versa.
Determine the root position

X ‘ 0 0.5 1
0 + Lr -

f(x) = sin x — %2

Determine the initial point x5 The best initial point is the point that makes

the value of f(x) closer to zero.



bt | 0.5(xq)  T{x=2) 0.75 (s = (¥ + X2)/2)
f(x) = sin =x — x2| 0.229 —0.159 0.119
Filx:) sinx; — x;°

x. = x _ == e ——

i+l S A E'y ' cosx; — 2x;
i ¥ (= old) X1 (X NEW) Ei = |x=1— il MNotes
0 0. 7500(xg) 0.29051(x4) Eo=0.1551 —

1 0. 9051(x4) 0.8777(xz2) E.1=0.0274 E1<= EcOK
2 0.8777T(x2) 0.8767(x3) Ez=0.0010 Ez < E1OK
3 0.8767 (x3) 0.8767 (xa) Ez= 0.0000 Esz< E2OK




Euler’s Method from Taylor Series

The approximation used with Euler’s method is to take only
the first two terms of the Taylor series:

fla+h) = f(a) + hf'(a)

In general form:

new value = old value + step size x slope

If fla+ h) =yiy1 and f(a) = y; as well as f"(a) — y%‘_'

then

withi =0,1,2,..., N — 1.

Euler’s (Forward) Method

Alternatively, from step size h = ;41 — x; and rearrange
to ;.1 = x; + h we use the Taylor series to approximate
the function f(x;41) = yi41 around f(z;) = y; with step
size h = x; 11 — x; . Taking only the first derivative:

Yit+1 — Yi + f(mia yt)h-

where f(z;,y;) is the differential equation evaluated at z;

and ;.
This formula 1s referred to as Euler’s forward method, or

explicit Euler’s method, or Euler-Cauchy method, or point-
slope method.

Example
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Obtain a numerical solution of the differential equation

dy

given the initial conditions that @EENISEEED for
the range z = 1 to z = 2 with (GICEISIGHE)

Solution:
Slsien ay o
with zop = 1 and yo = 4, theny;, =3(1 +1) —4 = 2.
By Euler’s method: 41 = yo + hyjg

1 =4+ (0.2)(2) =4.4

At 21 =20+ h=1+4+0.2=1.2and y; = 4.4 where
Yy =3(1+z1) — 0
y; =3(1+1.2) —4.4=22

then
Y2 = Y1 + hy]

ys = 4.4+ (0.2)(2.2) = 4.84

If the step by step Fuler’s
1 4 2

method 1s continued, we

can present the results in a 12 4.4 2.2

table: 14 4.84 2.36
16 5.312 2.488
18 5.8096 2.5904

2 6.32768
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MATLAB Implementations

function [x,y] = BulerForward(f,xinit,xend,yinit,h)

% Number of iterations

N = (xend-xinit)/h;

% Initialize arrays

% The first elements take xinit and yinit, correspondingly,
% the rest fill with 0Os.

X = zZeros(l, N+1);

y = zeros(1l, N+1);

x(1l) = xinit;

y(1l) = yinit;

for i=1:N

x(i+1) = x(i)+h;

yv(i+1l) = v(i) + h*feval(f,x(i1),v(1i));
end
end
function dydx = EulerFunction(x,y)

dydx = 3*(1+x)-v;

w
I
-
o
I
)
L
w
I
1=,
=
i
o
»

N = (b-a)/h;

t = ath:tb;

[¥,¥] = EulerForward('EulerFunction', a, b, va, h);

ye = y; % Numerical solution from using Euler’s forward method
vi = 3*t+exp(l-t); % Exact solution

hold on;

plot(t,yi,'r', 'LineWidth', 2);
plot(t,ye,'b', 'LineWidth', 2); hold off;
box on:




Fifth lecture

4..1Lagrange Interpolating polynomials

Determining a polynomial of degree 1 that passes through the distinct point
(Xo, ¥o) and (x,, 1) is the same as approximating a function f for which

J () =yoand f(X)=1, by means of first-degree polynomial interpolating or agreeing
with . The values of f at the given points. We first define the functions

Ly(x)= N and L(x)= %
Xo =X X =X
And note that
L(x)="0"0 1, [ (x)=21""1 0
0 M X=X
Ll(xo) = %0~ % =0, Ll(xl) = ik =1
Xo =X X — X
We then define
X—X X—x
p(x)=Ly(x) f(x)+ Li(x) f(x) = = f(x)+ ©f(x)
Xo =X X =X
This gives

(%) =11 (x)+0./(x) = f(x0) = ¥,
and p(x)=0.f(x)+1.f(x)=7(x)=y

So p is the unique linear function passing through (Xg» yo) and (x;, ;)

Example 1: Determine the linear Lagrange interpolating polynomial that passes through the

points (2,4) and (5,1) with f(xy)=4and f(x)=1

Solution:
PO = L () (6 + L) f () === £ () + =L £ (x)
Yo =X X=X
L)=2"0% x5 _ (&=
T x—x, 2-5 3
and L,(x) = XX _X-2 _x-2
x—-x, 5-2 3
p<x>=Lo<x>f<x0>+L1(x)f<xl)=x_—‘35.4+x—2_1:_x+6



n th Lagrange interpolating polynomial

P,() =L, () f () + L, () f () 4.+ L, (0 f(x,) = iln,k (x).f (%)

Where
L (x)= (x=x)(x=x)...(x—x,_)(x—x,,,)...(x—x,)
, (xk _xo)(xk _xl)"'(xk —x,H)(xk —ka)...(xk —xn)

foreachk =0,1,2,...,n

Example 2:

a) use number (called nodes) %o = 2,x,=2.75 and X, =4 {4 find the second Lagrange

interpolating polynomial for

b )use this polynomial to approximate 3

solution :

a)we first determined the coefficient polynomials Ly(x),L(x)and L,(x)

py(x)= Zf(xk) L, (%) =Ly (x) f (x)) + L (x) f (x,) + L, (x) f (x;)

L(x) = (x—x)(x—x,) =(x—2.75)(x—4)=l(x_2.75)(x_4)
(X, —x)(x,—x,) (2-2.75)(2-4) 3

Lo ) | ed)
(O =x)(x, —x,)  (2,75-2)(2. 75—4) 0.9375

L(x)= (x—x)(x-x) (x=2)(x-2.75) 1 L xm2)x-275)
(3, =x)(x, —x,) (4 2.)(4-2.75) 25

(x=2)(x—4)

Py(x) = Zf(xk)L (%) = Ly (x) f (xo) + L, (x) f () + Ly (x) £ (x,)

11 1 1
x)=——(x=2.75)(x—-4)+ x—2)(x-4 +—.— x—=2)x-2.75
P, (x) > 3( x—4)+ 275 09375( Nx—4) 2 2'5( ) )
x*—4x-2.75x+11 x*—4x-2x+8 x*-2.75x-5.5
pz(x): + +
6 2.5781 10

Example3: Use the numbers (called nodes) %o = 0,x, =1 and x,=2 {4 find the second

Lagrange interpolating polynomial where (Yo =11 =3 and y, =29



p(x)= Z S L () = Ly(x) f (xg) + L (x).f () + Ly () £ (x,)

L ex)mx)  (-Dx-2) 1
(x5 —x)  (0-1)(0-2) 2
L= GmRETR) (0=
(x1 —X )('xl - xz) 1-0)1-2)

(x-x)(x—x)  (x=0)x-1) 1
(%, -x)(,—x)  2-0)2-1) 2

Ly(x) (x=1)(x-2)

Ll (x)=

x(x—-1)

py(x) = Z S o) L () = Lo () f (x) + Ly (%) S (%) + Ly (%) f(x,)

P, (x) = (1)%(x ~D(x=2)—(5)x(x—2)+ (29).% x(x—1)

x?=3x+2 N 29x% —29x

—5x* —10x

pz(x):
P, (x) =10x> —6x+1

we can check
p,(x,)=10(0)-6(0)+1=1
Pa(x)=10(1)* ~6(1)+1=5
P,(x)=10(2)* —=6(2) +1=29

Example 4: Find /(1.5) by use Lagrange interpolating polynomial with points
X ==13,x, =16 and x,=19 (
¥, =0.62008, y, =0.45540 and y, =0.28181

Solution:

p(x)= Z S L(x) = Ly(x) f (xg) + L (x).f () + Ly () £ (x,)

(x—x)(x-x,) (1.5-1)(1.5-2)
(% —x)(%—x%,)  (0-1)(0-2)
L(1.5)= (x=x,)(x=x,) :(1.5—0)(1.5—2)
(X, = X)(x, = x,) (1-0)(1-2)
(x—x)(x—x) (1.5-0)1.5-1)
(% —x)(%—x)  (2-0)(2-1)

L,(1.5)=

L,(1.5)=




pr(x) = Z S o) L (0) = Lo () f(x0) + Ly (x0).f () + Ly (%) S (x,)

(LS=DO5-2) |0 45540y 05=005=2) | qpgp (L5=0L5-D)

P2(3) = (0-62008)= =5 07 (1-0)(1-2) 2-0)2-1)

p,(x)=0.51128

HOmwork

1)find approximation for f(2.3) from tables X 1.1 1.7 13.0
y 10.6 | 15. | 20.

2)

X 1.1 1.7 |30 |42 |5
y 10.6 | 15. |20. |25. | 39.

4.2: Forward difference

If /(X)= is a function whose values at known points (n+1). As
Xoo X, =Xy +hyx, =X, +h

We can denotes for forward difference as A the first forward difference at point x
Af(x)= f(x+h) = f(x)

Ao =1

M =270

Ay =r370)

A=Y 17 Y i=0,1,...n—1
The second forward difference find as

2

AV =8 Y
2. _ _ _ - _
A2

We can obtained the forward difference for power k

k _ Ak—1 _Ak—1 _Ak-1 . B
A yl.—A (Ayl.)—A Yin A Y, i=0,1,2,..,n—k



We can obtained the forward difference for tables

x|y Ay, | Ay, | Ny, | Aty | Ay,
Xo Yo
Ay,
X Y ,
Ay,
Ay,
AS)’O
X, V2 AZ% A4y0
Ay, A3y1 ASyo
X Vs Ay, A'y,
Ay, Ay,
Xy V4 A2y3
Ay,
Xs Vs

Note: when the polynomial for order n the row difference (n+1) and the next row will be
zero

Note: power =numbers point -1

Example write forward difference , table of the function ./ (x) = x* with (x=0,1,2,3,4and 5)

X, b2 Ay, | Ay, | Ay, | Ay, | Ny,
0 0
1
1 1
6
7
6
2 8 12 0
19 6 0
3 27 18 0
37 6
4 64 24
61
5 125




Homework

write forward difference , table of the function f(x)=x"—2x+1Iwith (x =1,2,3,4,5and 6)

4.3: Backward difference

If /(X)= is a function whose values at known points (n+1). As
X, X, =Xy +h,.,x, =x,_, +h

We can denotes for forward difference as A the first forward difference at point x

Vi(x)=f(x)—f(x—h)
VY, =Yi=Vi iconnm
szi = V(Vyl) = V(yl _yi—l) = (vyz _Vyi—l)

vkyi =V (Vy) = v V=ya)= vkilyi - Vkilyi—l)

We can obtained the forward difference for tables

ol Vo | Vi [V | Vi | Vi
Xs Vs
Vy,
Xy V4 )
Vi,
\%
V3 V3y
2 2 4
X3 Y3 V7, ; Viy s
- Vy, o Viy - V¥,
2 V) N ; Yo
Vy, A V=,
X N Vi,
Vy,
X0 Yo




Example write Backward difference , table of the function
f(x)=x"—2x—1with (x=1,2,3,4,5and 6)

Solution
X, Vi Vy, | Vi, | Vi | Vi | VP,
1 -2
5
2 3
12
17
6
3 20 18 0
35 6 0
4 55 24 0
59 6
5 114 30
89
6 203
Homework

1) Write the backward difference table for function S (X)) =Y, be having like
polynomial (I+x+ 2x2) over [0,4] with Ax=h=1

2) Write the backward difference table to X = (0(1))4) and y=(3,6,11,18,12)

4.4 Newton-Gregory Forward Interpolating Formula

In this formula for interpolation at the beginning of the givens values it uses forward
operators

£ = £+ Gy 4 PPTDAT @) | p(p=D(p=2DAS (x)

21 37
L PP=DP=D(P=3Af(x) | p(p=D(P=2(p=3)..(p=n+DA"f (%)
4] nl
_ %%
Wherep ok



Example: write Newton-Gregory Forward Interpolating (N-G I.P.) that fit the following table

X 0 1 2 3 4 5
y S5 |1 ]9 25 |55 105
Solution :
xz yl Ayl Azyz A3yi A4yz Asyz
0 -5
6
1 1
2
8
6
2 9 8 0
16 6 0
3 25 14 0
30 6
4 55 20
50
5 105

x —-x, x —-x, x —0
vp= ph 0 _ ph 0 _ 1 :xp:p:xp

P(p=DAf(x) , p(p=1)(P=2)A S (x,)
21 37

L P(P=D(p=2(p=3Af(x) , p(p=1)(p-2)(p=3)(p-4+DAf(%,)
47 51

f(x,)=p’-2p*+7p-5

S (x,) = f(x)+ pAf(xy) +

Homework
1)Find the (N-G L.P.) of degree two which takes the following values
(0,0.25),(0.5,-1.5),(1,-1.75),(1.5,-0.5),(2.5,6.5),(3,12.25)

(f(xp)=3p2 —5p+0.25)




2)write N.G.L.P. that fite the following ly |1 |8 [27 |64 [125 |216 |

And find y at x=1.24

Solution
x, =1
x,=1.24
X —Xx -
ple 0:1.24 1:0.24
h 1

4.5 Newton-Gregory Backward Interpolating Formula

This formula used to find f(x) at end the table

POV (%) | p(p+D(p+2)V'f (%)

F0) = () + pVS () + 24

21 37
VPPV +D(P IV | P D@+ 2D(p+3).(prn =DV f(x,)
4] nl
_ %%
Where P= h ’

Example find the value y when x=1.35 and x=1.05 and

X 1 1.1 1.2 13 1.4
y 2718 | 3.004 | 3.320 |3.669 |4.055
3 2 ] 9 2
Solution
X, Y, Vy, | Vi, | Vi | Vi, | VY,
1 | 2.7183
0.2859
1.1 | 3.0042
0.030
0.3159 |0 0.003
3
1.2 | 3.3201 0.033 0.000
03492 | 3 0.003 |1
13 | 3.6699 0.036 | 4
0.3859 | 7




1.4 4.0552

X, =X — -
p=tp X0 :1.35 1.4: 0.05:_0.5
h 0.1 0.1

P(p+DV (%) , p(p+D(P+2V'f (%)
21 3/

PN+ 2(p+3)V' S (x,)
41

S )= f (%) + pVf(x,) +

£ ()= 4.0552 4 (~0.5)(0.3859) 4 CONOHN0.0367) | (-0.5(0.5)(1.5)(06034)

21 37
, (£0-5)(0.5)(1.5)(2.5)(0.00)
47

10



Numerical Differentiation
1- When the distance are equal and beginning table if h = x;,; — x; i = 0,1,2,..n

First : numerical differentiation of newton forward formula

fx) =

f(x0) + pAf(xo) + p(p_l)zA!Zf(xo) + p(p—l)(p;!Z)A3f(xo) 4
p(p—l)(p—zl(!p—3)A4f(xo) T p(p—l)(p—z)(p_31)l;__(p_n+1)Anf(x0) N
Where p = xpi—lxo

£/ =L (from P20 — 2P _ 2

fl(x) = %% . (2)

Now we go to find derivative for (1)

a _
dp o
0 + Af(x0) _I_(Zp—l)zAzf(xO)_I_(3P2—6P+62)A3f(xo)+(4p3—18p2+Zip—6)A4f(x0)+
”_I_ip(p—l)(p—Z)(p—3)---(p—n+1)A f(x0) - (3)
dp n!
Sub. (3) into (2) we obtain
£ =
%[Af(xO) +(ZP—l)ZAZf(xO)+(3p2—6p+62)A3f(XO)_I_(4293—18p2+2225—6)6A4f(x0)+
”_I_ip(p—l)(p—Z)(p—3)---(p—n+1)A f(x0) . (4)
dp n!

Note: the eq. (law)(4) is used to find first derivative of points that are not in
table.
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% g d derivati /" __d*f d%*p
econd derivative f''(x) = e

£ () = 5 [A2F (x0) + (p — DA (x0) + Z2PHITCEO |y

12
d? p(p—1)(p—2)(p-3)..(p—n+1)A™ f(x0) (5)
dp? n!

Note: the eq. (law)(5) is used to find second derivatives of points that are
not in table.

fx=x=x;=x,=p=0;f(x;) = f(x0)

This means that the point is within beginning a table this leads to eq.
(law)(4) become as follows

reay — L A% f(xo) | A3f(x0)  A*f(x0)
£ =3 |af (o) - L2+ 28 D6

Note : the eq. (law)(6) is used to find first derivatives of points that are
within beginning a table

MOES [Azf(xO) — B3 F(x0) + 1 A*f(x0) — 24 (x0) + ] - (7)

Note: the eq. (law)(7) is used to find second derivatives of points that are
within beginning a table.

Example : Find f'(2.5), f"'(2.5) from the following table f'(3)

X 2 3 4 5 6
y 5 10 17 26 37
Solution : note Power = numbers point -1
X f AfO Af0 A3f0 A*f0
2 5 c ,
0
3 10
7
4 17 2 0
0
5 26 9
2
6 37 11
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) =
%[Af(xO) N (2—p)A? f(x0) N (3p%—6p+2)A3f(x0) n (4p3-18p%+22p—6)A*f(x0) L.

2 6 24 Tt
d (p-1D)(p-2)(p-3)..(p—n+1)A* £ (x0)
dp n!

, 1 2(0.5)-1(2) 3(0.5)%2-6(0.5)+2)(0) 4(0.5)3-18(0.5)%+22(0.5)-6)(0)
1) =35+ 22 + - O J©
0|=5-1=4

24

fl'(x) = % [Azf(xO) + (p — DA3F(x0) + EPLEHIATCO)

+
12

d?> p(p-1)(p—2)(p—3)...(p—n+1)A%f(x0)

dp?

n!

/" _1 _ 6(0.5)2-18(0.5)+11(0) _
f'(x) =22+ (0.5 -1)(0) + — =

reay — L _Af0) | A3f(x0)  A*f(x0) |
£ =5 [aF0) - L2+ =0 D 4]

2

o =t-2e-s
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Second: numerical differentiation of newton backward formula. Points are
within ending a table.

flx) =

3
F(x0) + pVf(x,) + p(p+1)2\7! f(xn) p(p+1)(p;z)\7 Fom) |
p(p+1)(p+2)(p+3)v4f(xn) .1 p(P+1)(P+2)(P+3)...(p+n—1)V*f(xn)
& n!

2 3 2 3
£(x) = Fan) + pVf(xn) + & +p)2Vf () | (P*+3p +2p)v ram)

(p*+6p3+11p%+6p)V4f(xn)

4ot p(p+1)(p+2)(p+3)..(p+n—-1)V"f(xn) . (8)
24 o
Where p = 22=22
_f __XxXp—xn d_p _1
f()—d (fromp = :>dx_h)

dp
Tdx
f'x )—%d—f..(9)

Now we go to find derivative for (8)

a _
dp o
0+ Vf(xn) + (2p+1)2V2(x”) + (3P2+6P+62)V3f(xn) n (2p3+9p2+1i§+3 )WAf(xn) 4
”_I_ip(p—l)(p—Z)(p—3)---(p—n+1)v f(xn) .(10)
dp n!

Sub.(10) into (9) we get

f'x) =

! [y on) + CRHOPSGR) | (40P o) | G )0 o
d p(p-D(-2)(p-3).. (p_n+1)vnf(xn)] (11
dp n!
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Note: the eq. (law)(11) used to find first derivatives of points that are not in
table

* second derivative of newton Backward

d?f d?p
144 _ - J =z F
f (x) T dp? " dx?

(6p2+18p+11)Vf(xn) L.
12

@) = [V2fGn) + (0 + DV f(xn) + .

d? p(p+1)(p+2)(p+3)...(p+n—1)V”f(xn)] (12)
dp? n!

Note: the eq.(12)(law) is used to find second derivatives of points that are
not in table

fx=x;=x;=x,=>p=0,f(x;) = f(x)

This means that the point is within the ending table; this leads to eq.(11)
becoming as follows

2 3 4
f'(xn) = %[Vf(xn) +2 fz(xn) +2 f,;xn) +2 fixn) + ] ..(13)

Note : the eq.(law)(13)is used to find the

First derivatives of points that are within ending a table.

() = = | VP Gen) + PP (en) + SV () + 293 F (am) + -+ | .. (14)

Note: the eq.(law)(14) is used to find second derivatives of points that are
within ending a table.
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Example: Find f'(2.9), f'(3) and f"(3) from the following table

X 0 | | |
y ! 4 5 |
Solution

X f Vfo VZf0 T |
O i 3 . e
1 ; 1 i

2 5 L

3 R

p = xpoan _ 2973 _ 14

h 1

- § 2 f(xn)
fr(x) — % Vf(xn) n (2p+1)Z f(xn) + (3p +6p;-2)v ]

, _1f 2—-(-0.1)+1(1) , (3(-0.1)2+6(-0.1)+2)(3)] _ 6.23
fre) = 1 _2 T 2 T 6 ] T2

Find f'(3) thismeansxn =3 =p =0

f’(xn) e [Vf(xn) + sz(xn) st(xn)]

f'(xn) =%[2+%+§] = 3.5
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